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Abstract

Dense depth maps have been used as a key element of vi-
sual perception tasks. There have been tremendous efforts to
enhance the depth quality, ranging from optimization-based
to learning-based methods. Despite the remarkable progress
for a long time, their applicability in the real world is lim-
ited due to systematic measurement biases such as density,
sensing pattern, and scan range. It is well-known that the
biases make it difficult for these methods to achieve their
generalization. We observe that learning a joint represen-
tation for input modalities (e.g., images and depth), which
most recent methods adopt, is sensitive to the biases. In this
work, we disentangle those modalities to mitigate the bi-
ases with prompt engineering. For this, we design a novel
depth prompt module to allow the desirable feature repre-
sentation according to new depth distributions from either
sensor types or scene configurations. Our depth prompt can
be embedded into foundation models for monocular depth es-
timation. Through this embedding process, our method helps
the pretrained model to be free from restraint of depth scan
range and to provide absolute scale depth maps. We demon-
strate the effectiveness of our method through extensive
evaluations. Source code is publicly available at https:
//github.com/JinhwiPark/DepthPrompting.

1. Introduction

Scene depths have been used as one of the key elements
for various visual perception tasks such as 3D object de-
tection [65], action recognition [66], and augmented real-
ity [23, 75], etc. For accurate depth acquisition, there have
been various attempts in the computer vision field. Since
the advances in deep learning, its powerful representational
capacity has been applied to explain scene configurations,
which is feasible even with only single images. Unfortu-
nately, single image depth estimation cannot produce metric
scale 3D depths when camera parameters change and out-of-
distributions on unseen datasets happen [20].
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Figure 1. An overview of our depth prompting for sensor-agnostic
depth estimation. Leveraging a foundation model for monocular
depth estimation, our framework produces a high-fidelity depth map
in metric scale and provides impressive zero/few-shot generality.
Note that C.Former indicates CompletionFormer [73], and details
and examples are reported in Sec. 4.5 and supplementary materials.

Toward depth information easy to acquire in metric scale,
active sensing methods such as LiDAR (Light Detection and
Ranging) [54], ToF (Time of Flight) [30], and structured
light [72] have gained interest as a practical solution. Al-
though the active sensing methods enable real-time scene
depth acquisitions in a single shot, they only provide sparse
measurements. For dense predictions, spatial propagation,
modeling an affinity among input image pixels, is neces-
sary [9, 35, 36, 45, 46, 73]. Note that its affinity map is
constructed based on input images, and is jointly optimized
with fixed depth patterns. Different from real-world scenar-
ios where various types of depth sensors (e.g., Velodyne Li-
DAR [54], Microsoft Kinect [74], Intel RealSense [27], and
Apple LiDAR sensor [40], etc.) are used, the mainstream of
standard benchmarks [59] for this task is to only use KITTI
dataset [17] captured from a 64-Line LiDAR and random
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samples from Kinect depth camera in NYUv2 dataset [55].
In this work, our primary goal is to build a sensor-agnostic

depth estimation model that faithfully works on the various
active depth sensors. Inspired by pioneer works in visual
prompt methods like SAM [29], we design a novel depth
prompt module used with pretrained models for monocular
depth estimation. The depth prompt first encodes the sparse
depth information and then fuses it with image features to
construct a pixel-wise affinity. A final refinement process is
performed with both the affinity and an initial depth map
from the pretrained depth models. To take full advantage
of pretrained models, we conduct a bias tuning [7], which
is a well-known memory-efficient technique when applied
to pre-trained models. Our proposed method is fine-tuned
for only 0.1% parameters of the models while keeping other
parameters frozen.

Our key idea is to reinterpret prompt learning as spatial
propagation. We aim to achieve an adaptive affinity from
both the depth prompt and the knowledge of the pretrained
monocular depth model [34]. We demonstrate that the pro-
posed method is generalized well to any sensor type, and it
can be extended for various depth foundation models such
as [4, 56], which are trained with large-scale datasets for
monocular depth estimation to achieve relative scale predic-
tion and zero-shot generalization. To do this, we utilize a
variety of public datasets captured from off-the-shelf depth
sensors and take real-world scenes by ourselves where the
wide depth ranges and structures exist. Additionally, we con-
duct an extensive ablation study to verify the influence of
each component within our framework, and evaluate our
methodology in a variety of real-world settings. This test-
ing included zero and few-shot inference exercises across
different sensor types, further validating the robustness and
adaptability of our proposed solution.

2. Related Works

2.1. Depth Estimation with Sparse Measurement

Accurate dense depth acquisition requires time-consuming
and costly processes [32]. As a compromise between in-
ference time and cost, sparse depth measurements based
on active sensing manners have been considered as main-
stream approaches. Leveraging the sparse measurements
and its corresponding images, recent learning-based meth-
ods [9, 35, 36, 45, 46, 73] have been proposed to make
dense predictions which enhance the depth resolutions same
with the image resolutions via a spatial propagation pro-
cess. However, due to the dependency on the specific sparse
depth pattern and density according to the input devices,
such models face challenges in real-world scenarios such
as sensor blackouts [60], multipath interference [3, 44], and
non-Lambertian surfaces [58], resulting in much fewer sam-
ple measurements.

Several studies have explored depth reconstruction from
unevenly distributed and sparse input data [10, 19, 68]. How-
ever, they suffer from an issue on a range bias, which pro-
vides only limited scan ranges in training datasets. Works
in [12, 67] focus on handling extremely sparse conditions
(less than 0.1% over its input image); however, they fail
to show the generalized performances on scenarios given
relatively dense initial depth inputs. To address both issues,
we adopt prompt engineering to achieve the model general-
ization, which has proven its powerful capacity by taking
advantage of pre-trained models on downstream tasks, yet
remains unsolved for depth-relevant tasks so far [6, 18, 29].

2.2. Prompt Engineering

Prompt engineering refers to designing specific templates
that guide a model to complete missing information in a
structured format (e.g., cloze set [6]), or generate a valid
response along with given input (e.g., promptable segmen-
tation [29]). With the recent success of the large language
models [11, 53], works in [6, 14] demonstrate how various
natural language processing (NLP) tasks can be reformu-
lated to an incontext learning problem given a pre-defined
prompt, which is a useful tool for solving the tasks and
benchmarks [49, 50].

The advent of prompt engineering has been trans-
formative, with some studies [29, 37, 51] extending
its application to the computer vision field. Here, it
is used to achieve a zero-shot generalization, enabling
models to understand new visual concepts and data dis-
tributions that they are not explicitly trained on. The
most relevant work [29] to this paper designs a promptable
segmentation model. They construct a prompt encoder to
represent user-defined points or boxes with a positional em-
bedding [57]. We note that it is not a pixel-wise regression
problem which is different from our task.

