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Diabetic neuropathy (DN) is a prevalent and debilitating complication of diabetes, significantly 
impairing quality of life through chronic pain, sensory deficits, and motor dysfunction. Despite its 
widespread impact, current rodent behavioral assessments using 2D tracking methods primarily 
quantify basic locomotion, such as distance and speed, but lack resolution to detect subtle, pattern-
based motor impairments characteristic of DN. This study employed MoSeq-based 3D behavioral 
profiling combined with unsupervised machine learning to identify subtle yet significant alterations 
in nicotinamide (NA)- and streptozotocin (STZ)-induced DN mouse models. Our analysis identified 
22 distinct behavioral syllables, with DN mice exhibiting increased stress-associated behaviors such 
as head weaving, wall jumping, and nasal hesitancy, while displaying decreased locomotor activities 
including walking and rearing. These alterations were accompanied by heightened mechanical 
sensitivity indicative of neuropathic pain and a more predictable, less exploratory behavioral transition 
pattern, suggesting a restricted behavioral repertoire rather than improved motor coordination. 
Additionally, MoSeq-based profiling enabled detailed analysis of movement organization and 
temporal transitions, highlighting stereotyped behavioral sequences and notably decreased 
exploratory behaviors in DN mice. These behavioral patterns indicate that DN-associated pain is more 
strongly related to impairments in behavioral adaptability and higher-order motor planning than to 
simple reductions in movement, suggesting underlying dysfunctions in sensorimotor or cognitive 
control circuits. These findings indicate that MoSeq can be used as a valuable tool for high-resolution 
behavioral quantification in diabetic neuropathic animal pain model, enabling refined evaluation of 
neuropathic phenotypes and therapeutic efficacy in preclinical studies.

Diabetes is a metabolic disorder characterized by high blood glucose levels. According to the International 
Diabetes Federation (IDF), the number of adults with diabetes is projected to increase from 463 million in 2021 
to 783 million by 2045, a 46% rise1. This makes it the largest global epidemic of the twenty-first century2. While 
diabetes can potentially affect multiple organs including the eyes, heart, kidneys, and nerves, approximately 60% 
of patients with diabetes develop diabetic peripheral neuropathy3. In particular, diabetic neuropathy (DN) is 
characterized by severe and intractable pain, sensory loss, and motor function impairment with considerable 
morbidity, and drastically diminished quality of life4,5. The pathophysiology of DN remains poorly understood6, 
and investigating how behavioral changes relate to DN-associated symptoms and disease markers may offer 
important insights for the development of effective therapeutic strategies. In this context, DN animal models 
provide a critical platform for the quantitative monitoring of disease-related changes in behavior and physiology, 

1Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 
South Korea. 2Department of Biomedical Science and Engineering, University of NE–Lincoln, Lincoln, NE, 
USA. 3Neurogrin Inc., Seoul, South Korea. 4Department of Physiology, College of Medicine, Chungbuk National 
University, Cheongju, Republic of Korea. 5Department of Radiology, Harvard Medical School, Boston, MA, USA. 
6Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA. 
7AI Graduate School, Gwangju Institute of Science and Technology, Gwangju, South Korea. 8Akm Ashiquzzaman, 
Eunbin Lee and Brahnu Fentaw Znaub contributed equally to this work. email: hyuksang@gist.ac.kr;  
ogong50@gist.ac.kr

OPEN

Scientific Reports |        (2025) 15:15114 1| https://doi.org/10.1038/s41598-025-98184-9

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-98184-9&domain=pdf&date_stamp=2025-4-29


both of which are essential for evaluating therapeutic outcomes and characterizing the trajectory of neuropathic 
progression.

To evaluate these changes, various quantitative methods such as nerve conduction analysis, histopathological 
analysis, biochemical analysis, and behavioral tests have been employed in the assessment of DN7–11. Among 
these, behavioral tests are the most widely used method for evaluating the impact of neuropathy on sensory, 
cognitive, motor, and coordination functions in rodents. This is particularly relevant in light of clinical evidence 
showing that individuals with DN commonly exhibit sensory deficits and motor dysfunctions such as changes 
in gait and balance12,13, which reflect underlying functional impairments. Although rodent models may not fully 
replicate these clinical features, behavioral assessments remain essential for capturing subtle alterations in motor 
behavior and sensory function.

Moreover, several studies have demonstrated a reduced range of motion at both the ankle14,15 and knee 
joints16. Accordingly, the evaluation of locomotor and exploratory activities in rodent models, particularly 
using the open-field test (OFT), has been frequently employed to assess motor functions and measure treatment 
efficacy17–24. For example, the effects of various treatments such as melatonin25, heat shock protein 90 inhibition20, 
Nitecapone22, Angipars24, and octreotide as a neuroprotective agent23 on locomotor and exploratory behaviors 
have been studied in rat DN models. These studies quantified parameters like rearing frequency, crossed 
segments, grooming, speed, time spent in motion, and total distance traveled.

However, these methods have significant limitations. Traditional two-dimensional (2D) tracking methods 
cannot capture the subtle nuances of rodent behavior, especially the intricate movements and postural changes 
that occur in three dimensions. As a result, complex sequences of behavior, known as higher-order behavioral 
motifs26–28, are often missed by 2D analysis. This limits our understanding of the full range of behavioral changes 
associated with DN. Moreover, early-stage or mild behavioral changes may go undetected due to the lack of 
sensitivity of 2D methods, hindering early diagnosis and the evaluation of treatment effectiveness.

