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Figure 1: Physiology-based Model (PM) that predicts differences of vibrations mimicking the human somatosensory system.

ABSTRACT

Perceptual dissimilarities, requiring high-cost user ratings, have
contributed to designing well-distinguishable vibrations for asso-
ciated meaning delivery. Appropriate metrics can reduce the cost,
but known metrics in vibration similarity/dissimilarity could not
predict them robustly. We propose a physiology-based model (PM)
that predicts the perceptual dissimilarities of a given vibration set
via two parallel processes: Neural Coding (NC), mimicking the
neural signal transfer, and One-dimensional Convolution (OC), cap-
turing rhythmic features. Eight parameters were trained using six
datasets published in the literature to maximize Spearman’s Rank
Correlation. We validated PM and six metrics of RMSE, DTW, Spec-
tral/Temporal Matchings, ST-SIM, and SPQI in twelve datasets: six
trained and six untrained datasets including measured accelerations.
In all validations, PM’s predictions showed robust correlations with
user data and similar structures in perceptual spaces. Other base-
line metrics showed better fit in specific datasets, but none of them
robustly showed correlations and similar perceptual spaces over
twelve datasets.
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1 INTRODUCTION

With the recent growth of tactile information devices including
mobile devices, wearables, and VR systems, vibrations have widely
been used to inform events or states of a system by using well-
discriminable patterns [23, 35, 53] and elevate the end-user’s im-
mersion with realistic tactile patterns [14, 16, 48, 51]. Among them,
applications aiming at accurate information delivery required well-
discriminable vibrations for providing warning [15, 17, 49, 63], nav-
igation [31, 52, 66], and subjective feelings [44, 59, 61]. However,
vibration patterns can be compiled with varying several param-
eters including amplitude, duration, envelope frequency, carrier
frequency, and rhythm [6], and designers need to explore a large
design space of vibrations to find the most dissimilar subset of
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their interest. Therefore, haptic designers have authored vibrotac-
tile patterns by varying salient vibration parameters [7, 60, 67],
morphing signals [12], or selecting patterns that were labeled dif-
ferently by users and designers [34, 54]. To find the most dissimilar
subset, perceptual dissimilarities of designed patterns were esti-
mated from pairwise rating [26, 40, 45, 60] or cluster-sorted rating
[33, 34, 47, 60]. Both rating methods usually take more than an hour
for the experiment completion by each participant.

The time and cost for running user studies would be greatly
reduced if a metric can predict perceptual dissimilarities of vibra-
tions. So far, the Haptics literature includes similarity/dissimilarity
metrics of vibrations in various contexts. Root-mean-squared er-
ror (RMSE) contributed to measuring texture vibration similarities
in spectral domain [36, 46, 56] while haptic researchers utilized
Dynamic time warping (DTW) [9] in vibration morphing [12] or
Tacton similarity measure [50]. Custom metrics of spectral (Msn,)
and temporal (M;y,) matching were proposed to rate different di-
mensional accelerations of the same vibration [46]. Also, similarities
between the original and compressed vibrations were measured in
spectral similarity (SPQI) [40] and both temporal and spectral simi-
larities (ST-SIM) [21, 22] while a method integrating SPQI/ST-SIM
(VibroMAF) was also proposed [41]. The aforementioned metrics
assessed the similarity between vibrations generated by their pro-
posed algorithms in comparison to the reference vibrations that are
usually captured from real interactions. However, no known met-
rics compared their calculations with user-rated dissimilarities and
validated their derived perceptual spaces for perceptual analysis. So
the literature still requires metrics of the perceptual dissimilarities
for a vibration set to accelerate vibration pattern design.

Therefore, this work proposes a computational model that pre-
dicts perceptual dissimilarities matching the user ratings. We de-
signed a physiology-based model, PM, by mimicking the human
tactile system with physiological knowledge in the literature. Our
model was designed with two independent and parallel approaches
of Neural Coding (NC) and One-dimensional Convolution (OC) pro-
cesses. NC was designed to capture spectral features by mimicking
neural pathways from the skin’s mechanoreceptor activation to
the somatosensory cortex responses with six adjustable parame-
ters. OC was more sensitive to rhythmic features by taking moving
averages of vibrations. PM integrated two dissimilarity matrices
generated from NC and OC with two weight parameters, and over-
all eight parameters were optimized using six training vibration sets
published in the previous three papers with respective perceptual
dissimilarities [25, 26, 45].

We compared PM and other six metrics with respect to the
user-reported dissimilarities and perceptual spaces in three val-
idation processes. The first validation datasets were the six pub-
lished datasets used in the model training. PM showed the highest
averaged Spearman’s rank correlation (p = 0.79; the higher, the bet-
ter) in dissimilarity and the lowest averaged alienation coefficient
(0.26; the lower, the better) in structural similarity of perceptual
space. The baseline six metrics of RMSE, DTW, M, Mim, ST-SIM,
and SPQI showed high correlations (p > 0.5) in frequency mixing
patterns, but comparably low correlations in the patterns varying
modulated frequency and both amplitude and carrier frequency.
In the second validation, we collected two datasets by running a
user study that compares an untrained dataset of 12 vibrations by
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recruiting 20 participants. The first dataset was an intended pat-
tern set (IPS) varying all trained vibration parameters of amplitude,
modulated frequency, and mixing ratios of two carrier frequencies.
The second dataset was a measured pattern set (MPS) collected
from a voice-coil actuator held by two fingers in playing IPS. The
final validation compared two IPS and two MPS of 14 vibrations [1]
that vary an untrained parameter of rhythm. The second and final
validation consistently showed that PM predictions were strongly
correlated with user data, showed lower alienation coefficients, and
captured similar implications from the perceptual spaces.

In this paper, we suggest a computational model, PM, as a metric
candidate for pairwise perceptual dissimilarity using physiological
knowledge. We contribute as follows:

o Results showing that PM robustly predicted user-rated per-
ceptual dissimilarities in both designers’ intended patterns
(IPS) and noise-including measured acceleration patterns
(MPS).

e Perceptual spaces derived from PM predictions and user-
rated perceptual dissimilarities showed better structural sim-
ilarity and were able to capture similar implications. There-
fore, vibrotactile pattern designers can flexibly probe the
user perception by varying vibration pattern sets with PM
in minutes.

2 RELATED WORK

Haptic designers have authored vibrotactile patterns to find the
best subset for mapping appropriate information of their interests.
One common approach is obtaining perceptual dissimilarities of
vibration candidates from user studies and deriving corresponding
perceptual space to select the most dissimilar subset. Known met-
rics have contributed to estimating similarity or dissimilarity of
vibrations, but the relevant perceptual space analysis has not been
covered by those metrics yet. This section reviews the vibrotactile
pattern design, perceptual space analysis, and objective metrics
that contributed to vibration similarity and dissimilarity.