2.3. Foundation Model for Dense Prediction

Foundation models are designed to be adaptable for various
downstream tasks by pretraining on broad data at scale [5]. In
NLP field revolutionized by large-scale models such as GPT
series [6, 49, 50], foundation models in the computer vision
field have been becoming popular. Recent advancements
in the large-scale foundation models with web-scale image
databases have made significant breakthroughs, particularly
involving image-to-text correspondences [24, 31, 51, 69].
These developments have paved the way for more efficient
transfer learning [1, 51, 69] and make the zero-shot capabili-
ties better [24, 31, 51].

Despite these advancements, the foundation models are
primarily used in high-level vision tasks such as image recog-
nition [24, 69], image captioning [1, 31, 69], and text-to-
image generation [31]. When it comes to low-level vision
tasks like depth predictions, these models do not seem to



be suitable due to a lack of extensive image/depth data on a
metric scale [33, 38]. To be specific, a web-scale dataset col-
lection is infeasible because ground truth-level metric scale
depths can be obtained only from sensor fusion manners [52].
Although some works [4, 56] have led to the creation of large
and diverse datasets for monocular depth prediction, trans-
ferring the learned knowledge into other domains remains
unexplored. To achieve the sensor-agnostic depth estimation
regardless of scene configuration, we take fully advantage
of the knowledge from the depth foundation model.

3. Sensor-agnostic Depth Estimation

In this section, we start by discussing the three biases which
hinder sensor-agnostic depth prediction (Sec. 3.1). We then
introduce the proposed depth prompt module. Here, we re-
cast the depth prompt design as learning an adaptive affin-
ity construction in spatial propagation for various types of
sparse input measurements (Sec. 3.2). Lastly, we provide
implementation details of the proposed module (Sec. 3.3).

3.1. Sensor Biases in Depth Estimation

Bias issues make learning-based models for visual percep-
tions hard to achieve their generality [2, 43]. There have
been attempts to address the bias problems in image restora-
tion [70], recognition [62] and generation [16]. Among
them, the sensor-bias issue [13] is also considered as one
of the crucial research topics. In particular, since a vari-
ety of depth sensors types is available, there is no general-
ization method to cover every depth sensor types, while the
solutions to the same type (e.g., different LiDAR configu-
rations [68]) exist. In this part, we empirically investigate
3-sensor biases, e.g., sparsity, pattern, and range bias before
an introduction to our solution.

Firstly, if a learning-based model is trained on data with
a certain density (e.g., 500 random samples in training), it
will suffer from sparsity bias, which makes high-fidelity
depth maps difficult if fewer samples are available in the test
phase, as shown in Fig. 2-(b). The sparser sample measure-
ments are also common due to sensor blackout, occlusion, or
changing environmental conditions. This has hampered the
practical utility of learning-based depth estimation in real-
world scenarios. Second, pattern bias shows the performance
degradation if depth patterns vary between training and test
phases, even with the same number of depth points. When
we intentionally shift the input depth pattern in the inference,
it indicates that the existing model is biased toward the fixed
location of input depth points in Fig. 2-(c). This makes a
unified depth prediction model difficult to be applied to other
sensor types. Lastly, range bias, arising when attempted to
take scene structures beyond the limited scan range of the
sensor, also prevents sensor-agnostic depth estimation as
shown in Fig. 2-(d).

(a) RGB&Depth and GT (b) Sparsity Bias

(c) Pattern Bias (d) Range Bias

Figure 2. Examples of sensor biases. Depth estimation with an
active sensor suffers from bias problems, including fixed density
and pattern, and inherent scan range of sensors used.

3.2. Depth Prompting

To realize sensor-agnostic depth estimation without any
sensor bias, we take an inspiration from prompt learn-
ing in NLP, which designs a specific template to guide
a model for a valid response along with a given in-
put [6, 14]. We aim to design a prompt module for depth
modality by defining a unified embedding space to rep-
resent learned features from any type of input measure-
ments (Fig. 3). Here, we use an input depth map as a tem-
plate for our depth prompt module, and the sensor-agnostic
depth prediction is achieved by fusing the template, fea-
tures from the embedding space, and image features.
Revisiting Spatial Propagation. In this work, our key
idea is to reinterpret the depth prompt design as spatial prop-
agation, which predicts dense depth maps from input sparse
measurements guided by image-dependent affinity weights.
We formulate the conventional spatial propagation process:

Dt+1
(x,y)=A(x, y)⊙D0

(x,y)+
∑

(l,m)∈N(x,y)

A(l,m)⊙Dt
(l,m), (1)

where Dt
(x,y) ∈ R1×H×W refers to a depth map for each

propagation step t. (x, y) and H,W means a spatial coordi-
nate and the height and width of an input image, respectively.
D0

(x,y) and A indicate an initial depth and a pixel-wise affin-
ity map, respectively. ⊙ operator denotes an element-wise
product. (l,m) ∈ N(x,y) refers to 8-directional neighboring
pixels over the reference pixel (x, y).

Even in the same scene, the affinity map A can vary ac-
cording to the input depth type which is dependent on sensors
used. That’s, the affinity map should be adaptive to various
input changes. However, affinity maps from previous spatial
propagation methods [9, 35, 36, 45, 46, 73] are invariant
because they are learned from a certain type of input depths.
We address this issue by designing a depth encoder to learn
features for a diverse set of sensors and by projecting them
into the unified embedding space.
Depth Feature Extraction. To do this, we adopt an
encoder-decoder structure to efficiently encode both posi-



tional and sparsity information of an input depth map. The
encoder takes a depth map as an input, and then the decoder
constructs an affinity map with the same size of the depth
map. After that, the prompt embedding is combined with
image features to bring boundary and context information.

To be specific, we use ResNet34 [21] to extract the depth
features [39, 48, 71]. We downsample the features by 1/2,
1/4, 1/8, 1/16, and 1/32, and then feed them into the de-
coder with skip connections. Given a sparse depth DS , our
depth prompt encoder fE yields both a prompt embedding
F d and multi-scale features F d

k as below:

F d, F d
k = fE(DS), (2)

where k is an index of the downsampled features.
Depth Foundation Model. Until now, large-scale depth
models [4, 34, 56] have been tailored to monocular depth es-
timation. Leveraging a large-scale monocular depth dataset,
the models are able to provide relative depth maps, which is
the only option as a foundation model.