Given these limitations, there is a clear need for more advanced analytical techniques that can capture the 
full complexity of rodent behavior in three dimensions. Recent advances in machine vision and unsupervised 
learning have enabled more sophisticated approaches to capturing the complexity of rodent behavior. Motion 
Sequencing (MoSeq) leveraging these advancements enables the analysis of behavioral transition matrices, 
providing insights into movement flow and sequence predictability beyond isolated behavioral feature extraction. 
Additionally, Auto-Regressive Hidden Markov Models (AR-HMMs) facilitate the detection of latent motor states 
using behavioral data extracted by MoSeq, uncovering dynamic shifts in movement that conventional locomotor 
assessments often miss.

Finally, we hypothesize that the MoSeq framework can reveal behavioral signatures of DN that may 
be overlooked by conventional 2D tracking methods. These findings could provide valuable insights into 
how neuropathic pain affects motor control and adaptive behavior, offering a novel approach for evaluating 
therapeutic efficacy and improving treatment strategies in preclinical models.

Materials and methods
Animals
The handling of animals was conducted in accordance with the guidelines of the Institutional Animal Care 
and Use Committee board (IACUC) of the Gwangju Institute of Science and Technology (GIST), South Korea. 
Experimental protocols were approved by the Laboratory Animal Resource Center (LARC) at GIST under 
protocol #GIST-2024-028. The study utilized 12 male C57BL/6 mice, aged between 5 and 6 weeks and weighing 
25–30  g on average. The mice were obtained from Damul Science (Daejeon, Republic of Korea). After the 
completion of the experiments, the mice were sacrificed using a humane euthanasia method in compliance 
with IACUC guidelines. Carbon dioxide (CO₂) euthanasia was performed in a dedicated chamber the gradual 
displacement of air, followed by cervical dislocation to ensure death. This procedure was conducted to minimize 
suffering, adhering to the AVMA Guidelines for the Euthanasia of Animals (2020). The study is reported in 
accordance with the ARRIVE guidelines (https://arriveguidelines.org), ensuring transparency and rigor in the 
design, conduct, and reporting of the animal experiments.

Nicotinamide and streptozotocin-induced diabetes
Type-2 diabetes was induced following established protocols29,30, using mice (n = 4 in the control group 
and n = 8 in the experimental group). Diabetes induction in the experimental group commenced with the 
intraperitoneal administration of nicotinamide (NA) solution at a dosage of 240 mg/kg. After a 15-min interval, 
the experimental group received an intraperitoneal injection of streptozotocin (STZ) solution at a dosage of 
100 mg/kg. Simultaneously, mice in the control group were administered an equivalent volume of citrate buffer 
(pH 4.5) via intraperitoneal injection. Confirmation of diabetes induction involved assessing blood glucose level 
two weeks post-NA + STZ injection using commercial kits (One Touch Basic blood glucose monitoring system), 
while body weight was measured using a digital analytical balance. The onset of diabetic painful neuropathy 
was evaluated two weeks after NA and STZ injections by testing the mice’s sensitivity to mechanical stimuli (see 
Fig. 1A).

Assessment of mechanical sensitivity
Mechanical sensitivity was assessed using von Frey filaments, adhering to the established protocol31. Mice were 
acclimated for one hour in cages with a mesh or barred floor before testing. The von Frey filaments, starting 
with the 0.16-g filament, were applied to the plantar surface of the hind paw until a paw withdrawal response 
was observed, and the corresponding force value was recorded. Baseline measurements were taken prior to 
diabetes induction, providing a reference for subsequent evaluations. Significantly reduced hind paw mechanical 
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withdrawal thresholds were considered indicative of mechanical allodynia, offering insights into neuropathic 
pain sensitivity in the experimental mouse model. 

Open field test recording
Mice were maintained under standard animal facility conditions, with a temperature of 25 ± 3 °C and a relative 
humidity of 50 ± 15%. Upon introduction into the colony at 5 weeks of age, the mice were group-housed in a 
reverse 12-h light/12-h dark cycle. On the day of testing, mice were transported to the laboratory in a light-tight 
container. They underwent a 10-min habituation period in cages with fresh bedding, with ad libitum access to 
food and water, within the experimental room. Following habituation, the mice were placed in the center of a 
circular 16.5″-diameter open-field arena (OFA) enclosure with a height of 14.2″. A 5-min habituation period 
allowed the mice to acclimate to the field before initiating a 30-min experimental period, during which video 
recording took place (see Fig. 1B).

Open Field Test (OFT) Recording of each mouse (n = 4 control, n = 8 DN) underwent three independent OFT 
sessions to enhance behavioral profiling and reduce trial-to-trial variability. Recordings were conducted under 
identical conditions across sessions, ensuring robust assessment of locomotor and exploratory behaviors. All 
experiments were conducted under infrared light conditions. After each experiment, the enclosure was cleaned 

Fig. 1. Experimental workflow and setup. (A) Baseline assessments, including the von-Frey filament test, 
weight measurement, and blood glucose level evaluation, were conducted. In week one, animals underwent 
an intraperitoneal injection (i.p.) of nicotinamide (240 mg/kg), streptozotocin (STZ) (100 mg/kg) and citrate 
buffer. Week 2 involved the measurement of blood glucose levels and weight. Diabetic neuropathy development 
was assessed at the end of week two using the von-Frey filament test. Additionally, the Circular Open Field Test 
was conducted in week three. The figure was created with BioRender.com. The experimental setup is depicted, 
showcasing a circular open field test (photo), a drawing of the open field with a depth camera, and real-time 
imagery with a mouse. (B) Mouse 3D pose dynamics were recorded using a depth camera positioned above 
the arena. Subsequent steps included arena detection for data extraction and modeling, involving principal 
component analysis and fitting an Auto Regressive Hidden Markov Model (AR-HMM). The data were then 
fed into an analysis and visualization tool, encompassing interactive syllable labeling, computation of syllable 
statistics, and visualization of syllable transition frequencies.
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with 70% ethanol before reuse. The data acquisition process mirrored previous descriptions32, employing three 
parallel setups for increased throughput.