2.1 Vibrotactile Pattern Design

In the tactile interface, perceptually different vibrotactile patterns
are mandatory to associate meanings with them, so a user easily
identifies the incoming pattern. Designers, therefore, have compiled
such patterns by combining vibrotactile parameters of larger than
differential thresholds in a single physical parameter, for example,
amplitude and frequency [25], envelope modulation frequency [45],
superimposing ratios of two vibrations [26, 32], and duration [67].
Meanwhile, abstract but comparably salient parameters of rhythm
[1, 7, 60] or waveform patterns [47] were contributed to design
distinct patterns as Tactons [6].

Designers then select the best subset from the compiled vibrotac-
tile patterns for associating the meanings of target applications. An
intuitive way is running a user study of pattern identification [7, 8]
and selecting highly accurate patterns, but it usually needs a careful
design considering the learning process of participants. A common
approach for finding the subset is collecting pairwise differences of
perceived vibrations and applying multi-dimensional scaling (MDS)
on them to visualize the perceptual space [25, 26, 45]. The MDS
finds the coordinates that minimize distance errors in the reduced
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dimensions, therefore pairwise dissimilarities of vibrations can be
visualized in easy-to-understand 2D or 3D perceptual spaces. The
derived perceptual space is interpreted as how users recognize the
given vibrotactile patterns in the relative structure and designers
find relevant implications with the design parameters [34, 60].

2.2 Perceptual Dissimilarity Rating in Haptics

The MDS is a powerful visualization method and widely used for
understanding the salient texture parameters [24] to finding the
dissimilar vibration subsets [1, 60] by pairwise rating. In the texture
classification in real interaction, Hollins et al. measured pairwise
dissimilarities of 17 textures and visualized their perceptual space
[24], and derived a conclusion that rough/smooth and soft/hard
dimensions were prominent in texture classification. Okamoto et
al. applied MDS to derive perceptual spaces of haptic texture and
vibrotactile patterns and proposed a mapping technique to provide
vibrations similar to the target texture [43]. Vardar et al. applied non-
metric MDS in multi-modal comparison [64], in detail, compared
haptic and visual perceptual spaces from pairwise dissimilarities of
real surface stimuli, and concluded the equal contribution of both
modalities to surface haptic information. Also, many researchers vi-
sualized the perceptual spaces to find salient vibrotactile parameters
[25, 26, 45]. However, MDS requires dissimilarities of all vibration
pairs, so the number of vibrations has been limited in the pairwise
rating due to the experiment duration.

In order to control the temporal cost of pairwise dissimilarity
rating, Ward suggested a cluster-sorted rating [65]. This method
indirectly calculates dissimilarities from multiple classification pro-
cesses, so the resolution of dissimilarities and the temporal cost
are controlled by the number of sessions and clusters. Due to its
adjustable aspects, cluster-sorted ratings were applied to 30 and 36
vibration sets (1 and 1.75 hours each) [34], 30 vibrations (duration
not specified; 1 hour assumed from compensation money) [33, 47],
and 84 vibrations (2 hours) [60]. Some of them validated the similar-
ities between cluster-sorted and pairwise ratings [33, 34]. Although
cluster-sorted rating provided a means of controlling temporal cost,
it still requires running user studies more than an hour.

Despite diverse use cases in MDS analysis, both ratings come
from relative comparisons, and users’ responses could differ if the
given vibration patterns change. In other words, haptic designers
should run another user study to accurately select a dissimilar
subset, and it reduces the design flexibility.

2.3 Metrics in Vibration Similarity and
Dissimilarity

Dissimilarity, in other words, distance metrics are essential for

classification, clustering, optimization, and evaluation in various

fields. Many researchers have proposed and analyzed dissimilarity

metrics, such as L, distance and entropy-based dissimilarity, and

Cha reported mathematical distance metrics rigorously [10].

In vibration comparison metrics, root-mean-squared error
(RMSE) is one of the most general methods based on Euclidean
distance. RMSE is defined as a squared average error of two signals
in its power estimation, which gives non-negative values. Haptic re-
searchers have adopted the RMSE in spectral similarity calculation
to custom metrics including ST-SIM/SPQI that use subband-wise
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RMSE in the spectral domain for comparing original and com-
pressed vibration signals [21, 22, 40]. VibroMAF optimized sum-
ming weights of ST-SIM, SPQI, and normalized signal-to-noise
ratios for assessing the vibrotactile similarity after signal compres-
sion [41]. In vibrotactile dimensional reduction from 3D to 1D of
the same vibration signal [46], spectral matching (Ms,) also calcu-
lated the sub-band RMSE using 10% spectral moving window while
temporal matching (M;,) calculated cross-correlation to the tem-
poral signals. Dynamic time warping (DTW), suggested by Berndt
et al., was designed to measure dissimilarities and detect similar
patterns in two temporal series signals [3]. It calculates a distance
by generating a cost matrix consisting of differences between all
components of two temporal series, then finds a warping path that
minimizes total cost. DTW has been used mostly in auditory stim-
uli comparison including music [38] and speech [9], and haptic
researchers utilized it in finding similar patterns to a target Tacton
[50].

So far, haptic researchers have proposed several dissimilarity
or similarity metrics between vibrotactile signals, most of which
were modeled by mathematical signal processing. Some attempts
also reflected the perceptual characteristics of human including
detection threshold [21, 22, 41] or differential threshold [46]. To the
best of our knowledge, no researchers have compared the metric
calculations with the user-rated perceptual dissimilarities yet.

3 PHYSIOLOGY-BASED MODEL: OVERVIEW

We designed a physiology-based model (PM) (in Figure 2) to predict
the pairwise perceptual dissimilarities of a given vibration set with
the same duration. This model was designed to emphasize different
features of each vibration in the set; Neural Coding (NC) simulates
neural current transfer for spectral feature extraction, and 1D Con-
volution (OC) compares rhythmic features by taking the envelope
of input vibrations through a moving average filter. NC and OC cal-
culate predicted brain waveforms and envelope feature waveforms
from an input pattern set. The estimated pairwise dissimilarity
matrix in each set was calculated by Root-Mean-Squared-Error
(RMSE) and Dynamic Time Warping (DTW) respectively, and PM
applied a weighted sum of the estimated matrices to output a pre-
dicted dissimilarity matrix. To increase the prediction accuracy, we
trained two summing weights, colored in blue in Figure 2, using
six dissimilarity matrices published in three papers [25, 26, 45].