Given a single image I ∈ R3×H×W , the pretrained depth
model fF outputs an initial depth map D̂I and multi-scale
intermediate features F i

k:

D̂I , F
i
k = fF (I,ΘfF ), (3)

where ΘfF indicates parameters of the foundation model,
which keeps frozen during both training and inference.

Here, we need to effectively transfer the pretrained knowl-
edge of the foundation models to a range of sensors via
prompt engineering. We adopt a bias tuning [7, 25], which
is more effective for dense prediction tasks than other tuning
protocols [22, 25]. This is used to update bias terms and to
freeze the rest of the backbone parameters. As a result, the
bias tuning contributes to preserving the high-resolution de-
tails and context information acquired in the initial extensive
training phase [7], which will be analyzed in Sec. 4.4..

Next, to infer depth maps with absolute scales, we merge
the relative depth from the foundation model with the sen-
sor measurements. Due to the nature of spatial propagation,
which mainly refines neighboring depth values over given
seed points, we cannot obtain proper depth values for re-
gions where no initial depth points are available. To address
this limitation, we perform an additional processing with a
least-square solver [42] to produce the consistent DI when
applied to other sensor types. The process uses both an initial
depth from the foundation model and a sparse depth DS in
order to perform a global refinement. By solving the least
square equation, we can obtain the solution p ∈ R as below:

p̂ = min
p

||pD̂V
I −DS ||F , (4)

where || · ||F denotes the Frobenius norm, and DV
I ⊂ D̂I

refers to a set of pixels corresponding to valid depth points
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Figure 3. An overview of the proposed architecture. We design a
depth prompt module to construct an adaptive affinity map Aada,
which guides the propagation of given depth information.

DS . The solution p̂ is multiplied with the initial depth D̂I ,
whose result becomes D0

(x,y) of Eq. (1). Since this pre-
calculation makes an initial depth for the spatial propagation
in Eq. (1) better, we can cover larger unknown areas than
those without Eq. (4).
Decoder for Adaptive Affinity. A decoder in our prompt
module reconstructs an affinity map using the image em-
bedding from the foundation model encoder fF (Eq. (3))
and a set of prompt embeddings from the prompt encoder
fE (Eq. (2)). We concatenates the prompt embeddings F d,
intermediate features F d

i from the prompt encoder and multi-
scale image features F i

k, and then yield Aada ∈ RC2×H×W

where C is a hyper-parameter to define the propagation
ranges and set to 7 as below:

Aada = fD(F
d, F d

k , F
i
k). (5)

Finally, we substitute the conventional affinity map A in
Eq. (1) into our Aada above. Thanks to the feature fusion
from both the prompt embedding and the foundation model
with the bias-tuning, we can successfully decode an affinity
map to account for different types of input measurements. In
addition, the least square solver in Eq. (4) allows the spatial
propagation to take consistent initial depth maps as input,
regardless of the sensor variations. As a result, we achieve
the adaptiveness/robustness in the proposed framework.

3.3. Implementation

Random Depth Augmentation. For more generality, we
adopt random depth augmentation (RDA). We sample depth
points from relatively dense depth maps to simulate sparser
input depth scenarios. For example, we extract 4-Line depth
values from 64-Line depth maps in the KITTI dataset [17].
In addition, we train our framework from general to extreme
cases (e.g., from standard 500 random samples to only 1
depth point in the NYUv2 dataset [55])
Loss Functions. The proposed framework is trained in a
supervised manner with the linear combination of two loss



functions: (1) Scale-Invariant (SI) loss [15] for an initial
depth from the depth foundation model fF (Eq. (3)); (2) A
combination of L1 and L2 losses for a final dense depth.

An initial depth map is predicted by minimizing the dif-
ference between D̂I and its ground truth depth map Dgt for
valid pixels v ∈ V . Let δv = log D̂I(v) − logDgt(v), the
SI loss LSI is defined as below:

LSI(D̂I , D
gt) =

1

|V |
∑
v∈V

(δv)
2 − λ

|V |2

(∑
v∈V

δv

)2

, (6)

where we set λ = 0.85 in all experiments, following the
previous work [34].

Next, our framework infers a dense depth D̂ in Eq. (1)
based on the valid pixels v ∈ V of its ground truth depth
Dgt as well. For this, we use a loss Lcomb based on both L1

and L2 distances as follows:

Lcomb(D̂,Dgt) =

1

|V |
∑
v∈V

(∣∣∣D̂(v)−Dgt(v)
∣∣∣+ ∣∣∣D̂(v)−Dgt(v)

∣∣∣2) ,
(7)

In total, our framework is optimized by minimizing the final
loss L as below:

L = Lcomb(D̂,Dgt) + µLSI(D̂I , D
gt). (8)

where µ is a balance term and empirically set to 0.1.
Training Details. We utilize a SoTA monocular depth
estimation method, termed DepthFormer [34], as a pri-
mary backbone to validate our method effectively transfer
the knowledge of large-scale depth model into our sensor-
agnostic model. Our framework is implemented in public
PyTorch [47], trained for 25 epochs on four RTX 3090TI
GPUs using Adam [28] optimizer, with 228 × 304 and 240
× 1216 input resolution of NYU and KITTI dataset, respec-
tively. Note that we resize the input RGB images to keep their
ratio of height and width toward the foundation model used.
The initial learning rate is 2× 10−3, and then scaled down
with coefficients 0.5, 0.1, and 0.05 every 5 epochs after 10th

epoch. The total training process for the NYU dataset takes
approximately half a day, with an inference time of 0.06
seconds. For the KITTI dataset, the training time is about 1.5
days, with an inference time of 0.38 seconds. The framework
comprises 53.4 million learnable parameters, which includes
0.1M dedicated to tuning the foundational model.

4. Experiment
In this section, we conduct comprehensive experiments to
evaluate the impact of our depth prompting module on
sensor-agnostic depth estimation. First, we briefly describe
the experimental setup (Sec. 4.1), and present comparative re-
sults against various state-of-the-art (SoTA) methods on stan-
dard benchmark datasets (Sec. 4.2). Moreover, we provide

an in-depth examination of bias issues in sensor (Sec. 4.3)
as well as an ablation study to demonstrate the effect of each
component in our method (Sec. 4.4). Lastly, we offer quali-
tative results to show zero generalization of our method on
commercial sensors (Sec. 4.5).

