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Abstract 

In the fault diagnosis of rolling element bearings (REBs), spall size is a typical indicator of fault se verity. Con ventionally, spall size 
estimation relies on expert-knowledge-based or data-driven approaches. Expert-knowledge-based approaches require accurate as- 
sumptions about spall-excited events, making them challenging to apply in field envir onments. In contrast, data-dri v en appr oaches 
often struggle with insufficient training data and limited generalization acr oss v arious operating conditions. To address this chal- 
lenge, this paper proposes a frequency-enhanced neural network (FENN) with a hybrid spall-size estimator (HSSE). The proposed 

FENN employs both one-dimensional convolution in the time domain and Fourier convolution on the frequency magnitude, while 
preserving phase information in the frequency domain to enhance frequency components that are associated with spall in REBs. 
The nov el HSSE pr oposed her e inte gr ates a data-dri v en spall-size estimator and an expert-knowledge-guided spall-size estimator 
to capture spall entry and exit events between rolling elements and race wa ys. Model validation results, which analyzed both sim- 
ulation and experimental data from roller and ball bearings, demonstrate that the proposed approach provides accurate predic- 
tions of spall size, even with limited training data. Additionally, it is confirmed that the proposed model identifies the mechani- 
cal frequencies associated with spall ev ents, pr oviding interpr eta b le r esults fr om r aw vibr ation signals without requiring further 
processing. 

Ke yw ords: spall-size estimation, expert knowledge, deep learning, domain gener alization, re gression 

 

 

i  

i
e  

a  

p
a
e  

2
 

s  

c  

g
s  

a  

m  

p
e  

n  

i
d
t  

a  

a  

r
d  

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article/12/5/1/8109629 by G

w
ang Ju Institute of Science & Technology user on 17 June 2025
1. Introduction 

Rolling element bearings (REBs) are critical components in various 
industries, including manufacturing, transportation, petrochemi- 
cal, and po w er generation (Tao et al., 2007 ; Ty a gi & P anigr ahi, 2017 ).
Despite proper maintenance, REBs are prone to spalling due to fa- 
tigue failur e. Failur e of a REB can r esult in significant dama ge to 
the system in which it is installed. T hus , accurate spall-size esti- 
mation is crucial for condition-based maintenance, as it can accu- 
r atel y indicate the se v erity of dama ge. Ho w e v er, the complex na- 
ture of spalling—affected by factors such as residual stress and 

material pr operties (Br anc h et al. , 2013 ; Toumi et al. , 2018 ; Gaz- 
izulin et al., 2020 )—poses a significant challenge to the de v elop- 
ment of accurate spall-size estimation methods. 

The r esearc h field of spall-size estimation has e volv ed thr ough 

two distinct but complementary methodological a ppr oac hes,
each offering unique insights into bearing fault diagnosis . T he 
first a ppr oac h, based on expert knowledge, uses v arious pr e- 
pr ocessing str ategies to identify the entry and exit points of spall 
e v ents (Cui et al., 2016 ; Kogan et al., 2018 ; Larizza et al., 2020 ; 
Moazen Ahmadi et al., 2016 ; Sawalhi & Randall, 2011 ; Zhao et 
al., 2013 ). T his con v entional method pr ovides str ong theor etical 
foundations and clear inter pr etability. Ho w e v er, its effectiv eness 
can vary when applied to diverse field conditions where bear- 
ing wear patterns can de viate fr om theor etical models . T he sec- 
ond a ppr oac h emer ged with the adv ancement of mac hine learn- 
t  
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ng technologies . T hese data-driv en methods tr ain algorithms to
dentify patterns and predict outcomes using large datasets (Qin 

t al., 2022 ; Xiyang et al., 2023 ; Kumar et al., 2024 ). While these
 ppr oac hes hav e demonstr ated r emarkable ada ptability to com-
lex patterns, their performance depends heavily on training data 
vailability and can face challenges in generalizing across differ- 
nt operating conditions (Ko et al., 2023 ; Li et al., 2024 ; Park et al.,
023 , 2025 ; Wang et al., 2023 ; Xu et al., 2024 ; Zio, 2022 ). 

Recent de v elopments in pr ognostics and health mana gement
uggest that combining these a ppr oac hes could le v er a ge their
omplementary str engths. Se v er al studies hav e successfull y inte-
rated expert knowledge with deep-learning models to enhance 
ystem performance and inter pr etability (Hu et al., 2023 ; Kan et
l., 2024 , 2024 ; Kim & Lee, 2023 ; Kim et al., 2024 ). For instance, the
ac hining tool-wear pr ediction method was enhanced by incor-

orating physics-guided neural networks with empirical cutting 
quations (Wang et al., 2020 ). Similarly, an inter pr etable neur al
etw ork w as de v eloped for identifying r esonant fr equency bands

n bearing defects (Wang et al., 2022 ). The knowledge-informed 

eep network (KIDN) demonstrated how fusing domain exper- 
ise with deep learning can impr ov e fault detection accuracy
cr oss v arious experimental datasets (Su et al., 2024 ). Zhou et
l. further sho w ed ho w combining state-space models with neu-
al networks could enhance bearing condition monitoring un- 
er varying operating conditions (Zhou et al., 2023 ). Nonetheless,
he advances in hybrid methodologies have not yet been fully
 for Computational Design and Engineering. This is an Open Access article 
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xplored for the specific challenge of spall-size estimation, where
r ecise defect measur ement r emains crucial for maintenance de-
isions. 

The primary objective of this r esearc h is to enhance the per-
ormance of REB fault diagnosis by integrating expert knowledge
nto a data-driven approach for estimating spall size . T his re-
earc h addr esses two k e y c hallenges: (1) pr eserving phase infor-
ation during frequency analysis and (2) enabling the direct in-

egration of expert knowledge into model training. To this end,
his paper introduces a new spall-size estimation model that em-
hasizes the frequency components linked to raceway defects

n REBs. 
The proposed model features a multi-Fourier convolution

ayer, r eferr ed to as the frequency-enhanced neural network
FENN) and a hybrid spall-size estimator (HSSE). The Fourier
on volution la yer combines one-dimensional (1D) convolution
n the time domain and Fourier convolution in the frequency
omain. HSSE mer ges a data-driv en spall-size estimator (dd-SSE)
ith an expert-knowledge-guided spall-size estimator (ekg-
SE), connecting rolling element (RE) and raceway interactions.
y integrating these complementary a ppr oac hes, our method
vercomes the limitations of both expert-knowledge-based and
ata-driven methods, while maintaining interpretability through

ts physics-based components . T he proposed model provides
obust spall-size estimations using limited training data by
mploying a raw signal input, eliminating the need for addi-
ional processing. The main contributions of this research are as
ollows: 

(1) FENN is proposed to leverage information from the fre-
quency domain that is not easily discernible in the time
domain alone . T his network extr acts spectr al featur es fr om
vibration impulses attributed to the entry and exit of REs
into the spall. The nov el phase-pr eserving mec hanism in
the Fourier convolution layer enables superior ca ptur e of
both magnitude and phase characteristics of spall-excited
e v ents , unlike con v entional a ppr oac hes that either oper ate
pur el y in the time domain and lose phase information dur-
ing frequency analysis. 