While OC adopts 1D convolution for rhythmic feature extraction,
NC is designed to mimic the process of how a human delivers an
external tactile stimulus to the brain for haptic perception. For
efficient design, we divided NC into 1) mechanoreceptor excitation
by external vibrotactile stimulus and 2) neural signal transfer from
the excited mechanoreceptors to the somatosensory cortex area.
The mechanoreceptor excitation is modeled based on the four-
channel theory that human perceives the tactile stimulus through
four different types of receptors in the human skin, and the neural
signal transfer is modeled to predict neural spikes over sub-neural
networks and the brain [11, 30]. The following two sections cover
the details.
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Figure 2: Physiology-based model that predicts a dissimilarity matrix from ’Neural Coding (NC)’ and ’One Dimensional
Convolution (OC)’ processes. The red letters are summing weights and trained by six published perceptual dissimilarity data.

4 NEURAL CODING

Tactile stimulus applied to the human skin physically moves the
contacted body site and propagates along the skin and bone. Four
mechanoreceptors of Meissner Corpuscle, Pacinian Corpuscle,
Merkel Disk, and Ruffini Ending are excited by the different band-
widths of the stimulus spectrum, and the mechanoreceptors ex-
ceeding their excitation threshold convert the physical stimuli to
neural currents. The electrical signals on the nerve terminals in the
skin are conveyed to the central nervous system through a series
of relay nuclei to the thalamus in the brain. At the hierarchical
sensory processing stage between the thalamus and the somatosen-
sory cortex, the signals are integrated into more complex sensory
information. At last, a specific tactile sensation of the stimuli occurs,
and a human perceives the stimulus [30].

Our Neural Coding process mimics the aforementioned process
from the neural activation at mechanoreceptors to the perception in
the brain (in Figure 3). A well-defined contact scenario is required
for accurate prediction, and our model assumes that input vibration,

(@) (b)

represented in g (gravity acceleration), is given with a circular probe
of 0.5 mm radius at the fingertip and four mechanoreceptors are
aligned at the center location to utilize the known parameters in
tactile perception [28]. The following subsections are threefold to
describe them in detail: mechanoreceptor activation, neural spike
generation, and neural network simulation.

4.1 Mechanoreceptor Activation via Vibration
Propagation

External vibrotactile signals propagate along the skin and excite
tactile receptors under the skin. If the energy exceeds the receptor’s
activation threshold, neural spikes are generated at the receptor. We
designed a two-step process to model the thresholded activation in
NC: the vibration propagation using band-pass filtering with four-
channel theory (Section 4.1) and neural spike generation (Section
4.2) as in Figure 4.
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Figure 3: A diagram of Neural Coding (NC) process. The neural networks and weight parameters colored in red were trained
with published data. (a) Simulation of vibration propagation and relevant mechanoreceptor activation with band-pass filtering
(b) Neural spike generation (c) Simulation of neural current transfer via simplified excitatory and inhibitory networks.
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Figure 4: Neural spike generation process for propagated vibration on a single mechanoreceptor type

Propagated Vibration Intensities of Activated Receptors -
We first modeled how the vibration propagates over the skin. In our
assumption, four mechanoreceptors are aligned at the stimulation
center, and nearby receptors are excited with propagated vibra-
tions. Here, we defined the maximum activation distance ryqx as
the boundary where no mechanoreceptors fire any neural currents
by the propagated vibrations. Thanks to the literature, Johnson
reported firing rates of receptors and vibration propagation ampli-
tudes at a fingertip with the 0.5-mm probe stimulation [28]. The
neural firing rates of mechanoreceptors located within a 1-mm
margin of the stimulator’s edge (hot zone) were the same as the
centered receptor. Also, the vibration amplitude drops off by the
square as the distance to the hot zone increases. We defined the
propagated spectral amplitudes of vibration as:

-

0, r < 1.5mm

V=42 .
(7) X0, r>15mm

)

where Xj'(r) are the spectral amplitudes of propagated vibration
atr, U are the spectrum amplitudes at the center, and r is the distance
from the stimulation center.

We then chose activated receptors by the propagated vibrations
and their spectral sensitivities. Muniak et al. reported that a linear
relationship exists between the neural firing rate and a single spec-
tral intensity at the receptor [39], and we linearly extended it to
the full-spectral equation as:

F(V) =" ai(logVi - Bi) ®)
i=1

where f (V) is the mean firing rate of the receptor, logV; is a log-
transformed intensity of propagated vibration, n is the number of
spectral components of the propagated vibration, & are the linear
proportions between mean firing rate and the log-transformed in-
tensities, ﬁ is the log-transformed absolute threshold of the receptor
(displacement, log(um) peak), and subscriptions of i represent i-th
spectral component. If the input vibration is a single sinusoid, n = 1,
then the equation is simplified to f(v) = a (log(v) — f) which is a
common form of Steven’s power law [57].

To build @ and E for 1-500 Hz spectrum, we adopted the empirical
study data estimated from macaque monkeys and human subjects.
First, we adopted the proportions of the mean firing rate from the

monkeys’ data [39] because of the absence of human data. The
monkey’s tactile system includes no Ruffini Endings, and Merkel
Disk and Ruffini Ending in human tactile system are reported as
sharing their pathway to the somatosensory cortex [29, 58]. By
the prior findings, we regarded the two receptors share similar
proportions in both Merkel Disk and Ruffini Ending. To build &, we
applied quadratic extrapolation to the values of Meissner Corpuscle,
Pacinian Corpuscle, and Ruffini Ending. In contrast, cubic extrapo-
lation was applied to Merkel Disk’s values because it is insensitive
to high-frequency bandwidth vibration.

Second, Bolanowski et al. reported an absolute threshold plot of
spectral components in [4]. Because the figure did not cover the full
bandwidth of each receptor, we applied quadratic extrapolation to
the manually measured data points and built ﬁ between 1-500Hz of
each receptor. All approximations were carefully selected to reflect
their sensitivity to frequency bandwidths as shown in Figure 5.

Then we found the maximum activation distance ry,qx at which
receptors do not activate from Equation 1 and 2 as:

2 aillogo;—B;)

Fmax = 15X 10 2Ziq@ ®)
where n is the number of spectral components of the vibration
and v; is the spectrum amplitudes of input vibration at the probe
center. Because each mechanoreceptor type has different perceptual
characteristics, rmqx is calculated for each receptor type. For a

single sinusoid (n = 1), rmax becomes 1.5 X (#) ? where v is the

amplitude of the stimulus at the stimulation center.

