

2

Materials and Methods

- G I_ST
 - 1. Experimental Design
 - 1) Experimental sites (2020 ~ 2022)

2) Treatment (Clear-cut logging)

3) Target species

Materials and Methods

2. Soil chemical properties analysis

- Total nitrogen (TN)
- Available Phosphorus (AP)
- Organic matter (OM)
- pH
- Exchangeable cation (K⁺, Na⁺, Mg²⁺, Ca²⁺)

3. Bacterial community analysis (16s rRNA)

- PCR: 799F-1193R (V5-V7)
- Illumina amplicon sequencing
- DADA2, Amplicon Sequence Variants (ASVs)

Changes of soil chemical properties after clear-cut logging

- Soil chemical properties were changed after clear-cut logging in HC, JS and PC.
- The properties that showed differences were higher in control area in HC and JS and 6 higher in logged area in PC.

Bacterial community composition at Order level

- Soil and rhizosphere showed a similar bacterial community compositions, whereas leaf endophyte had a different composition from the two.
- In soil and rhizosphere, Rhizobiales (30.30%), Gp2 (19.80%), Mycobacteriales (7.02%)
 and Burkholderiales (6.69%) were dominant Orders.

Changes of bacterial community composition after clear-cut logging

- There were significant differences between control and logged areas in bacterial communities of soil and rhizosphere.
- Differences was made by differences in relative abundance, not members.

Differential abundant taxa between control and logging area

1) JS - Soil

2) JS - Rhizosphere

- Among the results of all sites, Rhizobiales, Gp2, Mycobacteriales, and Burkholderiales were commonly and mainly identified.
- Genetically close bacteria (ASVs) showed similar relative abundances in same treatment.

Relationship between soil bacterial communities and soil properties

Mantel test with Spearman's correlation

1) Control area

2) Logged area

- Most of the soil chemical properties affected the composition of soil bacterial communities in the control area.
- The exchangeable K, Ca and pH affected the community composition of the logged area.

Relationship between soil bacterial communities and soil properties

Order

Canonical correspondence analysis

- Differences in the bacterial communities among sites were related to pH.
- Differences in the bacterial communities by clear-cut logging were related with exchangeable K and Ca.

Shifts in functions of bacteria in soil and rhizosphere after clear-cut logging

- **118 / 1,182 (9.98%)**
- Positive fold change value (Red)

Logged >> Control

Negative fold change value (Blue)

Logged << Control

- Dominant functions were chemoheterotrophy (32.3–34.9%), aerobic chemoheterotrophy (32.1–34.7%) and nitrogen fixation (11.3-19.0%) in both soil and rhizosphere.
- Bacteria having nitrogen fixation function was significantly enriched in both soil and rhizosphere of logged area.

Thank You For Listening Q&A