Mice were tracked in 3D using a Kinect for Windows v1 (Microsoft), projecting structured infrared light 
onto the imaging field. A boom tripod (Manfrotto) maintained a stable top-down view of the mouse within the 
recording arena. Figure 1A details the setup process. The Kinect v1, with a minimum working distance of 0.5 m 
(in near mode), was positioned optimally between 0.6 and 0.75 m depending on ambient light conditions and 
assay material. Data from the Kinect were transmitted to a custom-built acquisition computer (48 GB RAM, 
Intel i7 CPU, 512 GB SSD) via USB.

A custom MATLAB script interfaced with the Kinect through the official Microsoft.NET API, capturing 
depth frames at a rate of 30 frames per second and saving them in raw binary format (16-bit unsigned integers) 
to disk. Experimental metadata, including mouse group and session trial, were captured and stored in the same 
folder as the raw binary depth data.

Following the experiment, a specified region of interest delineated the mouse’s feasible exploration area, 
which was saved alongside the depth data to simplify subsequent data extraction by eliminating pixels outside 
the arena. Figure 1B details the data processing steps for Motion Sequencing (MoSeq).

Data preprocessing and extraction
The extraction software used in this study was implemented in Python, leveraging key libraries such as 
MPI4Py, H5Py, joblib, pandas, OpenCV, Scikit-Learn, Scikit-Image, MoviePy, and SciPy. To extract and align 
3D representations of the mouse from raw depth video data, each frame was first read as a rectilinear block 
of unsigned 16-bit integers. These values were converted into millimeter-scale depth measurements through 
a right-bit shift operation (by three places). Background subtraction was performed by computing a reference 
background image, obtained as the median depth of the first 1,000 frames. Since depth images contained 
structured-illumination artifacts, missing pixel values were imputed using spatial and temporal nearest-neighbor 
interpolation. To standardize resolution, raw depth images were resampled to 2 mm2 per pixel, ensuring 
consistency with the camera’s field of view.

To enhance segmentation accuracy, images were re-centered by subtracting the background, with negative 
values (below baseline) clipped to zero. To eliminate noise, pixels exceeding 200 mm in height were also removed. 
Further refinement was achieved through morphological processing, where small artifacts were filtered out using 
Scikit-Image’s remove_small_objects and binary_opening functions. The mouse body was identified in each frame 
as the largest connected component of nonzero pixels, extracted via OpenCV’s findContours function. From the 
detected contour, key morphological features were computed, including body area, center-of-mass, orientation, 
and best-fit ellipse (via OpenCV’s fitEllipse function)32. To define the floor of the arena, depth thresholds were 
set between 650 and 750 mm, followed by three dilation iterations to refine the floor mask. An arena mask was 
then generated by selecting the most appropriate mask based on size, shape, and centrality relative to the arena.

To further eliminate outliers, mouse height was clipped to 10–100 mm, and ten test frames were used for 
extraction consistency. Following the extraction process, visual inspection of all extracted mouse videos was 
conducted to ensure accuracy. To maintain a structured dataset, all output files were consolidated into a single 
directory for further analysis. Since this study primarily utilized the published MoSeq extraction pipeline for data 
processing, all preprocessing steps followed the standard methodology outlined in33, with minor adaptations to 
align with our experimental setup.

Data modeling
Data modeling strictly followed the code and pipeline provided by the MoSeq34. After completing the extraction 
of all experiments, principal component analysis (PCA) was applied to the extracted data to maximize variance 
explanation, utilizing 10 principal components (PCs). The extracted mouse images were structured as a 
3,600-dimensional time series (60 × 60 pixels) sampled at 30 frames per second. To reduce dimensionality, all 
images were loaded into memory and processed using the Randomized PCA model from Scikit-Learn, yielding 
a ten-dimensional linear embedding of the time series. To enhance signal clarity, the PC time series underwent 
whitening across all mice, removing covariance among PC dimensions.

This step distilled pose information from the depth video into a low-dimensional representation while 
suppressing noise using a Gaussian spatial filter. The whitened PCs were then used to fit an Autoregressive 
hierarchical Dirichlet process Hidden Markov model (AR-HMM), following the model specification outlined 
in34. In MoSeq, an AR-HMM is fitted to the depth principal components (PC) extracted from depth video 
data. These features are standardized and modeled using an HDP-AR-HMM (Hierarchical Dirichlet Process 
Auto-Regressive HMM), which automatically infers the number of hidden states (behavioral syllables) without 
pre-specification. Each syllable represents a distinct behavioral unit with autoregressive dynamics that model 
temporal dependencies in the feature evolution, while state transitions are governed by a probabilistic transition 
matrix.

The model fitting process involves Gibbs sampling or variational inference, iteratively optimizing the 
posterior distributions over latent states and transition probabilities. The kappa hyperparameter controls the 
prior over state transitions, affecting behavioral sequence stability. MoSeq’s implementation leverages standard 
Bayesian nonparametric methods to efficiently segment spontaneous behavior into discrete, recurring syllables. 
The AR-HMM fitting process involved tuning the kappa hyperparameter to regulate syllable duration, with 
higher kappa values producing longer syllables. The optimal kappa was determined using changepoint analysis, 
following established methodologies34.

Although this methodology is provided by MoSeq, it is crucial to edit and select the proper value based on 
experimental conditions and targeted values for each individual study. Given the linear relationship between 
kappa and syllable duration in log space, an automated scan mode was employed to evaluate a range of kappa 
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values. To select the best model, an iterative approach was used, running 100–200 iterations to refine kappa and 
then training 10 models with the same parameters for approximately 1000 iterations each. The final selection 
was based on the model that best aligned with identified changepoints while capturing additional behavioral 
nuances. This process resulted in 22 syllables, collectively explaining 99% of the variance in the dataset.

