
  

 

Abstract—As the quantification of pain has emerged in 

biomedical engineering today, studies have been developing 

biomarkers associated with pain actively by measuring bio-

signals such as electroencephalogram (EEG). Recently, some 

EEG studies of cold and hot pain have been reported. However, 

they used one type of stimulus condition for each trial and a 

relatively long stimulation time to collect EEG features. In this 

study, EEG signals during Cool (20 ℃), Warm (40 ℃), and 

Thermal Grill Illusion (TGI, 20-40 ℃) stimuli were collected 

from 43 subjects, and were classified by a deep convolutional 

neural network referred to as EEGNet. Three binary 

classifications for the three conditions (TGI, Cool, Warm) were 

conducted for each subject individually. Classification 

accuracies for TGI-Cool, TGI-Warm, and Warm-Cool were 

0.74±0.01, 0.71±0.01, and 0.74±0.01, respectively. For subjects 

who rated the TGI significantly hotter than the Warm stimulus, 

the classification accuracy for TGI-Cool (0.74 ± 0.01) was 

significantly higher than for TGI-Warm (0.71±0.01). In contrast, 

the classification accuracy for TGI-Cool (0.72±0.03) did not 

differ statistically from TGI-Warm (0.73± 0.01) in subjects 

without illusion. We found that the TGI and Cool stimuli were 

classified better than the TGI and Warm stimuli, implying that 

objective EEG features are consistent with subjective behavioral 

results. Further, we observed that most discriminative features 

between the TGI and the Cool or Warm conditions appeared in 

the parietal area for subjects who perceived the illusion. We 

postulate that the somato-sensory cortex may be activated when 

TGI is perceived to be hot pain.  

 

I. INTRODUCTION 

Quantitative measurement of pain levels is important, 
particularly for unconscious patients, people who suffer from 
a speech disorder, those who are too young to verbalize their 
pain, or the elderly, etc., to report their pain and receive proper 
aid. However, measuring and evaluating the intensity of pain 
with an objective standard with individuals’ verbal or 
behavioral response is complicated because of subjectivity. 
More objective quantification of pain levels can be achieved 
by observing brain signals when a pain-evoking stimulus is 
given. An electroencephalogram (EEG), which is non-
invasive and economical, and has a good temporal resolution, 
enables brain signals to be measured rapidly and efficiently [1]. 

In processing thermal stimuli, the anterior cingulate cortex 
(ACC), somato-sensory cortex, and prefrontal cortex have 
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been reported to be regions responsible for pain recognition 
[2]. Some EEG studies have shown an increase in the gamma 
band (30-80 Hz) power and a decrease in the beta band (13-30 
Hz) power as the pain level increases [3-4]. Nezam et al. 
reported an alpha band (9.8 Hz) power increase in the frontal 
region and a decrease in the parietal region in cold pain. Pain 
levels were classified using K-nearest neighbor (KNN) and 
support vector machine (SVM) after a decision tree was 
organized, and low/moderate pain versus high pain was 
classified with an accuracy of 0.68 and 0.70 by KNN (K=10) 
and SVM, respectively [5]. Tayeb et al. reported brain activity 
in the right parietal region under cold (16~24.99 ℃) and hot 
(35~40 ℃) stimuli, and the binary classification accuracy for 
the two stimuli was 0.85±0.03 using common spatial pattern 
(CSP) and linear discriminant analysis (LDA) [6]. Further, 
Vijayakumar et al. studied hot pain with a random forest model, 
and reported that EEG during pain cognition showed the 
greatest difference in gamma band power [3]. 

Previous studies have focused on non-pain and pain states 
with a stimulation time of over 30 s. In addition, the pain level 
was divided primarily into subjective responses during 
stimulation at one fixed temperature, or at a range of stimulus 
temperatures [3-6]. However, in the real world, pain is 
perceived quickly, and internal/external factors, such as indoor 
temperature, humidity, or the subject’s mental state, may 
affect an individual’s perception of pain [7]. Thus, quantitative 
measurement of thermal pain using EEG requires short time 
measurement or analysis, and many other factors that may 
affect perception should be considered to study and apply EEG 
in clinical fields.  