4.1. Experiment Setup

Evaluation Protocols. For our comparative experiments,
we select a range of SoTA methods for depth estimation from
sparse measurements. These include a series of spatial prop-
agation networks such as CSPN [9], S2D [41], NLSPN [45],
DySPN [35], CostDCNet [26], and CompletionFormer [73].
Additionally, we choose SAN [19], which are designed to
adapt various sparse setups. We use common quantitative
measures of depth quality: root mean square error (RMSE,
unit: meter), mean absolute error (MAE, unit: meter), and
inlier ratio (DELTA1, δ < 1.25).
Datsets: NYUv2 and KITTI DC. We utilize the NYU
Depth V2 dataset, an indoor collection featuring 464
scenes captured with a Kinect sensor. Following the of-
ficial train/test split, we use 249 scenes (about 50K sam-
ples) in training phase, and 215 scenes (654 samples) are
tested for the evaluation. The NYU Depth V2 dataset pro-
vides 320×240 resolutions. We use the center-cropped im-
age whose resolution is 304×228 and randomly sample 500
points to simulate the sparse depth.

For outdoor scenarios, we choose a KITTI DC [59]
dataset with 90K samples. Each sample includes color im-
ages and aligned sparse depth data (about 5% density over
image resolution) captured using a high-end Velodyne HDL-
64E LiDAR sensor. The images have 1216×352 resolution.
The dataset is divided into training (86K samples), vali-
dation (7K samples), and testing segments (1K samples).
Ground truth is established by accumulating multiple Li-
DAR frames and filtering out errors, which results in denser
LiDAR depths (about 20% density).

4.2. Experimental Results

Sensor Agnsoticity. We assess the versatility of our
method and the SoTA methods across various density levels.
They are commonly trained with a standard training protocol,
e.g., 500 random depth samples from the NYUv2 dataset
and 64 lines on the KITTI DC dataset. We test them under
exactly the same conditions. For the NYUv2 dataset, we
sample fewer samples (from 200 to 1 depth point) than that
used in training phase. In addition, we use less scanning lines
(from 32 to 1 line) than the original KITTI dataset.

As shown in Tabs. 1 and 2, our method consistently pro-
vides the superior results in almost test conditions. While
methods such as NLSPN [45] and CompletionFormer [73]
demonstrate their robustness with 200 samples in NYUv2
dataset and the 32-line scenario in KITTI dataset, respec-
tively, our approach outperform the SoTA models in the



# Samples
200 100 32 8 4 1

RMSE MAE DELTA1 RMSE MAE DELTA1 RMSE MAE DELTA1 RMSE MAE DELTA1 RMSE MAE DELTA1 RMSE MAE DELTA1

CSPN 0.1563 0.0707 0.9868 0.2795 0.1491 0.9585 0.6306 0.4344 0.7310 0.9688 0.7417 0.5031 1.0399 0.8186 0.4473 1.1093 0.8850 0.4108
S2D 0.1871 0.1031 0.9829 0.2733 0.1611 0.9598 0.4084 0.2615 0.9025 1.0982 0.8236 0.4537 1.7385 1.4294 0.1787 1.8446 1.5477 0.1416

NLSPN† 0.1358 0.0553 0.9899 0.2452 0.1125 0.9693 0.5541 0.3427 0.8254 0.9564 0.7023 0.5479 1.0775 0.8273 0.4511 1.1929 0.9521 0.3616
DySPN 0.1532 0.0686 0.9880 0.3174 0.1799 0.9345 0.6603 0.4838 0.6751 0.9635 0.7586 0.4913 1.0351 0.8304 0.4484 1.1079 0.9014 0.4110

CostDCNet† 0.1455 0.0606 0.9887 0.2809 0.1300 0.9592 0.6887 0.4144 0.7735 1.1685 0.8479 0.4864 1.3097 0.9973 0.3915 1.4255 1.1297 0.3065
CompletionFormer† 0.1352 0.0583 0.9898 0.3553 0.2125 0.9069 0.7921 0.6160 0.5250 1.0647 0.8536 0.3830 1.1259 0.9112 0.3526 1.2091 0.9878 0.3167

Ours 0.1435 0.0642 0.9881 0.1778 0.0870 0.9812 0.2472 0.1452 0.9546 0.3673 0.2464 0.9133 0.3827 0.2627 0.9031 0.4040 0.2848 0.8935

Table 1. Quantitative Results on NYUv2. † indicates that the publicly available code and model weight is utilized in this experiment.

# Lines
32 16 8 4 2 1

RMSE MAE DELTA1 RMSE MAE DELTA1 RMSE MAE DELTA1 RMSE MAE DELTA1 RMSE MAE DELTA1 RMSE MAE DELTA1

CSPN 1.3644 0.4008 0.9876 2.0935 0.7532 0.9596 3.5806 1.6679 0.8580 5.7438 3.1650 0.6656 8.9143 5.6544 0.4478 12.5666 8.2679 0.3379
S2D 1.8133 0.7426 0.9623 2.6886 1.1670 0.9232 4.5806 2.6697 0.6727 7.2951 4.9223 0.3866 10.1624 6.8438 0.2854 12.2972 7.9316 0.2057

NLSPN† 1.1894 0.3536 0.9923 1.9279 0.6976 0.9675 3.2285 1.5482 0.8692 4.7571 2.5976 0.7267 6.0305 3.8779 0.4904 8.8244 5.2859 0.3949
DySPN 1.6758 0.5449 0.9871 2.3979 0.9096 0.9624 3.4687 1.5774 0.883 5.2374 2.8549 0.6981 6.5413 4.0182 0.5118 9.5199 5.3260 0.4637

CompletionFormer† 1.2513 0.3844 0.9912 2.1857 0.8403 0.9627 3.6505 1.7687 0.8577 6.2532 3.4800 0.6787 8.9682 5.9899 0.4672 12.7693 9.0019 0.3414
SAN† 1.8188 0.8160 0.9793 2.8866 1.5915 0.9087 3.7936 1.8339 0.8967 4.5894 2.3092 0.8523 4.1416 2.1280 0.8591 4.4444 2.3270 0.8153

Ours 1.1465 0.3472 0.9942 1.3512 0.4134 0.9922 1.6419 0.5470 0.9888 1.9507 0.7629 0.9809 2.3841 1.1976 0.9505 2.8234 1.2678 0.9535

Table 2. Quantitative Results on KITTI DC. † indicates that the publicly available code and weight are used in this experiment.