This process refines the existing u to optimize model parameters and syllable segmentation for our dataset, 
ensuring the best alignment with behavioral features and changepoints. A more detailed exploratory analysis of 
PC and changepoint durations is provided in Supplementary Figure 1.

Creating behavioral summaries: motion sequence and scalar analysis
Behavioral recordings of mice in the Open Field Arena (OFA) were preprocessed and summarized into fixed-
length descriptors capturing key behavioral features. These included position (distance from the arena center), 
speed (first derivative of 2D position), length (approximate spine length), and average height (mean height of the 
visible mouse). These features were extracted as scalar values and formed a four-dimensional time-series input for 
the AR-HMM model. To align with MoSeq’s dimensionality, we employed 22 behavioral states for segmentation. 
Each syllable was annotated using interactive syllable labeling, incorporating manual observations of crowd-
movie visualizations alongside position, speed, length, and height distributions in both control and diabetic 
neuropathy groups. Furthermore, interactive syllable statistics graphing facilitated visualization of syllable-
specific differences, emphasizing distinctions in movement dynamics and postural variations between groups. 
Additional insights were drawn from hierarchical clustering, PCA, and syllable transition matrices, revealing 
altered syllable usage patterns in diabetic neuropathy mice. Visualizations of representative mice were extracted 
using the interactive arena detection tool and are presented in Supplementary Figure 2.

Classifying behavioral summaries using linear methods
Behavioral summaries include both scalars (position, length, speed, height) and MoSeq-derived features. The 
logistic regression classifier was trained using the ‘train_linear_classifier’ function, which involved segmenting 
the data into training and testing sets. The classifier was fitted to the training data, generating predictions and 
decision scores, and computing a confusion matrix. Performance metrics, including precision, recall, F1 score, 
and confusion matrix, were calculated iteratively for each feature type ("speed," "length," "height," "position," and 
“MoSeq”). This process was repeated in a loop with 500-fold cross-validation, contributing to the determination 
of hyperparameters. Precision-recall curves and F1 scores for both features were then visualized. The final 
analysis involved plotting normalized confusion matrices as float values using Seaborn’s heatmap function, 
providing insights into the classifier’s predictive accuracy for control and diabetic groups. The accompanying 
plots (Supplementary Figure 3) offered a nuanced perspective on precision, recall, and F1 score performance, 
considering the intricacies of the hyperparameter tuning process.

Precision: Precision is the ratio of correctly predicted positive observations to the total predicted positives. It 
assesses the accuracy of the positive predictions.

Recall (sensitivity or true positive rate): Recall is the ratio of correctly predicted positive observations to the 
total number of actual positives. It measures the classifier’s ability to capture all relevant instances.

 
Recall =

(
T rue positive

T rue positive + F alse Negative

)

F1 score: The F1 score is the harmonic mean of precision and recall. It provides a balanced assessment of a 
classifier’s performance, particularly when there is an imbalance between positive and negative classes.

 
F 1 score = 2 ∗

(
reall ∗ precision

recall + precision

)

Precision-Recall (PR) Curve: The Precision-Recall (PR) curve is a graphical representation of the trade-off 
between precision and recall for different thresholds. It helps select an appropriate threshold for a classifier 
based on the specific requirements of the problem. These metrics are calculated based on the confusion matrix, 
where true positives (TP) are the instances correctly predicted as positive, false positives (FP) are the instances 
incorrectly predicted as positive, and false negatives (FN) are the instances incorrectly predicted as negative. 
In summary, precision, recall, and the F1 score are numerical metrics that provide different perspectives on 
classification performance, while the PR curve is a visual representation of the precision-recall trade-off.

Quantification of syllable transition patterns and symmetry using behavioral models
Transition matrices for different syllable groups were visualized using a behavioral model. The moseq2_viz 
library, following the established MoSeq protocol34, was employed to parse model results, relabel syllables by 
usage, and compute group-mean transition graphs. The matrices were normalized using a specified method 
(options: bigram, columns, rows) and displayed for each group. Color intensity represented transition 
probabilities, providing insights into syllable transition patterns across groups. Additionally, the symmetry of 
the transition matrix was quantified using the Frobenius norm, which measures the overall difference between a 
matrix and its transpose. A smaller norm value indicates greater symmetry.

 

Frobenius Norm1 =
√∑

i,j

(Aij − Aji)2 For control group
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Frobenius Norm2 =
√∑

i,j

(Bij − Bji)2 For diabetic neuropathy group

Here, Aij and Bij are the incoming and outgoing syllable of the control group and diabetic neuropathy group 
transition matrices, respectively. The index i denotes the incoming syllable, while j denotes the outgoing syllable. 
The AR-HMM was fitted to a four-dimensional feature space (distance to center, speed, height, and length) using 
Bayesian model selection to determine the optimal number of states.

Quantification of syllable counts
Syllable count data were obtained from the Control and Diabetic Neuropathy (DN) groups and processed using 
Python-based tools for analysis and visualization. Data from behavior descriptions, syllable IDs, and counts 
were merged into a single dataset and standardized using the Standard Scaler to create comparable scaled count 
metrics. A hierarchical clustering heatmap, generated using Ward’s linkage and Euclidean distance, visualized 
patterns across groups, while UMAP dimensionality reduction embedded the scaled counts into a 2D space for 
exploratory clustering via K-means.

Differential analysis calculated log2 fold changes of syllable counts between groups, with thresholds set 
at ± 1 to classify syllables as "Upregulated," "Downregulated," or "Unchanged," and results were visualized in a 
volcano plot with simulated − log10 (p value). A comparative bar plot displayed standardized counts for Control 
and DN groups side-by-side for each behavior, highlighting differences in syllable usage. All analyses were 
conducted in Python 3 using NumPy, Pandas, Scikit-learn, Seaborn, and Matplotlib, with default parameters for 
all computational methods. Supplementary movie files show examples of all the syllables used in this research. 
The detailed codebase for this custom pipeline has been shared in the GitHub repository ( h t t p s :  / / g i t h  u b . c o m  / z a 
m a n  a s h i q  3 / M o S e  q - b a s e  d - 3 D - B  e h a v i o r a l - P r o fi  l i n g - A n a l y s i s).