This study observed and analyzed 7 s (relatively short 
compared to 30 s) of EEG signals during Thermal Grill 
Illusion (TGI). TGI is an illusionary stimulus that is perceived 
to be very hot when a Warm stimulus (40 ℃) and a Cool 
stimulus (20 ℃) are applied simultaneously on one’s hand [8]. 
While existing studies of EEG evoked by thermal stimuli have 
focused on measuring brain signals of one type of stimulus at 
a time, this study measured EEG with illusionary conditions 
that two simultaneous stimuli induced. Further, a deep learning 
method was introduced to perform binary classification for 
each of the three dyadic (TGI-Cool, TGI-Warm, and Warm-
Cool) from the EEG data induced by TGI, Cool, and Warm 
stimuli. 

of Science and Technology (GIST), Gwangju, South Korea (e-mail: 

{jihoon0536, kyunghowon0712}@gm.gist.ac.kr, kim0401hg@gist.ac.kr, 
sunghanlee@gm.gist.ac.kr). 

Jinung An is with Interdisciplinary Studies, Graduate School, Daegu 

Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South 
Korea. (email: robot@dgist.ac.kr). 

Sung Chan Jun is with School of Electrical Engineering and Computer 

Science/ AI Graduate School, Gwangju Institute of Science and Technology 
(GIST), Gwangju, South Korea (e-mail: scjun@gist.ac.kr).  

Jihoon Baek, Kyungho Won, Heegyu Kim, Sunghan Lee, Jinung An*, and Sung Chan Jun* 

Pain Classification using Evoked EEG Induced by Thermal Grill 

Illusion – Deep Neural Network Approach 

 979-8-3503-2447-1/23/$31.00 ©2023 IEEE

20
23

 4
5t

h 
A

nn
ua

l I
nt

er
na

tio
na

l C
on

fe
re

nc
e 

of
 th

e 
IE

EE
 E

ng
in

ee
rin

g 
in

 M
ed

ic
in

e 
&

 B
io

lo
gy

 S
oc

ie
ty

 (E
M

B
C

) |
 9

79
-8

-3
50

3-
24

47
-1

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

EM
B

C
40

78
7.

20
23

.1
03

40
39

1

Authorized licensed use limited to: Kwangju Institute of Science and Technology. Downloaded on January 02,2024 at 07:11:03 UTC from IEEE Xplore.  Restrictions apply. 



  

II. METHODS 

A. Experimental Procedure 

Fourty-three healthy subjects (24.77±1.33 yrs. 
mean±SEM. 29 male) participated in this study. Before the 
experiment began, the subjects tested thermal stimuli. They 
filled out a questionnaire that asked about their current states, 
experiences of sensory abnormality, and symptoms of 
depression through Patient Health Questionnaire-9, described 
in [9]. We enrolled subjects who reported tolerating the 
thermal stimuli and performed the entire tasks. The Gwangju 
Institute of Science and Technology (GIST) Institutional 
Review Board approved this experiment (20220628-HR-67-
03-02), and all subjects signed informed consent. 

The thermal stimulation task paradigm was implemented 
using a Matlab-based Psychophysics toolbox. The thermal 
stimulus was delivered by a lab-made thermal grill, which 
consists of a Peltier element and adjusts the temperature 
±3 ℃/s at the maximum in the range of 10 ℃ to 50 ℃ using 
custom-built Matlab scripts [10-11]. During the experiment, 
subjects were instructed to place their left hand on the thermal 
grill for thermal stimulation. Before the first block of the task, 
80 s of EEG were collected during the resting state while a 
subject had their hand on the 32 ℃ grill. For each block, nine 
different stimuli were applied in a random order: TGI (20-
40 ℃, 23-37 ℃, and 26-34 ℃), Cool (20 ℃, 23 ℃, and 26 ℃), 
and Warm (34 ℃, 37 ℃, and 40 ℃), as shown in Fig. 1. A 
thermal stimulus was given for 20 s during each trial. Subjects 
evaluated the stimulus’s intensity on an 11-point Likert scale 
(0: very cold, 5: no stimulation, 10: very hot) after the first 10 
s. The next stimulus was given after 15 s without a stimulus 
(32 ℃). The subjects performed ten blocks of this thermal 
stimulation task. 

B. EEG Acquisition and Preprocessing 

 During each task, including the resting state, 32-channel 
EEG was collected with a 1,024 Hz sampling rate according to 
the international extended 10-20 system (ActiveTwo, BioSemi 
Inc. Netherland), by OpenViBE software [12]. 