Next, we generated an activated receptor grid for each
mechanoreceptor using the 7,4 and the mechanoreceptor density
on the fingertip in Table 1 where innervation density is an esti-
mate of sampled density in the median nerve [27, 62]. In order to
simplify the calculation process with plausible spatial distribution
estimation, we premised two requirements. First, at least one recep-
tor activates even if ryqx is zero. Second, receptors are uniformly

distributed in ry;qx Wwith grid intervals defined by #ﬂﬁ/ With

these assumptions, the activated receptor grids were derived and
the number of activated receptors, Nyecepror, Was counted.
Finally, each activated mechanoreceptor in the grid is assigned
with propagated vibrations using Equation 1 with the input vibra-
tion ¢ and distance r. Figure 6a shows the activated receptor grids
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of four mechanoreceptor types in spatial domain and Figure 6b
describes propagated intensities of activated Pacinian Corpuscles
when a fingertip is stimulated with a 150-Hz sinusoid vibration
modulated with an 80-Hz sinusoid.

Band-pass filtering with four-channel theory - NC struc-
ture is designed to follow the four-channel theory that relates
the human tactile neural system to four mechanoreceptors [4, 19].
Four mechanoreceptors are sensitive to different frequency ranges
(Meissner Corpuscle (FAj): 3-100Hz, Pacinian Corpuscle (FAjy): 10-
500Hz, Merkel Disk (SAr): <5Hz, Ruffini Ending (SAy7): 15-400Hz)
[11]. From the property, we designed four Butterworth band-pass
filters (Order = 10) of relevant passing frequencies. At each acti-
vated receptor, the propagated vibration waveform is passed with
its corresponding filter and regarded as a perceived vibration wave-
form.

4.2 Neural Spike Generation

In the relevant literature [4], Meissner and Pacinian Corpuscles are
related to the fast adapting (FA) neural channels for their activation
sensitivity to the stimulus transients. The other two receptors are re-
lated to the slowly adapting (SA) channels because relevant neural
fibers fire during the constant pressure [37]. Therefore, the per-
ceived vibration waveforms to Meissner and Pacinian Corpuscle
channels were differentiated to get their first derivatives which
amplify the intensities. We normalized the waveforms to have the
same maximum intensity before the differentiation for faster model
training.

We applied the thresholded activation model for spike generation
at each neural channel. In Section 4.1, we calculated the mean neural
firing rate f; of a channel in Equation 2 with its activated receptors
Nreceptor- Therefore, the total neural fires in the channel with T,
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Figure 6: Exemplar plots for activated mechanoreceptors
to a 150-Hz vibration modulated with an 80-Hz sinusoid
on the fingertip. (a) Grid-based representations of acti-
vated mechanoreceptors. (b) Relative intensities of activated
Pacinian Corpuscles in 3D.

was calculated by their multiplication. Then the T, was distributed
by the logarithmic ratios of propagated intensities to all receptors in
the channel, and each receptor sets its own neural firing threshold
Ethr by dividing the energy of perceived vibration with its firing
rate.

Then we designed the cumulative neural spike generation with
a 10-ms window adopting the known temporal gap threshold for
successive vibration stimuli discrimination [18]. In each 10-ms
windowed vibration, the accumulated energy is summed with the
previous remained energy in the previous window and divided
with Ethr to count the number of neural fires. This process finally
provides the impulse count plot in every 10-ms, and replicates to
all receptors in four mechanoreceptor channels. In this process, NC
prepares the simulated neural spike data in temporal domain for
all activated receptors.

4.3 Neural Network Simulation between
Sub-neural Network and Somatosensory
Cortex

This section describes how the simulated neural spikes are trans-
ferred to the brain to make sensation in Figure 3 (c). As in [30],
the neural currents are amplified or suppressed by the passing
networks. The excitatory process occurs in every neural network
and amplifies the neural currents by converging them. In contrast,
the higher-order networks except sub-neural networks include the
inhibitory process that suppresses the currents by interfering with
the activation of neural cells with three pathways of feed-forward,

Table 1: Density of mechanoreceptors

Meissner Corpuscle

Pacinian Corpuscle Merkel Disk  Ruffini Ending

Receptor
P (N (FA) (SA1) (SAn1)
Innervation Density (units/mm?) ‘ 1.4 0.2 0.7 0.1
Grid Interval (mm) ‘ 0.845 2.236 1.195 3.162
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Figure 7: An exemplar diagram of simplified sensory networks by abstracting excitatory and inhibitory processing in human
neural networks. This example shows single-layered excitatory and inhibitory networks.

feedback, and distal inhibitions. We implemented a unidirectional
and hierarchical network including both processes where the in-
hibition process is implemented using feed-forward inhibition,
which simply projects the neural currents from the previous in-
terneurons to the connected neurons in the next layer. Each layer
of the network was designed as a 2D matrix where each element
represented a relay neuron, and the coordinate was aligned at the
center. The initial layer matrix (D) enclosed all grid points of acti-
vated mechanoreceptors and aligned with the spatial distribution
estimated in Section 4.2 as Ny X Ny

|

where additional one represents a center neuron that locates
at ([%-‘ , [%-‘) Here, the grid-based receptors directly transfer
their activated currents to the relevant neurons at the initial layer
without an excitatory process. In the simulation, the number of
neural spikes is counted every 5-ms that adopts the conduction
delay between the neural network layers [2]. Those spikes are
projected to the relevant neurons in the initial layer.

In order to represent the connection of each relay neuron in both
excitatory and inhibitory processes, the connected neuron set S in
the next layer was modeled as a cross-shaped receptive field to the
current neuron located at (x, y):

Rmax

Grid Interval “)

JX2+1

Se {x-1y), (x,y-1), (x,y), (x,y+1), (x+Ly}

for1 < x,y £ Nin1 5)

In Neurophysiology, the excitatory process is known to filter
out noise or sporadic activity relayed to a neuron by emphasizing
strongly repetitive neural currents from fibers or superposition-
ing multiple neural currents. The inhibitory networks, in contrast,
negatively affect the connected boundary neurons while empha-
sizing the connected neurons around its relay neuron’s center [30].

We reflected those characteristics and S. in our model as 3 X 3
convolutional filters of E and I as:

(6)

We processed the excitatory and inhibitory processes as convo-
lutional filtering from D;_; to D; matrices, therefore both process
filters work on the surrounding neurons. We assumed the sur-
rounds of activated neurons as not excited and zero-padded in our
calculation. In detail, excitatory networks increased the number of
dimensions as the network order increased (N; = Nj_1 + 2) while
the inhibitory networks kept the dimension of the previous network
(N; = Nj—1) and they required zero-padded additional boundaries
for spatial convolution.