(2) HSSE is proposed by combining an expert-knowledge-
based a ppr oac h with a data-driv en a ppr oac h. A nov el al-
gorithm is introduced to enable backpropagation through
expert-knowledge formulas during model training, al-
lowing seamless integration of domain expertise with
data-driven learning. The cumulative autocorrelation and
clamping mec hanisms specificall y addr ess the c hallenge of
maintaining differentiability while incorporating physics-
based constraints. 

(3) The proposed FENN model with HSSE demonstrates ro-
bust performance in both intra-domain prediction and do-
main generalization tasks . T hrough extensive validation
using both simulation and experimental data, it is demon-
strated that the phase-preserving frequency enhancement
and hybrid estimation fr ame work significantl y enhances
dia gnostic accur acy and r educes domain-gener alization er-
r or compar ed to conv entional a ppr oac hes. 

(4) The proposed hybrid approach provides interpretable
results by highlighting specific frequency components
associated with spall e v ents, making it more reliable for
pr actical a pplications . T he model identifies mechanical
frequencies associated with spall events, ranging from
se v er al tens to hundreds of Hz, providing transparent
insights into the fault diagnosis process without requiring
additional signal processing steps. 

The remainder of this paper is organized as follows. Section
 provides an ov ervie w of existing spall-size estimation methods
nd neural network arc hitectur es with Fourier convolution. Sec-
ion 3 describes FENN and HSSE that estimate the spall size of
EBs. Sections 4 and 5 discuss two case studies examined to e v al-
ate the effectiveness of the proposed model. Section 6 presents
he conclusions of this study and offers suggestions for future re-
earch. 

. Previous Studies 

.1. Spall-size estimation 

pall-size estimation methods de v eloped for REBs can be cate-
orized into two a ppr oac hes: expert-knowledge-based and data-
riven. As shown in Table 1 , expert-knowledge-based a ppr oac hes
an be further divided into thr ee gr oups. In pr e vious studies, spall-
xcited e v ents during the entry and exit of REs wer e defined in dif-
erent wa ys . One group (Cui et al., 2016 ; Sa walhi & Randall, 2011 ;
hao et al., 2013 ) assumed two distinct e v ents, including a low-
r equency entry e v ent and a high-fr equency impact exit e v ent.
nder this assumption, for example, the spall size ( l ) can be es-

imated as 

l = 

π f r (D 

2 
p − d 2 ) 

D p f s 
T i , (1)

here T i is the time-to-impact (samples), f r is the shaft speed of
he rotor, f s is the sampling frequency (Hz), D p is the pitch di-
meter, and d is the ball diameter. Another group defined spall-
xcited e v ents as low-fr equency entry, tr ansient high-fr equency
mpact, and lo w-frequenc y exit (or rattling after impact) (Kogan
t al., 2018 ; Moazen Ahmadi et al., 2016 ). These terms describe the
 har acteristic tr ansitions in the vibration signal as RE interacts
ith the spall: the lo w-frequenc y entry corresponds to the ini-

ial contact with the spall, the high-frequency impact represents
he direct collision at the spall, and the lo w-frequenc y exit indi-
ates the REs departure from the spall. These transitions are used
o determine T i by measuring the timing of these e v ents, whic h
elineates the spall size . T he last group defined the spall-excited
 v ents into four distinct e v ents: initial unloading, complete load-
ng, high-frequency impact, and partial reloading to estimate spall
ize (Larizza et al., 2020 ; Larizza, Ho w ar d, Grainger et al., 2020 ).
rior a ppr oac hes based on expert knowledge hav e offer ed accu-
ate spall-size estimation results when the assumptions about
he spall-excited e v ents exactl y matc h the wear out mec hanism
f the REBs under study. Ho w e v er, it is sometimes challenging to
r edict the wear out mec hanism of REBs that is to be expected in

n-use field conditions. Incorrect assumptions about spall-excited
 v ents can lead to considerable deviations in spall-size estima-
ion results . T hus , it is difficult to ensur e accur acy when a ppl ying
hese methods in real-world settings. 

Data-driv en a ppr oac hes do not r equir e expert knowledge about
pall-excited e v ents. Deep-learning models can be trained with
ibration signals collected from computational simulations and
estbeds . For example , Kumar et al. ( 2024 ) emplo y ed an ensem-
le tree to predict the spall size. Xiyang et al. ( 2023 ) proposed
 combination of the convolutional neural network (CNN) and
he bidirectional long-short-term memory (BiLSTM). This method
 obustl y pr edicts spall size while accounting for the changes in
haft speeds . Furthermore , the bac k pr opa gation neur al network
BPNN) was de v eloped to corr elate the r oot mean squar e v alues of
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Table 1: Existing spall-size estimation methods for REBs. 

Approach Spall-excited events Pre-processing 
Entry/exit time point 
selection Spall-size estimation formula or model References 

Expert-knowledge- 
based 

Lo w-frequenc y entry and 
high-frequency impact 

Pre-whitening and filtered MED Max envelope Cepstrum l = π f r (D 2 p −d 2 ) 

D p f s 
T i (Sawalhi & Randall, 

2011 ) 
EMD and ApEn Max envelope Cepstrum (Zhao et al., 2013 ) 
– Matching pursuit (Cui et al., 2016 ) 

Lo w frequenc y entry, 
high-frequency impact 
and lo w-frequenc y exit 

Pre-whitening and low-pass filter Max envelope l = D p + d 
2 sin (2 β2 + β1 ) (Moazen Ahmadi et 

al., 2016 ) 

Band-pass and high-pass filter Mode value from first 
impact; maximum 

acceleration 

l = l disconnect + l imp + l TE (Kogan et al., 2018 ) 

Initial unloading, complete 
loading, high-frequency 
impact and Partial 
reloading 

