

METABOLIC DEUTERIUM OXIDE (D₂O) LABELING IN STUDYING ENVIRONMENTAL DISEASES

Jonghyun Kim, Seungwoo Seo, Byoungsook Goh, <u>Tae-Young Kim*</u>

School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea

Dec 16, 2023

The 97th Annual Meeting of the Japanese Pharmacological Society

COI開示

COI disclosure

☑ 発表内容に関連し、過去3年間、開示すべき COI関係にある企業などはありません

筆頭発表者: 金泰咏 (Kim, Tae-Young) 責任発表者: 金泰咏 (Kim, Tae-Young)

Acknowledgments

3

- Dr. Jonghyun Kim
- Mr. Seungwoo Seo
- Dr. Byoungsook Gho

National Research Foundation of Korea

ENVIRONMENTAL OMICS

Dec 16, 2023

The 97th Annual Meeting of the Japanese Pharmacological Society

Environmental omics: health risk assessment

J. Integr. OMICS, 3, 75-87 (2013)

Environmental proteomics: Alzheimer's & Parkinson's diseases

J. Proteomics, 104, 24-36 (2014)

METABOLIC DEUTERIUM OXIDE (D₂O) LABELING

Dec 16, 2023

The 97th Annual Meeting of the Japanese Pharmacological Society

Strategies for stable isotope labeling in quantitative MS

Properties of metabolic D_2O labeling

Anal. Chim. Acta 1242, 340722 (2023)

Metabolic D-labeling pathways by D_2O

Anal. Chim. Acta 1242, 340722 (2023)

Metabolic partial D-labeling & factors affecting D-labeling

Anal. Chim. Acta 1242, 340722 (2023)

DEUTERIUM OXIDE LABELING FOR GLOBAL OMICS RELATIVE QUANTIFICATION (DOLGOREQ)

Dec 16, 2023

The 97th Annual Meeting of the Japanese Pharmacological Society

Idea of the DOLGOReQ

Metabolic partial D-labeling & MS

14

Anal. Chim. Acta 1242, 340722 (2023)

Relative quantification

15

In-silico isotopic distribution library (H:D)

Anal. Chim. Acta 1242, 340722 (2023)

Quantification performance test: HeLa cell lipids

16

Quantification dynamic range: various mixing ratios

Anal. Chem. 91, 8853 (2021)

Quantification precision: different ion forms

Anal. Chem. 91, 8853 (2021)

G I T

Application of DOLGOReQ: CoCl₂ induced hypoxia

 $CoCl_2$ inhibits PHD enzymes (the oxygen sensors) through replacement of Fe with Co making these enzymes unable to mark HIF-1 α for degradation.

- Hypoxia inducible factor-1 (HIF-1)
- Prolyl hydroxylase-domain enzymes (PHDs)
- von Hippel Lindau (VHL) protein
- Hypoxia response element (HRE; 5'-RCGTG-3')

https://www.novusbio.com/support/hypoxia-and-hif-faqs

CoCl₂ induced hypoxia: experimental scheme

20

Lipid fold-change between normoxia & hypoxia HeLa cells

Anal. Chem. 91, 8853 (2021)

D₂O LABELING FOR LIPID TURNOVER MEASUREMENT

Dec 16, 2023

The 97th Annual Meeting of the Japanese Pharmacological Society

Lipid turnover

Lipid turnover measurement: experimental schemes

24

Anal. Chem. 90, 6509 (2018)

Lipid turnover measurement: MS data-processing

Lipid turnover measurement: turnover rates

B Untargeted MS/MS

Anal. Chem. 90, 6509 (2018)

Lipid turnover measurement: reproducibility

Anal. Chem. 90, 6509 (2018)

G I T

Conclusion

- New analytical platforms for relative quantification and measurement of in vivo turnover rate of lipids on a global scale based on partial metabolic D₂O labeling has been developed.
- DOLGOReQ is effective in a linear dynamic range over two orders of magnitude.
- Turnover rates of more than 100 HeLa lipids at species-level were determined with good reproducibility based on metabolic D₂O labeling..
- Because of its universality, DOLGOReQ can be exploited in multi-omics studies covering lipidomics, proteomics, and glycomics.
- The economy of D₂O labeling makes it possible to apply our methodology to a long-term kinetics study for higher organisms including human.