After projecting the neural spike numbers onto the initial layer,
each layer applied the excitatory filter (E) by spatial convolu-
tion over its matrix Di to the next layer D;y1 in the excitatory
networks. In each layer, we capped the maximum neural spikes
5ms X sampling rate that implies the neuron activates at every
sampling point. The inhibitory networks also applied the same
spatial convolution but with the inhibitory filter (I), and capped its
minimal spikes as zero.

Our model simulates neural spike generation at every 5-ms by
simply mimicking the excitatory and inhibitory networks. The
networks consist of Lg and Ly layers of excitatory and inhibitory
networks respectively, which follow the human tactile system’s
characteristic that the sub-neural networks do not include the
inhibitory process. The dimension of the final layer matrix is
Nijast = No+2 X% Lg, and neural spike numbers at the center neuron
of the last layer were converted as the evenly-distributed temporal
spikes by a winner-take-all strategy, which ensures that only one
of two or more competing responses is transmitted [55]. Figure 7
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shows an example of the above procedure on single-layered exci-
tatory and inhibitory networks, and this filtering replicates for all
relay neurons.

The Neural Coding process of each mechanoreceptor gives four
central neural spike signals and we assumed that the brain inte-
grates them with specific weights to predict the perceived brain
waveform. We calculated RMSE of predicted brain waveform (PBW)
pairs for estimating perceptual dissimilarities, and we trained the
number of layers (Lg, L;) and the summing weights of four neural
channels (Wra;, WrA;» WsAp» WsA;;) using pre-published six vibra-
tion sets with corresponding perceived dissimilarity matrix. Each
variable was trained with 0-4 layers for Lr and L; and assumed
the identical Neural Coding model was applied in four mechanore-
ceptors for training cost reduction. Moreover, four weights were
trained with 0 to 1 ratios with 0.1 intervals.

5 1D CONVOLUTIONAL PROCESS

As the spectral features contribute to the qualitative vibration per-
ception, one of the most representative features in vibration differ-
entiation is the rhythm defined as a repeated monotone pattern of
variable-length notes. The most common definition of rhythm is a
pattern changing length, number, or gaps between notes in vibra-
tion [60] and the primary components of rhythmical vibration were
note length and evenness. Rhythmic vibration patterns, therefore,
give high accuracy in vibration discrimination, however, sometimes
it dominates haptic perception and masks other parameters’ effects
including vibration amplitude in rhythmic vibrations [1].

We designed a 1D convolutional process, OC, to obtain rhythmic
differences. Therefore, PM finally integrated them with the spectral
difference assessed by the Neural Coding (NC) to find a balanced
perceptual difference.

5.1 Pre-processing

OC was intended to detect temporal rhythm differences, and we
utilized temporal summation of tactile perception [19] by filtering
out spectral components. We selected a moving average filter with a
10-ms window as a temporal summation while preserving temporal
gaps larger than the tactile gap threshold [19]. In OC, we took
absolute values of input vibration and applied the moving average
filter to emphasize the rhythmic features. Finally, envelope feature
waveforms (EFW) were generated from a given vibration set.

5.2 Dissimilarity Metric

OC used Dynamic Time Warping (DTW) for measuring dissimilar-
ities of the EFW set. We applied the one-to-many match method
for the DTW algorithm to maximize the similarity of two different
time-series waveforms [20]. By repeating the process to the EFW
set, OC generates a dissimilarity matrix reflecting rhythm-sensitive
perception.

5.3 Physiology Model Training

Two dissimilarity matrices, calculated from NC and OC for a given
vibration set, were integrated into one dissimilarity matrix and
considered as a predicted pairwise dissimilarity matrix. For the
integration, the dissimilarities in each matrix were converted to or-
dinal numbers because the estimated values were usually regarded
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as ordinal [64]. The converted matrices were summed with two
weights (Wne, woce)

At the training, Physiology-based Model (PM) was trained
to maximize p between a predicted dissimilarity matrix and
the reported matrix in papers [25, 26, 45], and all combina-
tions of two matrix weight parameters and six NC parameters
(Lg, Ly, WrA; WEA» WSA;» WsA;;) Were tested. Except Lg and Ly,
six other parameters were trained in 0.1 step-size. The eight param-
eters were globally optimized to maximize the averaged Spearman’s
ps calculated with the six training datasets, and trained parameters
were Lg =3, Ly = 1, wpa; = 0.2, wpa,; = 0.7, wsa, =0, wsa,, =
0.5, wyc = 0.5, and woc = 0.5.

Interestingly, the fitted parameter values were close to the hu-
man perception system. First, Lg is larger than Ly, and it reflects
that inhibition occurs only in the higher-order networks in the
brain. Second, weights of four mechanoreceptors were ordered as
WFEA; > WSA; > WFA; > Wsa;- To the best of the authors’ knowl-
edge, Pacinian Corpuscle (FAjy) is the most sensitive mechanore-
ceptor for vibration perception and responds to the widest range
of frequency components. Conversely, Merkel Disk (SA;) is sensi-
tive to point stimulation, edges, curvature, and fine details, so it is
known for less contributing to vibration perception [42]. Finally,
wnc and woc were identically fitted which implies that the spec-
tral and rhythmic features of vibration equally contribute to the
vibration differentiation. This equal contribution resulted in higher
correlations than using individual NC or OC dissimilarity matrix
was compared with user data.

Validation Using Training Vibration Sets - We first calcu-
lated pairwise dissimilarities of vibrations using PM and the six
baseline metrics of RMSE, DTW, Mg, Mym, ST-SIM, and SPQI in
each of the six trained datasets. VibroMAF, which is a weighted-sum
model for maximizing prediction accuracy with user similarities,
requires multiple metrics to balance their outcomes. This method-
ology needs in-depth validation in both the metric selection and
the learning process using reasonable datasets, which is out of
our scope, so we focused on the six metrics in this work. As a
prediction performance measure, Spearman’s correlation p was
estimated between every pair of the calculated and the user-rated
perceptual dissimilarity sets. PM robustly showed p > 0.5 in all
six datasets and the highest averaged correlation (p = 0.79) as
reported in Table 2, where 0.3 and 0.5 are regarded as moderate
and good correlation indices [13]. In the worst case of (Mid-High)
Exp I [26], PM showed the lowest value of 0.84 among the seven
metrics. The other baseline metrics also showed p values larger
than 0.5 in three vibration sets varying frequency mixing ratios
[26]. However, all baseline metrics showed p < 0.5 in the patterns
varying modulated frequency [45] and My, predictions could not
provide a correlation. Among the baselines, only DTW showed a
good correlation (p = 0.74) to user data in the patterns varying
amplitude and frequency [25].