KITTI
↓

NYU

100-shot 10-shot

500 50 500 50

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

CSPN 0.1848 0.0909 1.0235 0.7220 0.6741 0.5038 1.2859 1.0251
NLSPN 0.1940 0.1075 0.5917 0.4285 0.7367 0.5682 1.2798 1.0378

CompletionFormer 0.2259 0.1287 1.1560 0.4589 0.5881 0.8758 1.3870 1.1430

Ours 0.1748 0.0796 0.4697 0.3048 0.5466 0.4284 0.7990 0.6482
NYU
↓

KITTI

100-shot 10-shot

64 8 64 8

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

CSPN 1.2803 0.3645 5.8021 3.4752 2.2717 0.9287 9.9108 6.1467
NLSPN 1.5156 0.5194 4.5913 2.7022 3.6842 1.8959 10.8715 5.7224

CompletionFormer 1.3404 0.3770 5.0787 3.2564 2.3280 1.0014 10.8328 7.0782

Ours 1.2752 0.3534 4.5874 2.4834 2.1108 0.7846 5.6511 3.1699

Table 3. Cross-validation between Indoor and Outdoor dataset.

more challenging scenarios. The depth prompt encoder con-
tributes to constructing an adaptive representation for ran-
domly given seeds, regardless of the pattern and density.

We observe that a majority of SoTA methods heavily
depend on predefined input configurations. Spatial propaga-
tion, a prevalent technique among these methods, relies on
relations among neighboring pixels, requiring a substantial
number of seeds to cover an entire scene. This dependency
results in significant performance deterioration in scenarios
with sparser initial depth seeds. In addition, SAN [19], which
are engineered to merge depth and image features at the late
fusion to achieve stability in varying sparsity conditions, also
encounter the performance drop in Tabs. 1 and 2).

In contrast, thanks to the knowledge of the founda-
tion model and the depth-oriented prompt engineering, our
method achieves relatively stable performance. Our prompt
module enables the construction of an adaptive affinity map
according to the distribution of input data, whose effective-
ness is enlarged by the zero-shot generalization for unseen
visual attributes and data distributions.
Cross-validation between Indoor and Outdoor. To con-
duct a cross-validation between outdoor and indoor scenar-
ios, we finetune our model and the comparison methods

with only 10 and 100 images. Since active sensors provide
metric depth to the model, the domain adaption via a few
ground-truth level annotations is inevitable. Following [63],
we randomly select the pair of images and depth data. As
shown in Tab. 3, our method shows the superior performance
than the SoTA methods, which demonstrates the model’s
effectiveness in preserving visual features across varying
scan ranges and its successful adaptation of the pretrained
knowledge to different domains.

4.3. Sparsity, Pattern and Range Biases

To assess the effectiveness of our model against the sensor
bias issues, we design experiments with varying conditions:
sparsity (from 500 to 50 samples), patterns (from random
to grid), and range changes (from 0m∼3m to 3m∼10m).
We also design experiments for the outdoor scenario that
vary across three key conditions: sparsity (changing from
64-Line to 8-Line), patterns (spanning from line to random
sampling), and range changes (extending from 0m to 15m,
and then from 15m to 80m). For a fair comparison, all models
do not conduct RDA for this experiment.

Tabs. 4 and 5 reveals that the previous methods face sig-
nificant challenges on the bias issues. In addition, as demon-
strated in Tabs. 1 and 2, the density changes also lead to
significant performance drop, particularly the dense to sparse
scenario. In contrast, to address the sparsity bias, our prompt-
based method constructs adaptive relations among pixels to
properly propagate even in the changing conditions.

Next, we investigate the negative impact of pattern bias.
We observe that a model trained on depth data with a certain
pattern suffers from limited generality due to the incompati-
bility with abundant representation learned for latent spaces
of other depth patterns. As shown in Tab. 4, we attribute this
to positional information combined with image features. The
comparison models, being continuously exposed to a fixed



Sparsity
(500→50)

Sparsity Rev.
(50→500)

Pattern
(Random→Grid)

Pattern Rev.
(Grid→Random)

Range
(3m∼10m→0m∼3m)

Range Rev.
(0m∼3m→3m∼10m)

RMSE MAE DELTA1 RMSE MAE DELTA1 RMSE MAE DELTA1 RMSE MAE DELTA1 RMSE MAE DELTA1 RMSE MAE DELTA1

CSPN 0.4902 0.3102 0.8323 0.1538 0.0802 0.9877 0.1108 0.0468 0.9937 0.7657 0.5401 0.6310 0.3419 0.2235 0.8055 0.2869 0.1533 0.9466
S2D 1.3680 1.0730 0.3006 0.5608 0.3134 0.8827 0.4794 0.4331 0.6836 0.8988 0.6230 0.6265 0.8430 0.6048 0.6208 0.8322 0.5514 0.7678

NLSPN 0.4639 0.3018 0.8554 0.1516 0.0758 0.9882 0.1136 0.0466 0.9933 1.2200 0.9202 0.3982 0.3758 0.2553 0.7871 0.3753 0.2329 0.9207
DySPN 0.4473 0.2700 0.8832 0.1487 0.0779 0.9887 0.1088 0.0439 0.9935 0.6700 0.4117 0.7461 0.3908 0.2654 0.7693 0.3891 0.2138 0.9237

CostDCNet 0.4701 0.2946 0.8569 0.1458 0.0717 0.9883 0.1248 0.0557 0.9921 0.4164 0.2649 0.8955 0.2160 0.1265 0.9449 0.2205 0.0992 0.9788
CompletionFormer 0.4776 0.2957 0.8510 0.1486 0.0754 0.9879 0.1183 0.0476 0.9925 0.8862 0.5993 0.6276 0.3486 0.2347 0.8207 0.6187 0.3713 0.8614

Ours+MiDaS 0.4472 0.2787 0.8567 0.1722 0.0754 0.9827 0.1403 0.0549 0.9884 0.4478 0.2840 0.8608 0.2334 0.1257 0.9691 0.2803 0.1252 0.9574
Ours+KBR 0.3632 0.2282 0.8939 0.1503 0.0651 0.9865 0.1170 0.0449 0.9922 0.3133 0.1980 0.9434 0.2007 0.1024 0.9697 0.2110 0.0945 0.9776

Ours 0.3997 0.2418 0.8825 0.1453 0.0634 0.9874 0.1081 0.0419 0.9937 0.2961 0.1766 0.9291 0.2060 0.1075 0.9701 0.2328 0.0958 0.9693

Table 4. Case study on sparsity, pattern, and range biases on the NYUv2 dataset.
Sparsity
(64→8)

Sparsity Rev.
(8→64)

Pattern
(Line→Random)

Pattern Rev.
(Random→Line)

Range
(15m∼80m→0m∼15m)

Range Rev.
(0m∼15m→15m∼80m)