Statistical tests
The data analysis involved the computation of mean values and standard deviation (SD) at a 95% confidence level, 
performed using GraphPad Prism 8.4.3 and Python (SciPy, Statsmodels). Statistical significance was considered 
at a 95% confidence level (p < 0.05). For Fig. 2, comparisons of body weight (BW), blood glucose levels (BGL), 
and von Frey withdrawal thresholds between control and diabetic neuropathy (DN) groups were analyzed using 
a two-way ANOVA, followed by Sidak’s post hoc multiple comparisons test to correct for multiple comparisons. 
Non-significant differences were reported as "ns," while significant differences were marked as (p < 0.05, p < 0.01, 
p < 0.001, p < 0.0001).

For Fig. 3A, an unpaired t-test was conducted to evaluate the statistical significance of scalar metrics, including 
position, length, speed, and height, between the two groups. Figure  3B presents violin plots illustrating the 
distribution of these scalar metrics in the control and DN groups. Prior to statistical comparison, data normality 
was assessed, and a t-test was applied accordingly. In Supplementary Figures 4 and 5, correlation analyses were 

Fig. 2. Progression of metabolic and sensory alterations in NA-STZ induced diabetic neuropathy mice. (A) 
Body weight (BW) was measured at baseline and at the end of week two. (B) Blood glucose levels (BGL) were 
assessed at the same time points. (C) Mechanical allodynia was evaluated using the von frey test. Statistical 
analysis was performed using two-way ANOVA, followed by Sidak’s post-hoc multiple comparisons test to 
correct for multiple comparisons. Non-significant differences are denoted as "ns," while significant differences 
are indicated as follows: “*” for p < 0.05, "**" for p < 0.01, and “****" for p < 0.0001., n = 4 (control) and n = 8 
(DN).
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Fig. 3. Comprehensive kinematic analysis and motion characteristics in diabetic neuropathy mice. (A) 
Computational metrics, including mouse position, speed, average height, and length, were analyzed alongside 
the frequency of each identified behavioral syllable (n = 4 control, n = 8 DN). (B) Violin plots illustrate the 
distribution of mouse position (px), speed (mm/s), height (mm), and length (mm). Recording of each mouse 
(n = 4 control, n = 8 DN) underwent 3 (three) independent OFT sessions to enhance behavioral profiling and 
reduce trial-to-trial variability. Statistical comparisons were conducted using a t-test following a normality test. 
Statistical significance is indicated as: ns (not significant), *p < 0.05, **p < 0.0001.
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performed to examine the relationships among behavioral syllable frequencies, kinematic parameters, and 
von Frey mechanical sensitivity. Pearson’s correlation was employed for normally distributed data, whereas 
Spearman’s correlation was applied for non-normally distributed data. Statistical significance was determined 
using two-tailed p values.

Result
Sensory and metabolic changes in a streptozotocin (STZ)—induced diabetic neuropathy (DN) 
mouse model
Two weeks following diabetes induction with nicotinamide (NA) and streptozotocin (STZ), mice exhibited 
significant metabolic and sensory changes. Specifically, there was a 16.5% decrease in body weight (BW) (Fig. 2A) 
and an approximately 81% increase in blood glucose levels (BGL) (Fig. 2B). Notably, these NA + STZ-injected 
mice also showed heightened sensitivity to mechanical stimuli, indicative of neuropathic pain associated with 
diabetic neuropathy (Fig. 2C).

Comprehensive 3D analysis reveals altered behavioral syllables and scalar parameters in DN 
mice.
In Fig. 3A, we extracted two distinct behavioral summaries from each imaged mouse: a scalar-based kinematic 
summary and a MoSeq-derived behavioral summary, leveraging 3D depth camera imaging to quantify position, 
speed, height, and length while capturing 22 subsecond stereotyped 3D behaviors, which together accounted for 
99% of the dataset’s maximum variance. To enhance behavioral profiling, each mouse (n = 4 in the control group, 
n = 8 in the DN group) was recorded across three trials, ensuring robust kinematic and behavioral representation.

Kinematic profiling revealed significant alterations in DN mice, with position (distance from the arena 
center) significantly reduced in DN mice (mean ± SD: 32.5 ± 4.2  mm) compared to controls (47.3 ± 3.8  mm, 
p = 0.002, unpaired t-test). Similarly, average speed was lower in DN mice (14.2 ± 1.6 mm/s) relative to controls 
(22.5 ± 1.9  mm/s, p = 0.0004), accompanied by a shortened spine length (DN: 65.7 ± 5.3  mm vs. control: 
78.2 ± 4.6 mm, p = 0.001), though centroid height did not differ significantly (p = 0.56).

Supplementary Figure 4 shows feature–feature correlation heatmap and the pairwise Pearson correlation 
among all normalized MoSeq features (speed bins, length bins, position bins, and specific syllables). Warmer 
colors (red) represent positive correlations, while cooler colors (blue) indicate negative correlations. Each square 
corresponds to the correlation coefficient between a pair of features. Examination of syllable transition matrices 
(Supplementary Figure 5) revealed that exploratory movements such as head weaving had increased self-
reinforcement in DN mice, whereas locomotor-associated transitions, including walking and rightward head 
darting, exhibited reduced connectivity, indicating disruptions in motor flexibility and exploratory drive.

Supplementary Figure 5A shows that von Frey withdrawal sensitivity has a significant positive correlation 
with position (r = 0.86, p = 0.005), while length, speed, and height show no significant associations (p > 0.05 for 
all).