Also, we applied non-metric MDS to visualize the 3D perceptual
space from the dissimilarities. As an objective measure of the struc-
tural similarity between perceptual spaces, we calculated alienation
coefficient K [5, 60] where K = 0 means the perfect similarity. As a
representative example, we picked a perceptual space of [45] and
plotted derived perceptual spaces of all metrics in Figure 8. The
reported perceptual space (Figure 8a) implies that high-frequency
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Table 2: Summary of the twelve vibration sets in Spearman’s p and alienation coefficient K. The blue letters represent the best
value among the metrics for a vibration set in each row, and the averages are emphasized in bold. Measured Pattern Set (MPS)
is the accelerations measured from Intended Pattern Set (IPS), so MPS includes noise from contacts between the skin and the

tactile device.

Spearman’s p
Vibration | Vibrotactile Source of a vibration set (Alienation Coefficient K)
Case . . .
Set Parameter (# of vibrations, pairs) Three-to-one
PM | RMSE | DTW Algorithm ST-SIM | SPQI
Msm th

Exp I [45] 0.78 0.16 -0.13 0.03 -x -0.03 -0.07

(8 vibrations, 28 pairs) | (0.25) | (0.84) | (0.60) | (0.56) | (0.56) | (0.60) | (0.55)

Exp I [25] 0.63 0.29 0.74 0.26 -0.13 -0.06 -0.10

Traineq | Trained | IPS | (14 vibrations, 91 pairs) | (032) | (0:44) | (0.23) | (0.44) | (056) | (0.54) | (049)
Exp I [26] Low-Mid 0.93 0.91 0.80 0.89 0.93 0.90 0.94

(7 vibrations, 21 pairs) | (0.22) | (0.22) | (0.30) | (0.25) | (0.20) | (0.17) | (0.20)

Exp I [26] Mid-High 0.84 0.96 0.91 0.96 0.96 0.89 0.95

(7 vibrations, 21 pairs) | (0.26) | (0.12) | (0.16) | (0.18) | (0.15) | (0.19) | (0.18)

Exp I [26] Low-High 0.93 0.91 0.86 0.91 0.97 0.93 0.93

(7 vibrations, 21 pairs) | (0.19) | (<.01) | (0.23) | (0.23) | (0.13) | (0.17) | (0.19)

Exp II [26] 0.63 0.45 0.50 0.45 0.36 0.36 0.32

(15 vibrations, 105 pairs) | (0.33) | (0.41) | (0.64) | (0.40) | (0.41) | (0.42) | (0.47)

Average for 6 trained vibration sets 0.79 | 0.61 | 0.66 | 0.58 | 0.6 0.53 0.55
(0.26) | (0.34) | (0.36) | (0.34) | (0.33) | (0.35) | (0.34)

0.63 0.63 0.24 0.61 0.79 0.27 0.71

Untrained | > (12 vib[rjzf;itsu?sl pairs) 0.42) | (0.40) | (0.63) | (0.41) | (°) | (0.56) | (0.32)

MPS ’ 0.55 0.20 0.25 0.56 0.80 0.28 0.77

Untrained (0.44) | (0.58) | (0.63) | (0.42) | (0.23) | (0.50) | (0.35)
Exp I [1] i0S 0.47 0.30 0.16 0.36 0.52 0.53 0.25

IPS | (14 vibrations, 91 pairs) | (0.34) | (0.43) | (0.52) | (0.41) | (-°) (0.39) | (0.36)

Untrained Exp II [1] Android 0.53 0.30 0.18 0.51 0.26 0.28 0.13

(14 vibrations, 91 pairs) | (0.40) | (0.46) | (0.57) | (0.40) | (-°) (0.47) | (0.45)

Exp I [1] iOS 0.47 -0.08 0.16 0.24 0.32 0.24 0.15

MPS | (14 vibrations, 91 pairs) | (0.33) | (0.55) | (0.50) | (0.56) | (0.41) | (0.40) | (0.39)

Exp II [1] Android 0.67 0.11 0.32 0.29 0.34 0.22 0.23

(14 vibrations, 91 pairs) | (0.34) | (0.51) | (0.48) | (0.46) | (0.39) | (0.42) | (0.41)

Average for 6 untrained vibration sets 0.55 | 027 | 0.22 | 043 | 051 0.30 0.37
(0.38) | (0.49) | (0.56) | (0.44) | (0.67) | (0.46) | (0.38)

. . 0.67 0.44 0.44 0.51 0.53 0.42 0.46
Average for all 12 vibration sets (0.32) | (0.41) | (0.46) | (0.39) | (0.50) | (0.40) | (0.36)

* No correlation was reported because all predicted dissimilarities were the same value. ¢ MDS algorithm failed to compute point coordinates (3D).

modulated vibrations (> 40Hz) felt similar to the pure sinusoidal
vibration of 150-Hz. In contrast, the vibrations with low modu-
lated frequencies (< 20Hz) felt different from the pure sinusoidal
vibration. PM-predicted perceptual space (Figure 8b) was rated as
K = 0.25 with the user perceptual space, and the same implications
to the user perceptual space could be derived. However, perceptual
spaces of the other baseline metrics reported K larger than 0.5 and
failed to imply those findings.

Overall, PM showed good performances in both measures with
similar perceptual spaces. SPQI was also good for the spectral pat-
terns of Low-Mid, Mid-High, and Low-High [26], but its predictions
in the other patterns varying modulated frequency [45] or multiple
parameters were not similar to the user-data. Perceptual spaces

derived from the other five datasets were reported in the supple-
mentary material.

6 VALIDATION WITH UNTRAINED DATASET:
TRAINED AND UNTRAINED VIBROTACTILE
PARAMETERS

Our validation in the trained datasets was sufficient to show PM’s
potential, but rigorous validations using untrained datasets are
mandatory to assess its feasibility in the vibrotactile pattern design.
In this section, PM was validated with six untrained datasets: two
datasets varying all trained parameters and four datasets including
the untrained parameter of rhythm.
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Figure 8: Perceptual spaces derived from dissimilarities that (a) reported in [45] and predicted by (b) PM, (c) RMSE, (d) DTW, (e)
Msm, (£) Mim, (g) ST-SIM, and (h) SPQI. The numbers represent modulated frequencies (0, 1, 2, 4, 10, 20, 40, and 80Hz), and data
points of each space were connected along the modulated frequencies.

6.1 Trained Parameters: User Data Collection

We considered adopting user data from published articles, but no
known research reported perceptual dissimilarities from the vi-
brations varying amplitude, frequency, modulated frequency, and
frequency mixing ratio simultaneously. Therefore we conducted a
user study to collect user-rated perceptual dissimilarities.