RMSE MAE DELTA1 RMSE MAE DELTA1 RMSE MAE DELTA1 RMSE MAE DELTA1 RMSE MAE DELTA1 RMSE MAE DELTA1

CSPN 3.943 1.986 0.827 1.256 0.373 0.989 0.798 0.304 0.998 1.635 0.380 0.985 11.283 4.978 0.726 8.949 6.751 0.415
S2D 4.814 2.918 0.682 2.721 1.352 0.963 2.007 1.467 0.835 3.222 1.788 0.921 11.438 6.499 0.406 11.418 8.918 0.300

NLSPN 5.052 2.771 0.774 1.539 0.718 0.986 1.116 0.553 0.995 1.889 0.412 0.983 11.857 7.580 0.204 13.727 11.186 0.221
DySPN 4.106 2.136 0.786 1.269 0.394 0.991 0.837 0.317 0.997 1.856 0.489 0.982 11.127 5.028 0.700 9.969 7.641 0.379

CompletionFormer 4.180 2.175 0.820 1.963 0.942 0.966 0.867 0.402 0.997 1.689 0.387 0.984 11.492 5.422 0.626 9.969 7.641 0.379

Ours+MiDaS 4.463 2.256 0.797 1.182 0.337 0.991 0.836 0.318 0.996 1.637 0.372 0.985 13.272 5.868 0.714 5.763 3.935 0.479
Ours+KBR 3.780 1.719 0.874 1.180 0.339 0.993 0.944 0.257 0.995 1.689 0.381 0.985 12.032 5.479 0.705 5.790 4.291 0.483

Ours 2.453 1.047 0.967 1.037 0.302 0.994 0.704 0.206 0.998 1.617 0.361 0.986 7.648 3.354 0.759 1.994 1.072 0.890

Table 5. Case study of sparsity, pattern, and range biases on the KITTI DC dataset.

pattern like a grid shape, are limited to its generalization.
When image and depth information are jointly represented,
this issue is further exacerbated. On the other hand, from the
results, we find out that random sampling offers benefits akin
to augmentation effects, making the model generality better.
Our method allows the transfer of depth information trained
from various sparse patterns to the model, which provides
the same effect as random sampling.

Lastly, we check the range bias. In training phase, we
only use depth data whose maximum depth range is 3m.
All the models are tested using depth data whose min/max
range of the depth distribution is set to [3m, 10m]. As shown
in Tab. 4, it becomes evident that the most methods exhibit
poor generalization performance. Notably, the Completion-
Former [73] and NLSPN [45] struggle to produce the general
performance for the near and far regions. Our framework ef-
fectively tackles the challenge using the foundational model
designed for monocular depth estimation. Based on the foun-
dation model, which predicts relative depth maps for all
pixels, our method infers absolute depth maps, which ex-
tends the sensor’s limited scan ranges.

Fig. 4 shows a significant distinction between our method
and others in depth map reconstruction. While the compari-
son methods face challenges in accurately representing scene
depth, especially in areas where input seeds are provided,
our method excels in reconstructing the entire depth map.
One notable observation is about the scenarios involving
the changes in scanning ranges (Fig. 4-(c)). Our method
uniquely overcomes the common bias problem. This better
performance is attributed to the strengths of our foundation
model’s knowledge and the sensor-adaptive depth prompt.

Sparsity Pattern Range Param. Inference
w/o SPN Eq.(1) 0.498 / 0.334 0.145 / 0.096 0.546 / 0.379 53.3M 61.7ms

w/o Prompt Eq.(2) 0.452 / 0.288 0.301 / 0.207 0.686 / 0.551 49.7M 54.9ms
w/o Pretrain Eq.(3) 0.409 / 0.249 0.118 / 0.049 1.283 / 0.934 326.9M 64.4ms

w/o LS-solver Eq.(4) 0.416 / 0.268 0.118 / 0.052 0.520 / 0.305 53.4M 61.3ms
w/ RDA 0.231 / 0.134 0.113 / 0.046 0.426 / 0.251 53.4M 63.9ms

full fine-tuning 0.568 / 0.405 0.235 / 0.132 1.212 / 0.838 326.9M 64.6ms
Ours 0.400 / 0.242 0.108 / 0.0420 0.206 / 0.108 53.4M 63.9ms

Table 6. Ablation study of our proposed methods (RMSE / MAE).
NYU 100 NYU 8 NYU 1 KITTI 16 KITTI 4 KITTI 1

NLSPN 0.178 / 0.089 0.434 / 0.290 0.649 / 0.491 1.662 / 0.620 2.307 / 0.930 3.271 / 1.464
C.Former 0.182 / 0.090 0.434 / 0.289 0.648 / 0.487 2.179 / 0.796 3.291 / 1.363 5.428 / 2.457

Ours 0.178 / 0.087 0.367 / 0.246 0.404 / 0.285 1.351 / 0.413 1.951 / 0.763 2.823 / 1.268

Table 7. Adaption RDA method to other methods (RMSE / MAE).

4.4. Ablation Study

Adaption to Foundation Models. To evaluate the versa-
tility of our method with various foundational models, we
replace our primary backbone with MiDaS [4] and KBR [56].
The MiDaS and KBR are developed for relative scale depth
using large-scale datasets as well. Tab. 4 reveals that KBR
outperforms other methods, including our own variant us-
ing the MiDaS backbone. We argue that the self-supervised
training of KBR, unlike the supervised manner of MiDaS,
provides a more generalizable feature space, dealing with
challenging conditions [8, 61].
Component ablation of the proposed method. We per-
form an additional ablation study on each component of our
model in Tab. 6. The study reveals that the RDA method
notably reduces the sparsity bias. For the range bias, the
pre-trained knowledge in the backbone contributes to per-
formance improvement. Our depth-oriented prompt engi-
neering contributes to the overall performance. Additionally,
the results of LS solver Eq.(4) show that the sensor biases
are not addressed via the naive scale fitting, but are solved



(a) Sparsity Change (Train: 64-Line / Test: 8-Line)

(b) Pattern Change (Train: Line sampling / Test: Random sampling)

(c) Range Change (Train: 15m~80m / Test: 0m~15m)

CSPN DYSPN C.Former Ours

CSPN DYSPN C.Former Ours

CSPN DYSPN C.Former Ours

RGB Training Input Sparse Depth (Test Phase) GT

RGB Training Input Sparse Depth (Test Phase) GT

RGB Training Input Sparse Depth (Test Phase) GT

Figure 4. Qualitative results for the changes of measurement patterns, sparsity, and scan ranges. We visualize images, input examples in the
training phase, sparse depths in the test phase, and GT in the first row.

by the combinations of our components. As a solution, our
idea is to exploit the SPN module to use the initial dense
depth, which is aligned relative depth from the backbone
with sparse absolute-scale depth. The full fine-tuning ap-
proach, including training from scratch (w/o Pretrain), is
unstable due to a vast number of learnable parameters.
Random Depth Augmentation. RDA is an effective strat-
egy to mitigate the issue of sparsity bias. To evaluate its com-
patibility and adaptability with other methods, we conduct
an ablation study incorporating RDA into NLSPN [45], and
CompletionFormer [73]. The results, as described in Tab. 7,
demonstrate notable performance improvements in sparse in-
put scenarios. This highlights that the RDA not only naturally
improves the models’ ability to generalize across different
levels of data sparsity, but also becomes more effective when
used together with prompt engineering.

