Advancement of Urea Elimination Using Pre-Halogenation Processes in UV₂₅₄/Bromine and UV₂₅₄/Chlorine Systems

Yujin Choe¹, Sin-Yi Liou¹, Yunho Lee^{1*} (yhlee42@gist.ac.kr)

¹School of Environment and Energy Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea

Introduction

Urea Issue in Ultrapure Water

- Ultrapure water, characterized by its exceptionally high purity and extremely low conductivity, is essential for high-tech industries such as semiconductor and display manufacturing.
- ❖ The removal of urea in ultrapure water treatment is challenging due to its neutrality, hydrophilicity and small molecular size.

- Chlorine and bromine are widely used as oxidizing agents in water treatment, reacting with urea to form halogenated urea.
- UV-based technologies remove contaminants through direct photodegradation or indirect oxidation, facilitated by reactive species or radicals generated in the presence of oxidants.
- Urea itself has weak UV absorption, but halogenation increases its UV absorptivity by forming more UV-reactive N-Br and N-Cl bonds. Under UV irradiation, these halogenated compounds ultimately degrade into NO₃⁻, NH₄⁺, and CO₂.

the goal of optimizing process performance. To investigate the UV₂₅₄/bromine (UV/Br) process, which remains under

To evaluate the efficiency of UV/oxidant processes for urea elimination by

examining the effects of varying oxidant dosages and pH conditions, with

- explored, and compare its performance with the conventional UV₂₅₄/chlorine (UV/Cl) process.
- To assess the feasibility of pre-bromination and pre-chlorination for the formation of halogenated urea species prior to UV irradiation, aiming to enhance removal efficiency compared to simultaneous UV/Br and UV/Cl processes.

Methods

UV/Oxidant Processes: Sequential & Simultaneous Process

- ❖ Simultaneous Process: Experiment was conducted in 5 mM buffer with $[urea]_0 = 20 \mu M$ and $[bromine]_0$ or [chlorine]₀ = 20 - 200 μ M, along with simultaneous UV irradiation.
- ❖ Sequential Process: Experiment was conducted in 5 mM buffer with [urea]₀ = 20 μ M and [bromine]₀ or [chlorine]₀ = $10 - 40 \mu M$, along with sequential UV irradiation.
- Samples were taken at designed time intervals and quenched using sodium thiosulfate.

Determination of Maximum Halogenated Product Formation

- Reaction dynamics between bromine/chlorine and urea were analyzed through time-course UV absorption monitoring.
- Corrections were applied to the absorbances of halogenated urea to account for contributions from the buffer, bromine/chlorine and urea (negligible), following the equation.

Analysis Methods

- **❖** Total Urea Concentration (Urea + Halogenated Ureas) Diaceytl monoxime (DAMO) method
- Bromine & Chlorine Concentration

UV-VIS Spectrophotometer

- ***** Bromourea(s) Monitoring
- Spectroscopic method at 260 nm
- Chlorourea(s) Monitoring Spectroscopic method at 245 nm

Results & Discussion

Effect of pH on Total Urea Elimination in Simultaneous UV/Oxidant Process

- ❖ Bromine alone exhibited higher efficacy overall, while chlorine alone and UV alone were not effective across all tested pHs.
- ❖ Acidic condition (pH 3): Chlorine alone achieved 7% elimination and UV/Cl achieved 64% elimination.
 - → The formation of chloroureas occurs more readily under acidic condition, enhancing total urea elimination at pH 3 with UV irradiation.
- ❖ Neutral condition (pH 7): Bromine alone achieved 55% elimination and UV/Br achieved 98% elimination, and with UV/Br yielded higher removal than in acidic conditions.
- **▶** Application of UV further enhanced the elimination.

Figure 1. Effects of pH on total urea elimination during UV/Br, UV/Cl, UV, Br, Cl processes after 30 min. [urea]₀ = 20 μ M; [bromine]₀ and [chlorine]₀ = 100 μ M at pH 3 and 7.

Effect of pH on Total Urea Elimination in Sequential & Simultaneous UV/Oxidant Process

Figure 3. Effects of pH on total urea elimination during pre-bromination + UV (pre-Br), pre-chlorination + UV (pre-Cl), UV/Br, UV/Cl, UV, Br, Cl processes after 100 min. [urea]₀ = 20 μ M; [bromine]₀ and [chlorine]₀ = 40 μ M at (a) pH 3 and (b) pH 7. Pre-oxidation time was 60 min for pre-Br and pre-Cl processes, followed by 40 min UV

- ❖ Acidic condition (pH 3): The pre-chlorination + UV (pre-Cl) process achieved the highest elimination efficiency (92%), followed by pre-bromination + UV (pre-Br) (60%). In the case of pre-Br, the elimination efficiency increased by 40% after UV treatment, whereas for the pre-Cl process, the efficiency exhibited a significant increase of 89% following UV exposure.
- ❖ Neutral condition (pH 7): Bromine-containing processes show higher elimination efficiency than chlorine-containing processes. The pre-bromination + UV (pre-Br) process achieved the highest elimination efficiency (79%), followed by UV/Br (56%). In the case of pre-Br, the elimination efficiency increased by 62% after UV treatment. The pre-chlorination + UV (pre-Cl) process exhibited minimal elimination. As indicated in Figure 2, it is likely due to the minimal formation of chlorinated urea species at pH 7.
- ► The pre-halogenation + UV processes exhibited higher elimination efficiency compared to the UV/oxidant and oxidant-only processes.

Absorbance Monitoring of Halogenated Product Formation (pH 3 & 7)

Figure 2. Absorbance of brominated and chlorinated urea transformation products monitored at 260 nm and 245 nm with varying oxidant concentration. [urea]₀ = 20 μ M; [bromine]_o and [chlorine]_o = 4, 10, 20, 40 μ M at pH 3 and 7. (a) bromine at pH 3, (b) bromine at pH 7, (c) chlorine at pH 3, (d) chlorine at pH 7.

- **Arronination:** When $[bromine]_0 > [urea]_0$, the halogenated products were unstable and noticeable decrease in absorbance was observed after 30 min. Conversely, when $[bromine]_0 \leq [urea]_0$, halogenated product formation reached its peak and remained stable. This trend was consistently observed under both pH 3 & pH 7 conditions.
- **Chlorination:** At pH 3, when [chlorine] $_0 \ge [urea]_0$, halogenated products were gradually formed and remained stable for up to 180 min. In contrast, when $[chlorine]_0 < [urea]_0$, halogenated product formation was minimal. At pH 7, halogenated product formation was minimal across all oxidant concentrations. This explains the higher treatment efficiency of UV/Cl at pH 3 than pH 7 (Figure 1).
- **▶** pH and oxidant concentration significantly influenced the formation of halogenated products.

Conclusions

- The pre-halogenation + UV process demonstrated superior urea removal efficiency compared to conventional UV/bromine, UV/chlorine, and oxidant-only treatments.
- pH significantly influenced both urea removal efficiency and halogenated product formation. Bromine-containing processes exhibited higher removal efficiency and increased product formation under neutral conditions, whereas chlorine-containing processes were more effective and promoted product formation under acidic conditions. This trend was consistently observed in pre-halogenation experiments, highlighting the pH-dependent characteristics of each oxidant.
- * These findings indicate that pre-bromination + UV presents a promising alternative to chlorine for advanced urea removal in water treatment. While pre-chlorination with UV enhanced efficiency under acidic conditions, extreme pH may not be suitable for ultrapure water production. In contrast, pre-bromination with UV at neutral pH demonstrated superior and more practical performance.

Acknowledgement