Participants - We recruited twenty participants (14M / 6F)
who were 19 - 28 years old with a mean of 22.3 at the authors’
institution. All participants did not report any impairments to their
haptic sensation, and two of them were left-handed. The experiment
took 80 minutes on average including instruction, and they were
paid 19 USD as compensation. This experiment was approved by
the authors’ Institutional Review Board (20220419-HR-66-03-02).

Hardware Configuration - We used a voice-coil actuator (Tac-
tile Labs; Mark II TL002-09-D) for its tactile capability for complex
vibration. The vibration signals were commanded through a DAQ
board (National Instruments; USB-6353) and amplified by a custom
current amplifier. Also, we used an accelerometer (Analog Devices;
ADXL354z) to measure the accelerations of generated vibrations.
All the signals in this study were sampled with 10-kHz.

To assess PM’s prediction to vibrations varying all trained vi-
bration parameters [25, 26, 45], we varied amplitude, frequency,
modulated frequency, and frequency mixing ratio to design 12 vi-
brations by using equation x(¢) as:

x(t) = Asin(2r fet){we, sin(2mfe, t) + we,sin(27mfe,t)}  (7)

where A is amplitude (0.8, 1.6 G), fe is modulated frequency (0, 4
Hz), w¢, and we, are frequency mixing ratios (1:0, 0.5:0.5, 0:1), and
fe, and f;, are frequencies (70, 210 Hz). All vibrations lasted for 1
second and were named as Frequency Mixing Ratio - Modulated
Frequency - Amplitude. For example, HL-0-half represents a

pattern of non-modulated 70-Hz sinusoidal vibration with 0.8 G of
amplitude.

Experiment Procedure - First of all, participants read docu-
mented instructions to understand the experiment. After the in-
struction, participants rigidly grasped the actuator with their left
hand’s index finger and thumb. They wore headphones playing
pink noise to block out the auditory noises from vibrations. We
designed a GUI-based program for the experiment consisting of
a training session and a main session. In the training session, the
initial screen showed 12 buttons randomly assigned to the 12 vibra-
tions, and the participants could feel the vibrations by clicking the
buttons. We forced a one-second rest between vibration rendering
to remove the adaptation effects. Participants could proceed to the
main session after feeling all vibrations at least once.

The main session allowed participants to evaluate the similarity
of 264 vibration pairs by the combinatorial design of 12 vibration
patterns with four repetitions (12C2 X 4). As an attention test, we
added one pair of two identical vibrations (HL-0-half) and finally,
265 pairs were randomly presented. Each trial assigned two vibra-
tions of the selected pair on the two buttons randomly. Participants
rated the similarity of the two vibrations using a sliding bar from
0 (totally different) to 100 (totally same), and the bar was enabled
after feeling both vibrations. During the evaluation, no limits were
given to the number of vibration plays and a 1-second gap still
existed for removing adaptation effects as in the training session.

6.2 Trained Parameters: Analysis in IPS and
MPS

All participants scored higher than 80 on the attention test, so
we used all data for analysis. We converted similarity ratings to
dissimilarity scores by subtracting them from 100, and they were
averaged over four repetitions and 20 participants. By using 66
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Figure 9: 3D perceptual spaces derived from (a) user data, (b) PM using intended pattern set (IPS), (c) SPQI using IPS, (d) PM
using measured pattern set (MPS), (e) My, using MPS, and (f) SPQI using MPS. Data points of each space were connected along
the same modulated frequency and amplitude. All of them were fitted with goodness-of-fit below 0.05.

pairwise dissimilarity scores, we built the estimated dissimilarity
matrix.

Before the analysis, we considered haptic pattern designers may
suffer from the difference between their intended patterns and the
physical stimuli that a participant receives. Therefore we validated
our model in two pattern sets: an intended pattern set (IPS) and
a measured pattern set (MPS). IPS assumes that human skin is
stimulated as designers intended. In this study, we attached the
sensor to a vibration actuator and measured the accelerations of
IPS while an experimenter was holding it with two fingers. Both
IPS and MPS were inputted to the six baseline metrics including
PM with a 10 kHz sampling rate and compared with the user study
data.

All the calculated Spearman’s correlations and alienation coeffi-
cients were described in Table 2. For intended patterns, correlations
of DTW and ST-SIM with the user data were less than 0.5 in Spear-
man’s correlation. My, showed the highest correlation (p = 0.79),
however, the dissimilarities included too many tied values. SPQI
showed higher p = 0.71 than PM and RMSE (p = 0.63). For mea-
sured accelerations, RMSE, DTW, and ST-SIM showed below 0.5 of
their correlations. My, also reported the highest correlation of 0.80
while SPQI, M, and PM showed correlations of 0.77, 0.56, and
0.55. PM, Mgy, and SPQI reported good correlations higher than
0.5 in both patterns.

To verify the similarity between the derived perceptual spaces,
we applied nMDS for 3D coordinates and calculated alienation

coefficients K to the perceptual space of the user data. Only My, in
intended patterns failed in deriving its perceptual space. In intended
and measured patterns, SPQI and M;,,, showed the lowest alienation
coefficient of 0.32 and 0.23, respectively. PM reported 0.42 and 0.44
of K values that were not the best among the seven metrics.

We visualized 3D perceptual spaces of user data, two patterns of
PM predictions, and the predictions showing the three lowest alien-
ation coefficients in Figure 9. In the user-data-derived perceptual
space, both D1 and D2 seem to align with modulated frequency, and
D3 is assumed to be aligned with amplitude. Carrier frequency and
mixing ratio contributed to local distribution in each cluster divided
by modulated frequency and amplitude. Among the reported per-
ceptual spaces, only the PM predictions showed a similar tendency
of the three-axes representations to the user-data space in both IPS
and MPS. In addition, mixing ratios also showed similar relative
positions in each cluster with two exceptions. The other three per-
ceptual spaces showed the modulated frequency alignment along
D1 and D2, but the amplitude was also aligned with the same axes.
Therefore, PM prediction seemed valid and matched the user data
well in comparison to the baseline metrics.

6.3 Untrained Parameters: Data Acquisition and
Prediction

Our model showed consistent predictions of perceptual dissimilari-
ties to the vibration set using trained vibrotactile parameters and
predicted well with MPS including noises, but still needs validation
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Figure 10: 3D Perceptual Spaces of iOS vibration set derived from (a) user data in [1], and predicted data using intended pattern
sets (IPS) by (b) PM, (c) SPQI and measured pattern sets (MPS) (d) PM, (e) SPQI. R# represents rhythms, and Full and Half
represent the amplitude of the pattern. The data points of each perceptual space were connected along the rhythms of R6, R21,
R5, R16, R1, and R9 in separate sets by full and half amplitudes. All of them were fitted with goodness-of-fit below 0.05.

to untrained vibrotactile parameters. Regardless of numerous data
sets in the literature [47, 60, 67], we selected a rhythmic vibration
pattern set in [1] because they rated pairwise perceptual dissim-
ilarities while the others collected affective ratings or perceptual
dissimilarities from cluster-sorted ratings. We contacted the au-
thors to get the measured accelerations of i0S and Android device
vibrations in the in-lab experiment with their dissimilarity ratings
reported in [1]. We also prepared IPS using 150Hz and 160Hz carrier
frequencies for iPhone 11 Pro Max (i0S) and Galaxy S10 (Android)
patterns, respectively, and with two amplitude levels (0.5G and
1G). We predicted dissimilarities using both MPS and IPS for the
rhythmic patterns and compared them with the in-lab user data.