4.5. Zero-shot Inference on Commercial Sensors
We verify our method’s zero-shot generality by testing it
on different datasets without any additional training. We
use our model trained on NYUv2 [55] and KITTI DC [59]
datasets, then apply it to dataset taken from various sensors
such as Apple LiDAR [40], Intel RealSense [27], and 32-
Line Velodyne LiDAR [54]. Here, for Apple LiDAR dataset,
we directly capture a set of indoor images using iPAD Pro.
As shown in Fig. 1, our method is applicable for Apple Li-
DAR compared to ARKit [40] which is a built-in platform
on iOS devices. Additionally, it shows better generality with
consistent results in the VOID dataset [64], collected using a

stereo sensor in RealSense. Remarkably, our model, initially
trained on 64-Line Velodyne LiDAR, excels in handling the
NuScenes dataset [64] captured with fewer channel LiDAR
over the second best approach in Sec. 4.2. Note that we
describe details about the experimental setup, more quan-
titative and qualitative results, and further analysis in the
supplemental materials.

5. Conclusion
We introduce a novel depth prompting technique, leveraging
large-scale pretrained models for high-fidelity depth estima-
tion in metric scale. This approach significantly addresses
the challenges of well-known sensor biases associated with
fixed sensor densities, patterns, and limitation of range,
and enables to achieve the sensor-agnostic depth prediction.
Through the comprehensive experiments, we demonstrate
the stability and generality of our proposed method, showcas-
ing its superiority over existing methodologies. Furthermore,
we verify our method on a variety of real-world scenarios
through zero/few-shot inference across diverse sensor types.

Acknowledgement This research was supported by ’Project for
Science and Technology Opens the Future of the Region’ pro-
gram through the INNOPOLIS FOUNDATION funded by Ministry
of Science and ICT (Project Number: 2022-DD-UP-0312), GIST-
MIT Research Collaboration grant funded by the GIST in 2024,
the Ministry of Trade, Industry and Energy (MOTIE) and Korea
Institute for Advancement of Technology (KIAT) through the In-
ternational Cooperative R&D program in part (P0019797) and the
Korea Agency for Infrastructure Technology Advancement(KAIA)
grant funded by the Ministry of Land Infrastructure and Transport
(Grant RS-2023-00256888).



References
[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine

Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Men-
sch, Katherine Millican, Malcolm Reynolds, Roman Ring,
Eliza Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong,
Sina Samangooei, Marianne Monteiro, Jacob L Menick, Se-
bastian Borgeaud, Andy Brock, Aida Nematzadeh, Sahand
Sharifzadeh, Mikoł aj Bińkowski, Ricardo Barreira, Oriol
Vinyals, Andrew Zisserman, and Karén Simonyan. Flamingo:
a visual language model for few-shot learning. In Proceed-
ings of the Neural Information Processing Systems (NeurIPS),
2022. 2

[2] Jinwoo Bae, Sungho Moon, and Sunghoon Im. Deep digging
into the generalization of self-supervised monocular depth es-
timation. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 2023. 3

[3] Ayush Bhandari, Achuta Kadambi, Refael Whyte, Christopher
Barsi, Micha Feigin, Adrian Dorrington, and Ramesh Raskar.
Resolving multipath interference in time-of-flight imaging
via modulation frequency diversity and sparse regularization.
Optics letters, 39(6):1705–1708, 2014. 2

[4] Reiner Birkl, Diana Wofk, and Matthias Müller. Midas v3.1 –
a model zoo for robust monocular relative depth estimation.
arXiv preprint arXiv:2307.14460, 2023. 2, 3, 4, 7

[5] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Alt-
man, Simran Arora, Sydney von Arx, Michael S Bernstein,
Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al.
On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258, 2021. 2

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Proceedings of the Neural In-
formation Processing Systems (NeurIPS), 2020. 2, 3

[7] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl: Re-
duce memory, not parameters for efficient on-device learning.
2020. 2, 4

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In Proceedings of the International
Conference on Machine Learning (ICML), 2020. 7

[9] Xinjing Cheng, Peng Wang, and Ruigang Yang. Depth esti-
mation via affinity learned with convolutional spatial propa-
gation network. In Proceedings of the European Conference
on Computer Vision (ECCV), 2018. 1, 2, 3, 5

[10] Andrea Conti, Matteo Poggi, and Stefano Mattoccia. Sparsity
agnostic depth completion. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages
5871–5880, 2023. 2

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 2

[12] Eric Dexheimer and Andrew J Davison. Learning a depth
covariance function. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
2023. 2

[13] Tom van Dijk and Guido de Croon. How do neural networks
see depth in single images? In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2019.
3

[14] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu,
Baobao Chang, Xu Sun, Jingjing Xu, and Zhifang Sui. A sur-
vey for in-context learning. arXiv preprint arXiv:2301.00234,
2022. 2, 3

[15] David Eigen, Christian Puhrsch, and Rob Fergus. Depth
map prediction from a single image using a multi-scale deep
network. 2014. 5

[16] Rinon Gal, Or Patashnik, Haggai Maron, Amit H. Bermano,
Gal Chechik, and Daniel Cohen-Or. Stylegan-nada: Clip-
guided domain adaptation of image generators. ACM Trans-
actions on Graphics (TOG), 41(4), 2022. 3

[17] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research (IJRR), 32(11):1231–
1237, 2013. 1, 4

[18] Jindong Gu, Zhen Han, Shuo Chen, Ahmad Beirami, Bailan
He, Gengyuan Zhang, Ruotong Liao, Yao Qin, Volker Tresp,
and Philip Torr. A systematic survey of prompt engineer-
ing on vision-language foundation models. arXiv preprint
arXiv:2307.12980, 2023. 2