Po w er spectral density Spectr ogr am l = D p 
2 (1 . 5 α1b −2b + α2b −3b + 1 . 5 α3b −4b ) (Larizza et al., 2020 ) 

Data-driven Not applicable Wa velet en velope Ensemble tree (Kumar et al., 2024 ) 
Matrix dia gr am CNN and BiLSTM (Xiyang et al., 2023 ) 
RMS feature BPNN (Qin et al., 2022 ) 
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measur ed vibr ation signals with spall size, r epr esenting the e vo- 
lution law over the bearing’s life (Qin et al., 2022 ). It is evident that 
adv anced arc hitectur e can be emplo y ed to enhance the perfor- 
mance of this method. Ho w e v er, the model’s accur acy r elies on 

the quantity and quality of the training data, limiting its general- 
izability under differ ent oper ating conditions. In summary, both 

the expert-knowledge-based and data-driv en a ppr oac hes hav e 
strengths and limitations . T hus , it is natural to devise a hybrid ap- 
pr oac h that le v er a ges the str engths of these two a ppr oac hes while
minimizing their weaknesses. 

2.2. Neur al netw ork architecture with Fourier 
convolution 

Neural netw ork ar chitectures often incorporate Fourier trans- 
forms to impr ov e efficiency. Pr e vious studies hav e demonstr ated 

that the neural architecture training process can be acceler- 
ated. For example, Mathieu et al. emplo y ed fast Fourier trans- 
forms (FFT) by computing convolutions as pointwise products 
in the Fourier domain (Mathieu et al., 2013 ). Furthermore, this 
study demonstrated that, with numerical experiments, the sim- 
ple Fourier transform-based algorithm can accelerate the train- 
ing and inference processes by a significant factor. A Fourier layer 
arc hitectur e was de vised to pr ocesses featur es thr ough par allel 
local and global paths effectiv el y, wher e the global path selec- 
tiv el y pr eserv es lo w er frequenc y components for computational 
efficiency (Li et al ., 2020 ). In that study, it was demonstrated that 
the Fourier layer was highly efficient, as the multilayer architec- 
tur e solv ed partial differ ential equations (PDEs) up to thr ee orders 
of magnitude faster compared to conventional PDE solvers. 

While these studies focused on computational efficiency, con- 
ventional convolution operations have demonstrated effective- 
ness in bearing fault diagnosis (Liang & Zhao, 2021 , 2022 ; Liu et 
al., 2020 ). T he con volution operation of the l th la yer is defined as 

h l Conv . 1D 
i = 

M ∑ 

j=1 

w 

l 
i, j ∗ v l−1 

j + b l Conv . 1D 
i , (2) 

where h l Conv. 1 D 
i is the i th output vector of the convolution of the layer 

l ; w 

l 
i , j is the weight of the i th filter at layer l ; v j l -1 denotes the j th 

featur e v ector with M c hannels gener ated fr om layer l –1; b l Co nv . 1D 
i 

is the i th bias vector for the convolution at the layer l ; and w 

l 
i , j 

and b l Co nv. 1 D 
i are the parameters that are optimized through train- 

ing. Despite the pr ov en effectiv eness of convolution operations in 
NN models (Kim et al., 2020 ), conventional convolutions in mod-
rn deep networks are limited by their local operation within the
ece pti ve field, making them ineffective for learning non-local fea-
ures (Wang et al., 2018 ). Although these limitations can be par-
iall y addr essed thr ough enlar ged r ece pti ve fields (Han et al., 2019 )
nd m ulti-r ece pti ve fields (Li et al., 2020 ), ad ditional impr ov ements
ave been sought through Fourier-based approaches. 

Building upon these de v elopments, fast Fourier convolution 

as been studied to further enhance the accuracy of neural net-
ork performance . T he fast Fourier con v olution ar c hitectur e was
e v eloped to le v er a ge the complementary natur e of local and
lobal information pr ocessing effectiv el y (Chi et al., 2020 ). This ap-
r oac h allows for internal information sharing between the local
nd global paths, enabling each path to benefit from the features
xtracted by the other. This arc hitectur e demonstr ated significant
erformance impr ov ements in computer vision tasks. Mor e r e-
entl y, Sinha et al. pr oposed the non-local attention-aided Fourier
onv olution ar c hitectur e to widen the r ece pti ve field and learn
ong-range dependencies (Sinha et al., 2022 ). For image super reso-
ution tasks, this Fourier-convolution-based arc hitectur e ac hie v ed
erformance comparable to that of other approaches, while using 
ewer model parameters. 

In summary, the application of Fourier transforms in existing 
eur al arc hitectur es has demonstr ated pr omise in acceler ating
odel training and enhancing performance for various tasks, in- 

luding ima ge r ecognition, human k e y-point detection, and im-
 ge super-r esolution. For spall-size estimation in bearing fault
iagnostics, prior work has reported that the frequency compo- 
ents between se v er al tens and hundreds of Hz are closely as-
ociated with the spall size, when analysing the vibration im-
ulses measured from bearings with spalls (Moazen Ahmadi et 
l., 2016 ; Sawalhi & Randall, 2011 ). Consequently, it is anticipated
hat a Fourier-convolution-based method has more potential than 

 con ventional-con volution-based method for enhancing specific 
requency components in vibration impulses. Ho w ever, to the best
f our knowledge, the potential of a Fourier-convolution-based 

eur al arc hitectur e has not yet been exploited for spall-size es-
imation of REBs. 

. Proposed Method 

s stated earlier, it is desirable to leverage the benefits of
oth the expert-knowledge-based and data-driven approaches.
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Figure 1: Existing Fourier-layer arc hitectur e. (A) Fourier layer (Li et al ., 2020 ). (B) Fast Fourier convolution layer (Chi et al., 2020 ). 
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or eov er, incor por ating Fourier convolution into a neural network
rc hitectur e has gr eat potential for spall-size estimation tasks.
he k e y questions are (1) how to incor por ate the expert knowl-
dge (i.e., spall-size estimation formula) into the neural network
nd (2) how to design the Fourier conv olution netw ork ar chitec-
ure that can enhance the frequency components associated with
he vibration of spall-like defects. To address these challenges,
ection 3.1 proposes a modified Fourier convolution layer that
an extract the spectral features associated with spall-excited
 v ents without any assumptions about the spall-excited events.
ection 3.2 presents ekg-SSE. The section outlines the novel al-
orithm that was devised to enable backpropagation through the
xpert-knowledge-based formula during model training. Section
.3 describes the proposed HSSE model for estimating the spall
ize of REBs. 