6.4 Untrained Parameters: Analysis in IPS and
MPS

All performance measures were calculated as in Section 6.2 and
summarized in Table 2. Among seven metrics, PM robustly reported
moderate and good correlations of 0.47 (i0S-IPS), 0.53 (Android-
IPS), 0.47 (i0S-MPS), and 0.67 (Android-MPS) in all four datasets.
Only three of the baseline metrics showed good correlations of 0.52
(i0S-IPS: Mypm,), 0.53 (i0S-IPS: ST-SIM), and 0.51 (i0OS-MPS: M;,).
RMSE showed a moderate correlation of 0.30 in two IPS sets but
scored very low correlations in two MPS sets as -0.08 (10S-MPS) and
0.11 (Android-MPS). In contrast, DTW only showed a significant

correlation of 0.32 in Android phone condition using MPS wave-
forms. All correlations of SPQI were below 0.30 in both IPS and MPS.
Also, we applied nMDS for 3D coordinates and calculated alienation
coefficients K. Among seven metrics, PM always reported the low-
est alienation coefficients of 0.34 (i0S-IPS), 0.40 (Android-IPS), 0.33
(i0S-MPS), and 0.34 (Android-MPS) in comparison to the baseline
metrics.

We also visualized the most representative 3D perceptual spaces
that capture the implications of the user’s perceptual space. Specifi-
cally, we selected iOS perceptual spaces from user data, PM, and
SPQI for both IPS and MPS as in Figure 9. The most salient implica-
tion from the user space is that the amplitude effect is small; half
and full amplitude Tactons were co-located in the perceptual space.
Next, the rhythmic Tactons were very dissimilar from each other,
so they were located in the circular form except for R12 and R21
Tactons which were very similar. PM predictions matched impli-
cations of the amplitude and the mutual dissimilarities very well,
while R12 was located at the center of its perceptual space. SPQI,
which provided the most similar structure to the user data, did
not catch any of the two implications from the derived perceptual
spaces. Other metrics’ predictions also did not catch them, and all
the perceptual spaces are provided in the supplementary materials.
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7 CONCLUSION AND FUTURE WORK

We suggested a computational model that mimics the human phys-
iological model, PM, to predict pairwise perceptual dissimilarities
of a same-duration vibration set in parallel and independent pro-
cesses (NC, OC). Eight model parameters were trained with six
vibration sets reported in three published papers, and the model
predicted highly correlated dissimilarities (p = 0.79 on average)
and similar perceptual spaces (K = 0.26) on average for the trained
vibration sets. We validated our model using untrained vibration
sets varied in trained and untrained vibrotactile parameters. In the
trained parameter validation, our model prediction showed a good
correlation to the user-rated dissimilarities in both IPS and MPS
cases (p = 0.63,0.55) and nMDS derived a perceptual space similar
to that from user dissimilarities (K = 0.42,0.44). In comparison,
other six metrics - RMSE, DTW, Mg, My, ST-SIM, SPQI - did not
show notable similarities in their derived perceptual spaces. In the
untrained parameter validation, we tested our model to the four
rhythmic vibration sets of iOS and Android devices in [1] in both
MPS and IPS waveform predictions. PM predictions were robust in
correlations and captured the implications similar to that of user-
data-derived perceptual spaces, while the other baseline metrics
showed inconsistent performances.

Overall, PM robustly predicted dissimilarities matching the user
perceptual dissimilarities in both the correlation (p = 0.67) and sim-
ilar perceptual space (K = 0.32) sharing the implications. Validation
datasets also included measured accelerations of designer-intended
vibration waveforms, therefore PM seems robust to the noise in the
vibration signals. Moreover, PM showed plausible performances
with the patterns varying the untrained rhythm parameter. SPQI,
which was designed to measure spectral similarity between origi-
nal and compressed vibrations, worked well in a single-parameter
varying pattern set. Also, RMSE was the most sensitive to the noise
among the seven baseline metrics.

We expect that our model provides a way of interactive design
to vibration designers for easy initiation of pattern organization.
The common approach in Haptics requires haptic pattern designers
to run a new user study for a slightly changed vibration set. This
flexibility possibly reduces the cost of finding the best subset of
vibrations and accelerates the Tacton design process.

PM still needs to improve several features for more accurate
prediction and diverse usage. First, we trained PM using a small
number of datasets that varied partial vibrotactile parameters, and
each dataset included less than sixteen vibrations without noise.
Second, PM adopted simplified neural structures and processes that
might negatively affect the prediction. Finally, our model assumes
a limited stimulation scenario with a 0.5-mm probe for utilizing the
known psychophysical knowledge. The below subsections describe
the detailed plans dealing with them.

7.1 Small Vibrotactile Parameter Space

Our model was trained with only six vibration sets, and the average
number of vibrations was 9.67 (47.83 pairs), as shown in Table 2.
Those patterns were designed by varying four vibrotactile param-
eters, but they are not sufficient to represent general vibrations.
In future work, untrained vibrotactile parameters of vibrotactile
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pattern designers’ need, including metaphor and rhythm, would be
included in the training data sets for generalized prediction.

7.2 Same-length Input Signal Duration

As described in Equation 2 of Section 4.2, our model predicts the
neural fires by normalized spectral intensities and distributes them
in every 10-ms neural window. Therefore if different lengths of
vibrations are compared, then the longer vibration signal generates
a less number of neural spikes than expected which degrades the
prediction accuracy. We expect our model would be improved by
adopting training data sets varied in duration with model modifica-
tion.

7.3 Vibration Propagation Simulation
Considering the Physical Contact

One of the difficult but attractive aspects of tactile interface design
is the freedom of interaction by varying attaching body sites and
contact postures. PM modeled vibration propagation by assuming
the fingertip is stimulated with a fixed-size round probe, and it
still lacks the freedom in designing what tactile interface would
render the vibrations. We expect that PM may contribute better if it
includes an improved vibration propagation model that simulates
the physical contact between the skin and the device.
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