Furthermore, high- and low-frequency behavioral syllables did not exhibit a definitive correlation with 
mechanical sensitivity except for head turning (r = 0.70, p = 0.0496) (Supplementary Figures 5B, 5C), suggesting 
that syllable alterations may be at least partially independent of nociceptive thresholds. However, there was no 
significant difference in average height between healthy and DN mice.

For a detailed description of behavioral syllables, refer to Table 1, which provides a brief explanation of each 
syllable name. This table also later helped to verify similarity among syllables through clustering without labels 
and to determine whether visually similar syllables were clustered together.

While scalar kinematics and MoSeq-based analyses delineate robust behavioral differences in DN mice, 
these findings do not establish a direct mechanistic link between movement impairments and neuropathic pain-
related behaviors. Given this ambiguity, we next applied unsupervised clustering techniques (Fig. 4) to examine 
whether DN-associated behavioral motifs emerge independently of predefined labels, providing a data-driven 
approach to classify movement abnormalities in DN mice.

Syllable usage patterns and behavioral clustering
To further delineate behavioral alterations in diabetic neuropathy (DN) mice, we performed hierarchical 
clustering and dimensionality reduction of standardized syllable counts (Fig. 4). Hierarchical clustering, using 
Ward’s linkage and Euclidean distance, identified distinct behavioral modules that were differentially expressed 
between DN and control mice. Notably, head bobbing and head weaving formed a distinct cluster of behaviors 
that were significantly more frequent in the DN group, whereas wall jumping and rebound looking were also 
markedly elevated in this condition. These findings align with our previous results (Fig.  3, Supplementary 
Figures 4 and 5), reinforcing that DN mice exhibit altered motor strategies characterized by increased 
exploratory and stress-associated movements while exhibiting a reduction in locomotor stability and postural 
control. Unsupervised clustering techniques provided further confirmation of these behavioral distinctions. 
UMAP embedding projected syllable usage into a low-dimensional space, revealing clear separations between 
control- and DN-dominant behavioral patterns (Fig.  4B). K-means clustering further segregated behaviors 
into three distinct clusters, showing that DN-enriched behaviors such as head weaving and head rearing 
clustered separately from control-dominant behaviors like walking and head-upward scanning. These results 
suggest that DN-associated behaviors form a unique motor signature, distinct from typical locomotor and 
exploratory actions in healthy animals. To quantify these behavioral differences, we performed differential 
analysis of syllable expression, categorizing behaviors as upregulated (log2 fold change > 1), downregulated (log2 
fold change < − 1), or unchanged (Fig. 4D). Wall jumping exhibited a log2 fold change of approximately + 1.5, 
indicating significant upregulation, while head stretching showed a log2 fold change of approximately − 1.6, 
reflecting strong suppression in DN mice. The volcano plot visualized these trends, highlighting behaviors such 
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as head bobbing and head weaving at the extreme ends of the regulation spectrum, reinforcing the notion that 
DN pathology selectively modulates specific movement patterns. A bar plot comparing scaled syllable counts 
(Fig. 4C) further illustrated these differences, showing that DN-associated behaviors like rebound looking were 
nearly three times higher in DN mice compared to controls. Together, these analyses reveal that DN induces 
distinct behavioral phenotypes, characterized by a shift from structured locomotion toward increased stress-like 
behaviors. Hierarchical clustering and unsupervised classification highlight key movement features uniquely 
affected by diabetic neuropathy, providing mechanistic insights into the altered motor strategies and potential 
compensatory behaviors in DN mice. Nevertheless, while these findings illustrate distinct group-level alterations, 
they do not address whether these changes arise from individual variability or represent a broader behavioral 
state shift, necessitating further network-based analyses of syllable transitions and behavioral entropy.

Dynamic behavioral syllable transitions and symmetry analysis reveal distinct profiles in DN 
mice.
To further investigate the structure of behavioral sequencing in diabetic neuropathy (DN) mice, we analyzed 
bidirectional transition probabilities in MoSeq, which quantify the likelihood of transitioning between behavioral 
syllables in both forward and reverse directions (Fig. 5). Moreover, bidirectional transition probabilities quantify 
the likelihood of moving between two behavioral syllables in both forward and reverse directions, capturing 
the structure and symmetry of movement patterns. This method provides insight into motor adaptability and 
behavioral flexibility by analyzing sequential structure and symmetry in movement patterns. In line with our 
previous findings (Figs. 3 and 4), which revealed altered syllable usage and clustering, transition matrix (TM) 
analysis demonstrated disruptions in natural motor flow in DN mice, reinforcing the idea that neuropathic motor 
behaviors follow a distinct trajectory compared to control mice. Analysis of bidirectional transition probabilities 
revealed that DN mice exhibited higher transition probabilities between specific behavioral pairs, particularly 
between head weaving and head rearing, as well as with nasal hesitancy, suggesting a heightened frequency of 
oscillatory or stress-associated movements. Additionally, the second-highest bidirectional transition probability 
in DN mice was observed between head weaving and wall jumping, further supporting increased exploratory but 
erratic movement strategies. These findings align with hierarchical clustering and syllable usage trends (Fig. 4), 
where DN mice demonstrated elevated frequency of wall jumping and nasal hesitancy while exhibiting reduced 
locomotor stability. To assess the global structure of behavioral transitions, we computed the Frobenius norm of 
the transition matrix, which quantifies the degree of symmetry in behavioral sequencing.