.1. Modified Fourier convolution la y er 
s depicted in Figure 1 A (Li et al ., 2020 ), the local path performs
on ventional con volutions on a subset of the input featur e c han-
els, while the global path operates in the frequency domain.
 he Fourier con volution part is specially designed to selectiv el y
r eserv e the lo w er frequenc y components ( m 1 to m end ) while
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Figure 2: Modified Fourier convolution layer. 
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filtering out the higher components . T his selective preservation 

enhances computational efficiency by focusing on the most signif- 
icant frequency components, ensuring robust performance with- 
out compromising accuracy. As presented in Figure 1 B (Chi et 
al., 2020 ), the fast Fourier con volution la yer also conducts con- 
ventional and Fourier convolution, where the information ex- 
tr acted fr om the two paths is internall y shar ed, complementing 
one another. 

Inspired by the existing Fourier neural network arc hitectur e 
in Chi et al. ( 2020 ) and Li et al ., (2020) , the proposed frequency 
layer incor por ates fast Fourier convolutions that have local and 

Fourier convolution within the convolution unit, as shown in Fig- 
ure 2 . In particular, the proposed Fourier convolution has a novel 
arc hitectur e to accommodate the c har acteristics of the vibration 

impulses observed from defective REBs with spalls . T he Fourier 
convolution process starts with the Fourier transform of the in- 
put featur e c hannels, pr oviding the ma gnitude and phase for each 

channel: 

V 

l−1 
j [ k ] = 

N−1 ∑ 

n =0 

v n −1 
j [ n ] · exp 

− j (2 π/N ) kn = 

∣∣∣V 

l−1 
j [ k ] 

∣∣∣ · exp 

j � V l−1 
J [ k ] , 

∣∣∣V 

l−1 
j [ k ] 

∣∣∣ = 

√ 

R 

(
V 

l−1 
j [ k ] 

)2 
+ I 

(
V 

l−1 
j [ k ] 

)2 
, 

� V 

l−1 
j [ k ] = tan 

−1 
(
I 
(
V 

l−1 
j [ k ] 

)/ 

R 

(
V 

l−1 
j [ k ] 

))
, (3) 

where V j 
l- 1 [ k ] is the Fourier transform of v j l -1 [ n ] with an e v en

length N as the j th feature vector at the l -1 layer; k is the frequency 
index, whic h r anges fr om 0 to N /2 for a positive frequency; | V j 

l- 1 [ k ] |
is the magnitude of V j 

l- 1 [ k ] at the frequency index k ; and 

� V j 
l- 1 [ k ] 

denotes the phase angle of V j 
l- 1 [ k ]. 
Then, the magnitude ( | V j 
l- 1 [ k ] | ) of each channel’s frequency in-

ex k is element-wise multiplied with the filter, κ l 
i j , that consists

f learnable parameters with ( N /2) + 1 length. Meanwhile, the
hase ( � V j 

l- 1 [ k ]) of the feature spectrum undergoes element-wise
ultiplication with a filter ς l i j where all k index values are set

o one: 

˜ V 

l 
i Mag , 

[ k ] = 

M ∑ 

j=1 
κ l 

i j [ k ] ·
∣∣∣V 

l−1 
j [ k ] 

∣∣∣, 
˜ V 

l 
i Pha , 

[ k ] = 

M ∑ 

j=1 
ς l i j [ k ] ·� V 

l−1 
j [ k ] . 

(4) 

Finall y, the ma gnitude of the featur e spectrum, along with the
etained phase information, is transformed back to the time do-

ain via inverse Fourier transform: 

h l Conv . Fourier 
i = F −1 

(˜ V 

l 
i Mag , 

[ k ] · exp 

j ̃ V l i Pha . 
[ k ] 

)
= 

1 
N 

N/ 2 ∑ 

k =0 

(˜ V 

l 
i Mag , 

[ k ] · exp 

j ̃ V l i Pha . 
[ k ] 

)
· exp 

j ( 2 π/N ) kn , (5) 

here h l Co nv.Fo urier 
i is the i th output vector found by the Fourier convo-

ution at the Fourier layer l . 
The magnitude of the complex spectrum contains informa- 

ion about the energy content of the signal across each frequency
omponent. The role of the filter κ l 

i j is to identify the frequen-
ies associated with the entry and exit e v ents a ppearing in the
ignal when the RE passes through the spall. As the phase rep-
 esents the r elativ e position of eac h fr equency component with
espect to the time reference point (Oppenheim & Lim, 1981 ),
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t is necessary to maintain the phase information of the en-
ry and exit e v ents . T her efor e, by element-wise multiplication of
 

l 
i j filters, in which all values are one , and phases , the phases
f eac h c hannel of the featur e spectrum can be consistentl y
aintained. 
Subsequently, the modified Fourier con volution la yer outputs

 featur e ma p by summing the r esult v ectors of the 1D convolu-
ion and the Fourier convolution in an element-wise manner. The
ummation of the two output featur e v ectors can be input into
he nonlinear activation function: 

v l i = σ
(
h l Conv . 1D 

i + h l Conv . Fourier 
i 

)
, (6) 

here v i l is the i th output feature vector that sums the results of
ac h convolution oper ation at the Fourier layer l ; σ is the nonlin-
ar activation function. Pooling layers were excluded to preserve
r equency information. Consequentl y, the modified Fourier con-
 olution lay er le v er a ges both local convolutions thr ough the 1D
onvolution and global convolutions in the Fourier convolution to
xtr act spall-r elated signal c har acteristics. 

.2. Expert-knowledge-guided spall-size 

estimator 
n this work, ekg-SSE is devised to effectiv el y incor por ate an em-
irical equation de v eloped by domain experts. Unlike conven-
ional methods that dir ectl y extr act T i fr om r aw signals thr ough
ignal pr ocessing tec hniques, the pr oposed a ppr oac h uses the
odified Fourier convolution-based neural network to learn and

nhance spall-related features . T he feature map output from the
odified Fourier convolution layer contains spatial information

 egarding spall-excited e v ents, specificall y, the moments when
E passes the spall’s entry ( T entry ) and exit ( T exit ) points. For ex-
mple, as shown in the c hannel-av er a ged featur e ma p in Fig-
r e 3 A, the neur al network pr ocesses vibr ation signals to ef-

ectiv el y ca ptur e impact signals associated with spalling. Us-
ng the featur e ma p, ekg-SSE determines the time difference
 T i = T exit – T entry ), which correlates with the physical size of
he spall as shown in Equation 1 (or another equivalent for-
 ula), giv en the time difference, bearing geometry, and the shaft

peed. 
Locating the time difference between the entry and exit

oments within the feature map vector appears to be straight-
orw ar d, as it mer el y involv es indexing that exceeds a threshold
ithin the feature map vector. Ho w ever, simple indexing can

mpede bac kpr opa gation. To addr ess this c hallenge , a no vel
lgorithm is proposed in this section to calculate the time
ifference while allowing backpropagation. This algorithm

ncor por ates cum ulativ e autocorr elation, clamping, and an
lement-wise product with linear functions, which is anal-
gous to the r epar ameterization tric k (Kingma & Welling,
013 ) that enables bac kpr opa gation. The time differ ence
alculation module consists of eight steps, as illustrated in
igure 3 A. 