 EEGLAB and FieldTrip are used primarily to preprocess 
the EEG data [13-14]. After the EEG data were down-sampled 
to 512 Hz and re-referenced to both mastoids, they were band-
pass filtered with 0.5-55 Hz and band-stop filtered with 58-62 
Hz with the fourth-order Butterworth filter to avoid line noise. 
During thermal stimulation, 7 s of data before screen changes 
were used for classification. For deep learning analysis, this 
study used three stimuli (TGI: 20-40 ℃, Cool: 20 ℃, and 
Warm: 40 ℃) cases.  

C. Thermal Stimuli Classification and Statistics 

Three stimuli (TGI and two single-type thermal stimuli, 
Warm and Cool) were compared using pairwise binary 
classifications (TGI-Cool, TGI-Warm, and Warm-Cool). To 
evaluate performance, we conducted 5-fold cross-validation 
and the mean classification accuracy was used to measure 
performance. All of the classification accuracies given in this 
paper represent the mean± SEM. The performances were 
compared across thermal stimuli using a paired Student’s t-test. 

Thermal stimuli were classified in this study using the 
EEGNet model, one of the best deep convolutional neural 
network models used widely for brain-computer interface 
(BCI) [15]. The hyperparameters tuned for this study are as 
follows:  

Kernel length: 32; number of temporal filters: 8; number of 
spatial filters: 2; number of pointwise filters: 16; 
regularization dropout rate: 0.5; batch size: 32; epochs: 300; 
loss function: binary cross-entropy; Adam optimizer, 
activation function: sigmoid.  

In addition to classification accuracy, we compared self-
evaluation scores, which denote the subject’s response to the 
thermal stimuli, across the three stimuli using a Paired 
Student’s t-test. All self-evaluation scores given in this paper 
represent the mean±SEM. 

Class weights that contributed to training were extracted 
using the DeepLIFT method [16]. After the binary 
classification, each class’s training attribution weights were 
normalized in the range from -1 to 1, averaged within each 
class, and analyzed using the Wilcoxon signed-rank test over 
the entire head to determine where the difference between two 
stimuli appeared most frequently. The statistical test decisions 
(logical value, 1; p<0.05) were summed for all subjects and 
plotted as a brain scalp map.  

III. RESULTS AND DISCUSSION 

A. Classification Accuracy 

The data of just 41 subjects (24.09±1.12 yrs. 28 male) were 
analyzed, as 2 subjects stopped the task in the middle of the 
experiment because of personal issues. The classification 
accuracy for TGI-Cool, TGI-Warm, and Warm-Cool 
conditions are shown in Fig. 2. The subjects’ mean total 
accuracy was 0.74±0.01, 0.71±0.01, and 0.74±0.01 for TGI-
Cool, TGI-Warm, and Warm-Cool respectively. Subjects were 
divided into two subgroups depending upon their response to 
TGI stimulation assessed by self-evaluation scores. On 
average, the subjects rated the Warm stimulus within the range 
of 7.3 to 9.7. Based upon this result, we assigned subjects to 
the TGI group for those who rated TGI stimulus higher than 
7.3 (33 subjects, 24.03±1.30 yrs.) and the no-TGI group for 
those who rated TGI stimulation lower than 7.3 (8 subjects, 
24.36±2.20 yrs.). 

In the TGI group, the classification accuracy of the TGI-Cool 
(0.74±0.01) was significantly higher than that of the TGI-
Warm (0.71±0.01) condition (p < 0.05) as shown in Fig. 3. On 
the other hand, neither the accuracies of the TGI-Cool 
(0.72±0.03) nor Warm-Cool conditions (0.73±0.01) differed 
statistically significantly. Nezam et al. reported that the binary 
classification accuracies of ‘Low & Moderated Versus High &  

 

Figure 1. Thermal stimulation task paradigm. 
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Intolerable’ were ‘0.681 and 0.696 using KNN (K=10) and 
SVM,’ respectively [5]. The tuned EEGNet in this study 
classified TGI versus Cool and TGI versus Warm well with 
relatively short time data. 

The subjects in the TGI group rated TGI (9.17±0.12) 
significantly hotter than the Warm stimulus (8.54± 0.12), 
which implies that TGI was perceived as hot rather than cold 
or cool, although both the Cool and Warm conditions were 
given equally (left of Fig. 3). The TGI-Cool classification 
accuracy was higher than that of the TGI-Warm. This is 
congruent with the result that the subjects' cold-hot rating 
response characteristics to TGI stimuli are closer to Warm than 
Cool stimuli. 