[19] Vitor Guizilini, Rares Ambrus, Wolfram Burgard, and Adrien
Gaidon. Sparse auxiliary networks for unified monocu-
lar depth prediction and completion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021. 2, 5, 6

[20] Xiaoyang Guo, Hongsheng Li, Shuai Yi, Jimmy Ren, and
Xiaogang Wang. Learning monocular depth by distilling
cross-domain stereo networks. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), 2018. 1

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 4

[22] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In Proceedings of the International Confer-
ence on Machine Learning (ICML), 2019. 4

[23] Shahram Izadi, David Kim, Otmar Hilliges, David
Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie
Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,
and Andrew Fitzgibbon. Kinectfusion: Real-time 3d recon-
struction and interaction using a moving depth camera. In
Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology, 2011. 1

[24] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh,
Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom
Duerig. Scaling up visual and vision-language representation
learning with noisy text supervision. In Proceedings of the
International Conference on Machine Learning (ICML), 2021.
2

[25] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Visual



prompt tuning. In Proceedings of the European Conference
on Computer Vision (ECCV), 2022. 4

[26] Jaewon Kam, Jungeon Kim, Soongjin Kim, Jaesik Park, and
Seungyong Lee. Costdcnet: Cost volume based depth comple-
tion for a single rgb-d image. In Proceedings of the European
Conference on Computer Vision (ECCV), 2022. 5

[27] Leonid Keselman, John Iselin Woodfill, Anders Grunnet-
Jepsen, and Achintya Bhowmik. Intel realsense stereoscopic
depth cameras. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshop
(CVPRW), 2017. 1, 8

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

[29] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. arXiv preprint arXiv:2304.02643, 2023. 2

[30] Robert Lange, Peter Seitz, Alice Biber, and Stefan C Laux-
termann. Demodulation pixels in ccd and cmos technologies
for time-of-flight ranging. In Sensors and camera systems for
scientific, industrial, and digital photography applications,
pages 177–188. SPIE, 2000. 1

[31] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-
2: Bootstrapping language-image pre-training with frozen
image encoders and large language models. arXiv preprint
arXiv:2301.12597, 2023. 2

[32] Wei Li, CW Pan, Rong Zhang, JP Ren, YX Ma, Jin Fang, FL
Yan, QC Geng, XY Huang, HJ Gong, et al. Aads: Augmented
autonomous driving simulation using data-driven algorithms.
Science robotics, 4(28):eaaw0863, 2019. 2

[33] Yuenan Li, Jin Wu, and Zetao Shi. Lightweight neural net-
work for enhancing imaging performance of under-display
camera. IEEE Transactions on Circuits and Systems for Video
Technology (CSVT), 2023. 3

[34] Zhenyu Li, Zehui Chen, Xianming Liu, and Junjun Jiang.
Depthformer: Exploiting long-range correlation and local in-
formation for accurate monocular depth estimation. Machine
Intelligence Research, pages 1–18, 2023. 2, 4, 5

[35] Yuankai Lin, Tao Cheng, Qi Zhong, Wending Zhou, and Hua
Yang. Dynamic spatial propagation network for depth com-
pletion. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 2022. 1, 2, 3, 5

[36] Sifei Liu, Shalini De Mello, Jinwei Gu, Guangyu Zhong,
Ming-Hsuan Yang, and Jan Kautz. Learning affinity via
spatial propagation networks. In Proceedings of the Neural
Information Processing Systems (NeurIPS), 2017. 1, 2, 3

[37] Weihuang Liu, Xi Shen, Chi-Man Pun, and Xiaodong Cun.
Explicit visual prompting for low-level structure segmenta-
tions. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2023. 2

[38] Yihao Liu, Jingwen He, Jinjin Gu, Xiangtao Kong, Yu Qiao,
and Chao Dong. Degae: A new pretraining paradigm for low-
level vision. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2023. 3

[39] Kaiyue Lu, Nick Barnes, Saeed Anwar, and Liang Zheng.
From depth what can you see? depth completion via auxiliary

image reconstruction. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
2020. 4

[40] Gregor Luetzenburg, Aart Kroon, and Anders A Bjørk. Eval-
uation of the apple iphone 12 pro lidar for an application in
geosciences. Scientific reports, 11(1):22221, 2021. 1, 8

[41] Fangchang Ma, Guilherme Venturelli Cavalheiro, and Sertac
Karaman. Self-supervised sparse-to-dense: Self-supervised
depth completion from lidar and monocular camera. arXiv
preprint arXiv:1807.00275, 2018. 5

[42] Donald W Marquardt. An algorithm for least-squares esti-
mation of nonlinear parameters. Journal of the society for
Industrial and Applied Mathematics, 11(2):431–441, 1963. 4

[43] Hyeonseob Nam, HyunJae Lee, Jongchan Park, Wonjun Yoon,
and Donggeun Yoo. Reducing domain gap by reducing style
bias. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2021. 3

[44] Ayushya Pare, Shufang Zhang, and Zhichun Lei. Multipath
interference suppression in time-of-flight sensors by exploit-
ing the amplitude envelope of the transmission signal. IEEE
Access, 8:167527–167536, 2020. 2

[45] Jinsun Park, Kyungdon Joo, Zhe Hu, Chi-Kuei Liu, and In So
Kweon. Non-local spatial propagation network for depth
completion. In Proceedings of the European Conference on
Computer Vision (ECCV), 2020. 1, 2, 3, 5, 7, 8

[46] Jin-Hwi Park, Jaesung Choe, Inhwan Bae, and Hae-Gon Jeon.
Learning affinity with hyperbolic representation for spatial
propagation. In Proceedings of the International Conference
on Machine Learning (ICML), 2023. 1, 2, 3

[47] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. In Proceedings of the Neural In-
formation Processing Systems Workshop (NeurIPS-W), 2017.
5

[48] Jiaxiong Qiu, Zhaopeng Cui, Yinda Zhang, Xingdi Zhang,
Shuaicheng Liu, Bing Zeng, and Marc Pollefeys. Deepli-
dar: Deep surface normal guided depth prediction for outdoor
scene from sparse lidar data and single color image. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019. 4

[49] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. Improving language understanding by gener-
ative pre-training. In preprint. OpenAI, 2018. 2

[50] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsuper-
vised multitask learners. OpenAI blog, 1(8):9, 2019. 2

[51] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision.
In Proceedings of the International Conference on Machine
Learning (ICML), 2021. 2

[52] Thomas Richter, Jürgen Seiler, Wolfgang Schnurrer, and
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