The first step involves computing the channel-wise average of
he feature maps at the modified Fourier convolution layer. 

x t = 

M ∑ 

j=1 

X 

l F 
j,t (7) 

her e x t r epr esents the t th v alue of the av er a ged featur e ma p v ec-
or; X 

l F 
j,t is the feature vector of the t th value at the j th channel of

he layer l F ; and M is the total number of channels. 
In the second step, the autocorrelation of the av er a ged featur e
ap is computed, allowing the identification of the periodically

epeating T i pattern. The autocorrelation coefficient vector ( R ) is
xpressed below: 

R = { r 0 , r 1 , · · · , r L } , 

r t = 

L ∑ 

t= l 
( x t − x̄ )( x (t −l ) − x̄ ) 

/ 

L ∑ 

t=0 

( x t − x̄ ) 2 , (8)

here r 0 , r 1 , …, r L are the autocorrelation coefficient values; x ( t-l )
 epr esents the ( t-l ) th value of x t ; x̄ denotes the average value of x t ;
nd L is the length of x t . 

The third step is to transform the autocorrelation coefficient
ector into a new vector ( C ) by sequentially accumulating the sum
f its individual components: 

C = { c 0 , c 1 , · · · c L } = 

{ 

0 ∑ 

k =0 

r k , 
1 ∑ 

k =0 

r k , · · · , 

L ∑ 

k =0 

r k 

} 

, (9)

here c 0 , c 1 ,…, c L are the cumulative sum of the autocorrelation
oefficient values. 

The fourth step is to isolate the single T i pattern. This is
c hie v ed by comparing the components of the new vector with
 tr ainable thr eshold par ameter ( c th ). In this ste p, the indi vidual
omponents of the C v ector ar e set to the threshold value if they
re smaller than the threshold: 

C clamp = 

{ 

c i if c i ≥ c th 
c th if c i < c th 

, (10)

The initial value of the threshold parameter is set to the av-
r a ge of the cum ulativ e autocorr elation v alues corr esponding to
he spall sizes of the training dataset for each shaft speed. The
hr eshold par ameter is updated during model tr aining. 

In the fifth step, the discrete second difference ( S ) is computed
o identify the corner point in C clamp . 

S = �2 C clamp = C clamp , i +1 − 2 C clamp , i + C clamp , i −1 . (11)

The sixth step is to calculate an element-wise product of the
ormalized S and the linearly increasing vector ( I idx ). 

T = 

S /
max( S ) · I idx = 

S /
max( S ) · { 1 , 2 , ..., L − 2 } 

= { T 1 , T 2 , · · · , T i , · · · , T L −2 } (12)

In the se v enth step, the sample point corresponding to T i is de-
ermined by extracting the maximum value from the feature vec-
or T : 

T i = max( T 1 , T 2 , · · · , T i , · · · , T L −2 ) . (13)

Finally, the spall size in ekg-SSE is calculated by inputting the
stimated T i into Equation 1 . The pseudo code used to implement
he steps is presented in Algorithm 1. During the bac kpr opa gation
f model training, the gradient is passed through the element as-
ociated with the maximum value, ensuring that the backpropa-
ation operation is possible. 
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Figure 3: Proposed method. (A) Ste p-by-ste p algorithmic flow of ekg-SSE. (B) Ov er all arc hitectur e of the proposed FENN model with HSSE. 
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3.3. Proposed frequency-enhanced neural 
network model with the hybrid spall-size 

estimator 
The proposed model, as shown in Figur e 3 B, has two parts: featur e 
extraction and regression. The feature-extraction part consists of 
 sequence of modified Fourier convolution layer blocks, while the
pall-size estimation part integrates ekg-SSE and dd-SSE in paral- 
el. 

The modified Fourier conv olution lay er is stacked to construct
ENN that works as the feature extractor. The channels of the
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ast layer from the FENN structure are compressed through the
lobal av er a ge pooling (GAP) layer. Compr essed c hannel informa-
ion is then transmitted to dd-SSE. As previously discussed, ekg-
SE computes the spall size ( Y ekg ) through the expert-knowledge-
uided pr ocess, incor por ating a tr ainable thr eshold par ameter
 c th ). On the other hand, dd-SSE employs a conventional neural
etw ork ar c hitectur e that includes a GAP layer and fully con-
ected layers to compute the spall size ( Y dd ). Both estimators are
r ained sim ultaneousl y, and HSSE outputs the estimate by using
he weighted sum of the two estimates deriv ed fr om ekg-SSE and
d-SSE: 

ˆ Y spall = (1 − α) Y dd + αY ekg , (14) 

here α is the weight that controls the strength of Y dd and Y ekg .
n this study, α was set to 0.5, assigning an equal weight to the
ontributions of ekg-SSE and dd-SSE. HSSE is designed to comple-
ent the limitations of the data-driven and expert-knowledge-

ased methods. 
The spall size estimated by HSSE is set to the learning target by

inimizing the mean absolute error (MAE) for the training sam-
le: 

MAE = 

1 
N 

N ∑ 

i =1 

∣∣∣ ˆ Y spall , i − Y spall , i 

∣∣∣, (15) 

here N is the total number of samples in the training data set
nd Y spall, i is the i th actual spall size. 

Optimal structural parameters for the proposed HSSE model
ust be determined. A grid search is emplo y ed to find struc-

ur al hyper par ameters , including the modified Fourier con vo-
ution la yers , the channel combinations , and ekg-SSE location.
he search spaces for the modified Fourier convolution layers
nd channel combinations are determined based on findings
r om a pr e vious study (Kim et al., 2022 ) and the doubling princi-
le of VGGNet (Simonyan & Zisserman, 2014 ), respectively. The

ayer location fed to ekg-SSE is determined through an exhaus-
iv e searc h within the Fourier con volution la y er sear ch spaces.

eights and biases are updated using the ada ptiv e moment
stimation (Adam) optimizer. The optimal hyper par ameter set
hat yields the best performance is selected using a validation
ataset. Finally, the model’s accuracy is evaluated using a test
ataset. 