Syllable ID Behavioral syllable Meaning

0 Head weaving This behavioral syllable is characterized by the mouse’s rapid movement of its head to the left and then to the right, while its body 
remains stationary

1 Wall-jumping This behavioral syllable is characterized by the mouse’s rapid movement towards the wall of the bucket followed by a jump

2 Nasal probing This behavioral syllable is characterized by the mouse’s slow and deliberate movement of its nose to the right and then back to its 
original position, while its body remains stationary

3 Head rearing This behavioral syllable is characterized by the mouse’s rapid upward movement of its head

4 Head bobbing This behavioral syllable is characterized by the mouse’s rapid upward and downward movement of its head

5 Head-upward scanning This behavioral syllable is characterized by the mouse’s upward movement of its head, with its eyes focused on the upward direction

6 Walk This behavioral syllable is characterized by the mouse’s movement in a sustained form of locomotion

7 Head turning This behavioral syllable is characterized by the mouse’s rapid movement of its head to the left and then back to its original position, 
followed by forward locomotion

8 Nasal hesitancy This behavioral syllable is characterized by the mouse’s very slow and deliberate movement of its nose to the left and then back to its 
original position, while its body remains stationary

9 Head stretching This behavioral syllable is characterized by the mouse’s slow and deliberate movement of its head upwards, followed by a return to 
its original position, while its body remains stationary

10 Wall climbing It is characterized by the mouse’s use of its front paws to climb the wall of its enclosure

11 Rightward head darting This behavioral syllable is characterized by the mouse’s very quick upward movement of its head to the right, while its body remains 
stationary

12 Wall rearing It is characterized by the mouse’s use of its front paws to rear up against the wall of its enclosure

13 Rebound looking It is characterized by the mouse’s rapid movement of its head in different directions after jumping against the wall of the bucket

14 Nose rearing It is characterized by the mouse’s upward movement of its nose, while its head and body remain stationary

15 Body crouching It is characterized by the mouse’s lowering of its body to the ground and tucking in its limbs

16 Body lowering It is characterized by the mouse’s movement from a raised position to a level position or below

17 Wall-hugging This behavioral syllable is characterized by the mouse’s movement along the wall of the circular bucket in a forward direction while 
maintaining close contact with the wall

18 Head lateral movement It is characterized by the mouse’s movement of its head to the side and then back to its previous position

19 Side stepping It is a movement in which the body is moved to the side in a single step

20 Circular wall tracking It is characterized by the mouse’s movement in a circular path around the wall of the bucket

21 Nasal twitch This behavioral syllable is characterized by the mouse’s rapid movement of its nose to the right and then back to its original position

Table 1. Mapping of motion sequence names to identified behavioral syllable names and functions.
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Notably, the Frobenius norm was significantly lower in DN mice (0.023) compared to control mice (0.042), 
indicating greater symmetry in DN behavioral patterns. This suggests that DN mice exhibit more balanced 
and dynamic transitions between behavioral states, potentially reflecting compensatory motor strategies 
in response to neuropathic deficits. Furthermore, we examined whether behavioral symmetry was linked to 
sensory impairment by correlating Frobenius norm values with von Frey mechanical sensitivity thresholds. 
Pearson’s correlation analysis and simple linear regression revealed a significant positive correlation between 
paw withdrawal threshold and Frobenius norm in DN mice, suggesting that mice with greater mechanical 
hypersensitivity exhibited more structured and predictable behavioral transitions. This finding highlights 
a potential relationship between altered motor sequencing and sensory dysfunction in DN, reinforcing the 
hypothesis that neuropathy-associated behaviors arise not only from locomotor impairments but also from 
changes in sensory-motor integration.
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Together, these results suggest that DN mice exhibit distinct syllable transition structures, characterized 
by increased symmetry and altered bidirectional transition probabilities, which likely represent compensatory 
adaptations to impaired locomotion and sensory dysfunction. However, while transition matrices highlight 
significant group-level differences, they do not provide insight into individual variability in behavioral entropy 
or state persistence, necessitating further examination of latent state modeling via autoregressive hidden Markov 
models (AR-HMMs) to quantify shifts in motor state dynamics and explore underlying neurophysiological 
drivers of DN-associated behavioral changes.

Discussion
In this research, we systematically explored the repercussions of diabetic neuropathy (DN) on sensory, motor, 
and cognitive functions, employing behavioral tests within a streptozotocin (STZ)—induced diabetic rodent 
model. Our primary focus was the evaluation of locomotor and exploratory activities via an open field test in DN 
mice. Our findings revealed a significant decrease in speed, position, and length, consistent with observations in 
diabetic neuropathy rats reported in previous research19. Interestingly, unlike other models where speed showed 
no significant difference24. Our study identified a decrease in speed. Additionally, we observed an increase in 
immobility duration, aligning with prior studies, while the frequency of rearing showed no significant difference, 
consistent with some reports10,24.

In the realm of therapeutic interventions, various treatments were examined for their efficacy in influencing 
these behavioral activities. The analysis of locomotor and exploratory activities in STZ-induced diabetic rodent 

Fig. 4. Behavioral syllable dynamics in diabetic neuropathy mice. (A) Heatmap showing normalized syllable 
between behavioral syllables for control (left) and diabetic neuropathy (right) groups. The color intensity 
reflects the syllable frequency, with diabetic neuropathy mice exhibiting distinct patterns. Notable syllable 
such as walking and head weaving demonstrate significant differences between groups. Hierarchical clustering 
dendrogram of behavioral syllables reveals distinct grouping dynamics. Clusters highlight exploratory 
behaviors (e.g., "head weaving," “wall jumping”) and posture-associated behaviors (e.g., "body crouching," 
“nose rearing”) that differ significantly between groups, along with UMAP projection of syllable distributions. 
(B) Same UMAP projection of syllable distributions with k-means clustering (n = 3) identifies three distinct 
clusters. Behaviors such as “wall jumping” and “head bobbing” are uniquely clustered in diabetic neuropathy 
mice, highlighting altered behavioral patterns. (C) Bar plots comparing behavioral features indicate significant 
increases in “head weaving” and "wall jumping in diabetic neuropathy mice, alongside reductions in “head 
stretching” and "body crouching”. (D) The volcano plot highlights significant behavioral changes in diabetic 
neuropathy mice, with increased “head weaving” (log2 fold change ≈ + 5) and “wall jumping” (log2 fold 
change ≈ + 1.5), while behaviors like “head bobbing” (log2 fold change ≈ -4.8) and “head stretching” (log2 fold 
change ≈ -1.6) are reduced compared to controls. Red and blue dots indicate upregulated and downregulated 
behaviors, respectively, while gray dots denote behaviors with no significant change.