On the other hand, in the no-TGI group, TGI-Cool 
classification accuracy did not differ significantly from the 
TGI-Warm condition.  Subjects in the no-TGI group rated TGI 
4.54±0.71, where 5 is the no-stimulation state. The TGI-Cool 
and TGI-Warm conditions were classified with an accuracy of 
0.72±0.03 and 0.73±0.01, respectively (right of Fig. 3). This 
suggests that the TGI stimulus could also be perceived as a 
different stimulus from the Cool or Warm stimuli, although the 
TGI stimulus consisted of both Cool and Warm conditions, 

and the illusion did not occur, which resulted in a high standard 
error of the mean scores.  

B. Feature Analysis 

 Scalp topography, in which the weights of trained features 
differed significantly between the two conditions (p < 0.05) is 
shown in Fig. 4. For both the TGI and no-TGI groups, Warm 
and Cool conditions were classified most in the right centro-
parietal and central regions (Fig. 4). Tayeb et al. and Nezam et 
al. addressed the brain activity in those areas during both cool 
and warm conditions; however, similar regions were also 
responsible for the classifying Warm-Cool conditions [5-6].  

Within the TGI group (Fig. 4a), we observed that the 
feature weights that classified the TGI and Cool conditions 
significantly were positioned in the left temporal, parietal, and 
right frontal regions. Further, the right parietal region 
contributed to classifying the TGI and Warm stimuli. Given 
that the somato-sensory cortex is one of the regions 
responsible for the pain cognition process, the difference in the 
parietal area between the TGI and Cool conditions might be 
interpreted as activity in the somato-sensory cortex during 
subjects feeling TGI as hot pain [2]. 

However, the common regions that classified two stimulus 
conditions significantly were the left temporal region for the 

 
Figure 2. Classification accuracy for individual subjects. Total accuracy is 0.74±0.01, 0.71±0.01, and 0.74±0.01 for TGI-Cool, TGI-Warm, and Warm-Cool 
respectively, and the black line stands for the random probability (0.5). 

 
Figure 3. Classification accuracy and self-evaluation scores of thermal stimuli for TGI (left) and no-TGI (right) groups. 
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TGI/Cool conditions and the frontal region for the TGI/Warm 
conditions (Fig. 4(b)). Interestingly, the left temporal region 
for the TGI-Cool stimuli and the right frontal region for the 
TGI-Warm stimuli classification dominated, while those two 
areas were responsible for classifying the TGI-Cool stimuli in 
the TGI group (Fig. 4(a)). The self-evaluation score for the 
TGI was 4.54±0.71 and varied highly. We note that a score of 
5 is no stimulation, i.e., TGI was considered two 
countervailing stimuli in the no-TGI group. 

IV. CONCLUSION 

We observed and analyzed 7 s of EEG signals during 
Thermal Grill Illusion (TGI; 20-40 ℃), Cool (20 ℃), and 
Warm (40 ℃) conditions for the 41 subjects. We tuned the 
parameters of the EEGNET for the short stimulation time data. 
We achieved a classification accuracy of the TGI-Cool 
condition (0.74±0.01) that was significantly higher than the 
TGI-Warm condition (0.71±0.01). In contrast, the accuracy 
was similar to the Warm-Cool condition (0.73±0.01), for 
subjects who rated TGI significantly hotter than the Warm 
stimulus. We found that the signal in the parietal region, where 
activity at the somato-sensory cortex can be observed, is 
responsible for classifying the TGI and Cool or Warm 
conditions when subjects perceived that TGI was hot pain. The 
TGI stimulus was considered as two countervailing stimuli for 
subjects who rarely felt the illusion. However, the TGI 
condition was also classified from Cool or Warm stimuli. 

In this study, the accuracy of three binary classifications 
demonstrated that the subjects’ cold-hot rating test results are 
repeated in EEG. Several features of the TGI, Cool, and Warm 
conditions were investigated according to the self-evaluation 
scores for the TGI stimulus. Our results suggest that an EEG 
analysis using a deep neural network has the potential to 
measure and classify thermal stimuli accurately and band 
features could be extracted without verbal or behavioral 
expressions, even if a stimulus is illusionary. We will continue 
the studies on extracting EEG features for the remained six 
conditions, such as TGI (23-37 ℃ and 26-34 ℃), Cool (23 ℃ 
and 26 ℃), and Warm (34 ℃ and 37 ℃) from the EEG data 
already obtained, and classifying them using proper deep 
learning techniques. 
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Figure 4. Scalp topography representing significantly different regions between two class weights for binary classification of (a) TGI group and 
(b) no-TGI group. # significance represents the number of subjects who showed a significant difference at each electrode. 
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