In this r esearc h, all computations wer e conducted on a com-
uter equipped with an Intel Core i9-10980XE processor, 128 GB
f RAM, and an NVIDIA GeForce RTX 3090 gr a phics card, using
he PyTorch 1.7.1 framework. 

. Case Study 1: Cylindrical Roller Bearing 

his study e v aluates the pr oposed model using FAG N206E-TVP2
ylindrical roller bearings, as shown in Figure 4 for intra-domain
rediction and domain generalization. The intra-domain predic-
ion tests spall size estimation within simulation data, while do-

ain generalization examines the model’s transfer from simula-
ion to experimental data. Bearing specifications ar e pr ovided in
able 2 . 

.1. Data description 

 simulation dataset was generated using a multi-body nonlin-
ar dynamic model (Moazen Ahmadi et al., 2015 ), as shown in
igure 5 . The parameters of the simulation model were cali-
rated to maximize the agreement between the computational
r equency r esponse of the experimental r esults in (Larizza et
l ., 2020 ). The calibrated simulation model parameters are listed
n Table 3 . The simulation was carried out using MATLAB
imulink 2019b. The acceleration signal contains 1 024 data points
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Figure 4: Rolling element bearings with a spall-like defect on the outer r ace way. 

Table 2: Specifications of the cylindrical roller bearing studied (FAG N206E-TVP2). 

Number 
of 
rollers 

Separ a tion 
angle 

( ◦) 

Roller 
diameter 

(mm) 

Pitch 
diameter 

(mm) 

Inner r ace way 
diameter 

(mm) 

Outer r ace way 
diameter 

(mm) 

Dynamic load 
capacity 

(N) 

13 27.6 9.00 46.50 37.50 55.50 44 000 

Figure 5: Data pr epar ation including simulation model (Moazen Ahmadi et al., 2015 ) and test rig (Larizza et al ., 2020 ). 
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calculated from the bearing cage frequency to capture the spall- 
like vibration signal as RE passes over the spall at the lo w est shaft 
speed. 

In the simulation, the spall size varied from 7.51 to 9.69 mm.
The corresponding arc angles ( β in Figure 4 ) varied between 15.5 
and 20.5 ◦ in 0.5 ◦ increments . T he bearing defect geometry was 
odeled with a spall depth of 110 μm. Data were collected with
onstant shaft speeds of 300, 450, 500, and 750 RPM, and constant
oads of 2500, 5000, and 10 000 N. To further emulate real-world
onditions, white Gaussian noise was added to the simulated sig-
als, resulting in a signal-to-noise ratio of 20 dB (Sawalhi et al.,
017 ). 
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Table 3: Simulation model parameters. 

Hertzian contacts 
Resonant spring system 

for outer r ace way 
Bearing inner r ace way 

characteristics Pedestal characteristics 

K in = 249 MN/m m o = 0.5 kg m i = 0.2 kg M p = 1.2403 kg 
K out = 249 MN/m K o = 4934.8 MN/m K sx , K sy = 1152.7 MN/m K px = 0.0687 MN/m, K py = 0.0387 MN/m 

C = 800 N s/m C o = 993.5 N s/m C sx , C sy = 1214.7 N s/m C px , C py = 4006 N s/m 

Variables 
K : stiffness [MN/m], M : mass [kg], C : damping coefficient [N s/m] 

Subscripts 
in: inner r ace way , out: outer r ace way, o: r esonant spring system for outer r ace way, s i : support at i -dir ection, p i : pedestal at i -dir ection 
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The experimental dataset was obtained using a SpectraQuest
est rig, as shown in Figure 5 . This dataset is publicly available
Larizza, Ho w ar d, Grainger et al., 2020 ). The spall sizes were 8.2
nd 9.69 mm, with spall edge angles varying at 5 ◦, 20 ◦, 30 ◦, 45 ◦,
nd 90 ◦ (denoted as α in Figure 4 ). Further details can be found in
arizza et al. ( 2020 ). 

.2. Task configur a tion and model tr aining 

 he two tasks , along with the domain, spall geometry, and dataset
sa ge, ar e shown in Table 4 . The intra-domain prediction task was
esigned to e v aluate the model’s pr ediction accur acy for differ ent
pall sizes within the training domain using simulated data. The
omain-generalization task assessed the model’s ability to predict
pall sizes accur atel y acr oss unseen domains by utilizing sim ula-
ion data for training and experimental data for testing. 

The results of the hyperparameter study are presented in Ta-
le 5 . Within the search space, it was observed that MAE decreased
s the number of layers and channels increased. It was expected
hat including additional layers and channels could improve the
erformance of the a ppr oac h. Ho w e v er, the maxim um allo w ed
PU memory is limited in practice . T herefore , a tradeoff between
erformance and computational resources was needed. The opti-
al layer location fed into ekg-SSE was the fifth layer, dir ectl y be-

ore the last. This placement was most effective in this case study.
he neural network learns more abstract knowledge in deeper lay-
rs, making the penultimate layer ideal for inter pr eting a spall’s
ec hanical pr operties. Consequentl y, the pr oposed model’s arc hi-

ecture has 2 5 channels in the first layer. As the layers are stacked,
he number of channels expands by 2 1 , resulting in a total of six
a yers . T he model arc hitectur e was found to be most suitable for
kg-SSE located in the fifth of these six la yers . T he mini-batch size ,
earning rate, and stop criterion were 1024, 10 −4 , and 350 epochs,
 espectiv el y. 

The performance of the proposed model was tested for each
ondition of shaft speed and load per spall size . T he number of
raining samples was set to 35 for the intra-domain task and 83
or the domain-generalization task. The number of test samples
as set to 262, which represents the total cycles of bearing outer
 ace fault fr equency measur ed ov er 10 seconds. To account for the
ffect of weight initialization on model performance, prediction
 esults wer e av er a ged acr oss fiv e r andom seeds. 