◂

Fig. 5. Multifaceted Analysis of Behavioral Syllable Transitions in Diabetic Neuropathy Mice using Transition 
Matrices (TM). TM visualizing transition probabilities between syllables for control and diabetic neuropathy 
(DN) groups. Symmetry assessed via Frobenius norm and correlated with paw withdrawal to mechanical 
stimuli. Statistical analyses included simple linear regression, correlation analyses, and two tailed p value to 
verify the correlation between data. The interpretation of the correlation coefficient (r) values is as follows: 
0 < r < 1 indicates positive correlation, and -1 < r < 0 suggests negative correlation. Significant correlation was 
indicated by p < 0.05.
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models yielded inconsistent results, potentially due to the overlooked subtle behavioral nuances26–28,35. To 
address this, our ongoing study focuses on closely analyzing 3D pose- dynamics behavior in nicotinamide (NA) 
and streptozotocin (STZ)-induced diabetic mice, aiming to identify and develop treatments to mitigate these 
intricate behavioral challenges.

Moreover, our investigation extended to the assessment of mechanical allodynia, revealing heightened 
sensitivity to mechanical stimuli in DN mice—a potential hallmark of neuropathic pain. These results align with 
prior studies10,22,36,37, reinforcing the consistent manifestation of heightened sensitivity in diabetic neuropathy 
models.

Our study demonstrates that MoSeq-based 3D behavioral profiling reveals distinct neuromotor deficits in 
diabetic neuropathy (DN) mice, characterized by reduced locomotion, increased stereotypic movements, and 
altered transition dynamics38.

Comprehensive kinematic analysis showed that DN mice exhibited significantly lower movement speed 
(14.2 ± 1.6 mm/s vs. 22.5 ± 1.9 mm/s, p = 0.0004), reduced movement range (32.5 ± 4.2 mm vs. 47.3 ± 3.8 mm, 
p = 0.002), and shorter body length (65.7 ± 5.3 mm vs. 78.2 ± 4.6 mm, p = 0.001), while centroid height remained 
unchanged, suggesting intact postural stability despite locomotor deficits. Behavioral syllable analysis further 
revealed elevated stress-related behaviors such as head weaving (+ 5.2 log2 fold change, p = 0.0009) and wall 
jumping (+ 3.5 log2 fold change, p = 0.01), alongside reduced locomotor-related movements such as walking 
(− 3.5 log2 fold change, p n = 0.001) and head bobbing (− 4.8 log2 fold change, p = 0.0007), forming distinct motor 
phenotypes confirmed through hierarchical clustering and UMAP-based dimensionality reduction39,40.

These shifts suggest that DN mice compensate for motor impairments by adopting repetitive and fragmented 
movement patterns. Bidirectional transition matrix analysis further revealed increased transitions between 
stress-associated behaviors, such as head weaving and nasal hesitancy, and a higher likelihood of looping between 
exploratory movements, indicating restricted behavioral flexibility. Frobenius norm calculations showed that 
DN mice exhibited greater transition symmetry (0.023 vs. 0.042 in controls), reflecting more predictable, 
repetitive movement sequences. This rigidity may represent an adaptive response to sensorimotor deficits or 
reveal intrinsic limitations in motor flexibility41.

Although the correlation between von Frey sensitivity and movement was not statistically significant, this 
trend suggests that behavioral shifts in DN mice may involve factors beyond mechanical hypersensitivity42, 
potentially reflecting disruptions in sensorimotor integration. Future studies with larger sample sizes and 
additional sensory metrics could help clarify this relationship. By capturing subsecond transitions and higher-
order motor sequencing, MoSeq offers a data-driven framework for detecting subtle DN-related behavioral 
changes that conventional assessments (e.g., rearing frequency, total distance traveled, grooming) may overlook. 
A direct statistical comparison between MoSeq features and traditional locomotor measures remains necessary 
to validate its heightened sensitivity in profiling neuropathic behavior. While these findings underscore MoSeq’s 
usefulness in identifying DN-associated motor deficits, further research is needed to explore its therapeutic 
applications, particularly for interventions aimed at restoring locomotor flexibility and reducing stereotypic 
movements.

In conclusion, our study into 3D pose dynamics behavior in NA and STZ-induced diabetic neuropathy 
mice not only clarifies discrepancies in locomotor and exploratory activity assessments but also underscores 
the significance of 3D behavioral motifs associated with heightened mechanical sensitivity. These findings 
enhance our comprehension of the multifaceted impact of neuropathic pain, providing valuable insights for 
future research and potential therapeutic interventions targeting the intricate interplay between DN and altered 
behavioral responses.

Data availability
Data is provided within the manuscript or supplementary information files. The detailed codebase for this cus-
tom pipeline code has been shared in the Github repository ( h t t p s :  / / g i t h  u b . c o m  / z a m a n  a s h i q  3 / M o S e  q - b a s e  d - 3 
D - B  e h a v i o r a l - P r o fi  l i n g - A n a l y s i s). Further Raw signal/Video can be shared upon Institutional approval and  r e q 
u e s t s by contacting corresponding authors (ogong50@gist.ac.kr/hyuksang@gist.ac.kr).
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