.3. Results and discussion 

.3.1. Results 
he spall-size estimation performance is presented in Table 6 . To
 v aluate the model’s accuracy, the correct spall size was com-
ared with the predicted spall size, absolute error, and relative
rror as k e y metrics. For the intr a-domain pr ediction task, the
odel ac hie v ed an av er a ge absolute err or of 0.635 mm and a r ela-

iv e err or of 7.18% acr oss fiv e differ ent spall sizes. In the domain-
eneralization task, the model demonstrated an average relative
rror of 8.57% for two spall sizes . T hese results indicate that
he proposed model performs compar abl y to pr e viousl y r eported

ethods in the liter atur e, whic h estimate spall size using conven-
ional signal-processing techniques with an approximate error of
% (Larizza et al., 2020 ). 

Table 7 compares spall-size estimation methods across signal
r ocessing, data-driv en, and hybrid a ppr oac hes, r e v ealing distinct
atterns in their performance c har acteristics . T he con ventional
ignal processing method by Chen and Kurfess ( 2019 ) sho w ed rea-
onable accuracy in intra-domain prediction with a r elativ e er-
or of 7.42 ( ±7.50)%. Ho w ever, its performance degraded signifi-
antly in domain generalization tasks, reaching 14.13 ( ±12.44)%.
his limitation suggests that pure signal processing approaches
ay lac k r obustness when faced with v arying oper ational con-

itions . T he data-driv en a ppr oac h by Jeong ( 2023 ) encountered
ubstantial c hallenges, particularl y in the ensemble av er a ging
r ocess, r esulting in high r elativ e err ors of 22.10 ( ±4.03)% for

ntr a-domain pr ediction and 34.48% ( ±16.63)% for domain gen-
ralization. Ho w ever, Kumar et al. ( 2024 ) demonstrated that com-
ining data-driv en tec hniques with signal pr ocessing could sig-
ificantl y r educe these err ors, ac hie ving 8.02 ( ±5.94)% and 9.58
 ±7.19)% for intra-domain and domain generalization tasks, re-
pectiv el y. The pr oposed model, whic h integr ates physical knowl-
dge with deep learning, ac hie v ed the most consistent perfor-
ance across both tasks. Its relative errors of 7.18 ( ±5.00)% for

ntr a-domain pr ediction and 8.57 ( ±4.13)% for domain gener al-
zation demonstrate the effectiveness of incorporating domain ex-
ertise into machine learning frameworks . T hese results highlight
ow the synthesis of physical understanding and data-driven ap-
r oac hes can enhance both accuracy and generalization capa-
ility in bearing fault dia gnosis. A note worthy adv anta ge of the
roposed model is its time and cost efficiency, as training can be
onducted using simulation data rather than requiring extensive
xperimental testing. Mor eov er, its demonstr ated ability to gen-
r alize acr oss differ ent bearing r epr esents an adv ancement for
r actical industrial a pplications, wher e dia gnostics m ust r emain
 eliable acr oss v aried equipment configur ations and oper ating
n vironments . 

The feature visualization process of the proposed model uses
 aw time-domain vibr ation signals as input, and m ultiple fea-
ur e ma p c hannels in eac h FENN layer ar e av er a ged into a sin-
le channel for visualization. The av er a ged featur e ma ps ar e an-
lyzed in both time and frequency domains, and the frequency
nal ysis is inferr ed by tr ansforming fr om the time-domain feature
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Table 4: Task configuration. 

Task Domain Spall size (mm) Edge angle ( ◦) Usage 

Intr a-domain pr ediction Simulation 7.51, 7.99, 8.48, 8.96, 9.44, 9.93 90 Training 
Simulation 7.75, 8.23, 8.72, 9.20, 9.69 90 Test 

Domain generalization Simulation 7.51, 7.99, 8.48, 8.96, 9.44, 9.93 90 Training 
Experiment 8.23 5 Test 
Experiment 9.69 20, 30, 45, 90 Test 

Table 5: Hyper par ameter study r esults of case study 1. 

La y er fed to ekg-SSE 
(mean absolute error) 

Number of 
la y ers 

Channel 
combination 1 2 3 4 5 6 

2 [2 1 , 2 2 ] 1.21 1.08 − − − −
[2 2 , 2 3 ] 1.26 1.15 − − − −
[2 3 , 2 4 ] 1.25 1.05 − − − −
[2 4 , 2 5 ] 1.28 1.16 − − − −
[2 5 , 2 6 ] 1.29 1.27 − − − −

4 [2 1 , 2 2 , 2 3 , 2 4 ] 1.21 1.10 1.08 1.07 − −
[2 2 , 2 3 , 2 4 , 2 5 ] 1.18 1.04 1.00 1.02 − −
[2 3 , 2 4 , 2 5 , 2 6 ] 1.27 1.15 1.12 1.12 − −
[2 4 , 2 5 , 2 6 , 2 7 ] 1.09 0.99 0.96 0.87 − −
[2 5 , 2 6 , 2 7 , 2 8 ] 1.11 1.10 1.09 1.00 − −

6 [2 1 , 2 2 , 2 3 , 2 4 , 2 5 , 2 6 ] 1.20 1.07 1.05 1.03 1.05 1.04 
[2 2 , 2 3 , 2 4 , 2 5 , 2 6 , 2 7 ] 1.11 0.98 0.99 0.99 0.94 0.90 
[2 3 , 2 4 , 2 5 , 2 6 , 2 7 , 2 8 ] 1.11 1.03 0.94 0.93 0.92 0.88 
[2 4 , 2 5 , 2 6 , 2 7 , 2 8 , 2 9 ] 1.22 1.24 1.27 1.26 1.27 1.23 
[2 5 , 2 6 , 2 7 , 2 8 , 2 9 , 2 10 ] 1.07 1.10 1.10 1.08 0.78 0.79 

Ta ble 6: P erformance e v aluation of the pr oposed model. 

Task 

Ans w er spall 
size 

(mm) 

Predicted 
spall size 

(mm) 

Absolute 
error 
(mm) 

Relati v e 
error 
(%) 

Intr a-domain pr ediction 7 .75 7 .35 0 .619 7 .98 
8 .23 8 .23 0 .316 3 .84 
8 .72 8 .40 0 .476 5 .46 
9 .20 8 .68 0 .725 7 .88 
9 .69 8 .90 1 .039 10 .72 

Av er a ge 0 .635 7 .18 
Domain generalization 8 .23 8 .64 0 .685 8 .33 

9 .69 9 .37 0 .836 8 .63 
Av er a ge 0 .859 8 .57 
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maps, assuming a one-second period. The objective was to ascer- 
tain whether the frequencies identified in the featur e ma p wer e 
associated with the spall entry and exit e v ents of REs. In pr e vious 
studies (Larizza et al., 2020 ), it was reported that frequencies of 200 
and 1 050 Hz were linked to the spall entry and exit e v ents, r espec- 
tiv el y. Featur e ma p visualizations wer e conducted for all experi- 
mental conditions listed in Table 6 . As a r epr esentativ e example,
the results obtained at 5 000 N and 600 RPM, intermediate values 
of the dynamic conditions of load and shaft speed, are shown in 

Figure 6 . 
In the intra-domain prediction task, from the time-domain vi- 

sualization on the left side of Figure 6 A, it is evident that as the 
layers deepen from the first to the fifth, the spike components 
associated with spall entry and exit e v ents become pr ogr essiv el y 
mor e pr onounced. This indicates that the featur e ma p fr om the 
fth layer is well-suited for input to ekg-SSE. In contrast, at the
ixth and final layer, the pr e viousl y emphasized components in
he time domain ar e diminished. The fr equency-domain visual-
zation on the right side of Figure 6 A clarifies this behaviour, show-
ng that the network effectiv el y suppr esses non-spall-r elated fr e-
uency components while enhancing spall-related signals, such 

s the 200 Hz component linked to spall entry. This selective fea-
ur e extr action ensur es that the final-layer featur e ma p r etains
nly the most relevant spectral components . T herefore , it is ap-
ropriate to use this feature map as input to dd-SSE, demonstrat-

ng the effectiveness of the modified Fourier con volution la yers in
xtr acting spall-r elated featur es. 

In the domain-generalization task, the visual inspection results 
ere similar to those of the intra-domain prediction task. An ob-

ervation is that, in the feature map of the 6 th layer, the frequency
omponents at 200 Hz sho w ed a prominent amplitude, as shown
n Figure 6 B. Furthermore, the frequency range from 925 to 1 075
z was identified in pr e vious r esearc h (Larizza et al., 2020 ) as sig-
ificant for capturing spall exit events, although this range ap-
ears with m uc h lo w er amplitude than the 200 Hz component

n our spectrum analysis . T his differential prominence between 

ntry and exit frequency components is consistent with pr e vious
bservations . T his suggests that the proposed model has an en-
anced ability to br oadl y pr edict spall c har acteristics. 

The stability of the proposed model was e v aluated by an
blation study, as presented in Table 8 . For example, in the
omain-gener alization task, the pr ediction accur acy and stan-
ard de viation incr eased fr om 72.68% (Hybrid CNN) to 91.66%

Proposed model) and from 20.57% to 4.21%, respectively, when 

he modified Fourier con volution la y ers w ere adopted. As an-
ther example, the pr ediction accur ac y and standar d deviation
ncr eased fr om 78.81% (FENN) to 91.66% (Pr oposed model) and
rom 11.28% to 4.21%, respectively, when ekg-SSE was adopted.
 hus , it was corr obor ated that the proposed model is accurate and
obust in the intra-domain prediction and domain-generalization 

asks. 

.3.2. Discussion on different training sample sizes 
he performance of the proposed model was examined across dif-
erent amounts of training data. The relative error of the spall-size
redictions is described in Figure 7 . As expected, the r elativ e err or
or both tasks decreased as the amount of training data increased.
he training data intervals are scaled logarithmically. The error 
ar in the figure indicates the variation between different shaft
peeds and different loading conditions. 

For the intra-domain prediction task, as presented in Figure 7 A,
he r elativ e err or r esults of the pr oposed model quic kl y conv er ged.
his result suggests that spall-size estimation was possible with 

 small number of training data, when the training and test data
er e sampled fr om identical domains (i.e., sim ulation model).
onv ersel y, in the case of the domain-generalization task, the in-
reased number of training data is required for convergence in
he r elativ e err or, as shown in Figur e 7 B, when the tr aining and
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Table 7: Comparison of spall size estimation between existing and proposed models. 

Method 
Signal processing 

(Chen and Kurfess, 2019 ) 
Data-dri v en 
(Jeong, 2023 ) 

Data-dri v en with 
signal processing 

(Kumar et al., 2024 ) 
Proposed FENN 

model with HSSE 

Intr a-domain pr ediction 7.42 ( ±7.50)% 22.10 ( ±4.03)% 8.02 ( ±5.94)% 7.18 ( ±5.00)% 

Domain generalization 14.13 ( ±12.44)% 34.48 ( ±16.63)% 9.58 ( ±7.19)% 8.57 ( ±4.13)% 
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est data were sampled from different domains (i.e., simulation
odel and experimental using a test rig). It is worth noting that,

n the case of a dearth of real data for AI model training, the pro-
osed model can provide accurate prediction results of spall sizes

n bearings of a real test rig, when the calibrated simulation model
an pr ecisel y em ulate the physical behavior of r eal bearings. 

.3.3. Discussion on performance evaluation under dy-
namic conditions 

he performance of the proposed model was evaluated for pre-
icting spall size under dynamic conditions of load and shaft
peed. As a r epr esentativ e example, the spall size of 8.23 mm was
elected. The pr oposed a ppr oac h demonstr ated superior accur acy
n interpolation tasks, even with a training sample size as small
s 35 samples. Figure 8 A shows that the estimated spall size in-
reases with increasing load. The estimate remains close to the
rue value, with a maximum relative error of 2.49%. Figure 8 B
resents that the estimated spall sizes also increase as the shaft
peed incr eases. Acr oss all four shaft-speed conditions, the model
aintained predictions within a 2.85% r elativ e err or of the true

pall size, which is considered negligible. Previous research (Mu-
azzal et al., 2023 ) has demonstrated that increasing the radial
oad yields stronger characteristic signals in vibration impulses.

or eov er, it was r eported that, at low shaft speeds, spall entry-
xit impact peaks are sharp, while at higher shaft speeds, the
nfluence on the exit impulse diminishes . T he results described
bo ve , as observed in this study, are consistent with the findings
r om pr e vious r esearc h. T hus , it was corr obor ated that the pr o-
osed model estimated the mean of the actual defect size with
egligible deviations, suggesting that the proposed model is ac-
urate in spall-size estimation across various dynamic operating
onditions. 

. Case Study 2: Deep-Gr oo ve Ball Bearing 

his study examines the proposed model’s extrapolation capabil-
ties with SKF 6205–2RS JEM deep-gr oov e ball bearings. It tests the

odel’s pr ediction accur ac y bey ond its tr aining r ange, r eflecting
cenarios where bearing damage progresses o ver time . T he speci-
cations of the ball bearing studied in this r esearc h ar e shown in
able 9 . 

.1. Data description 

n experimental dataset was generated using a testbed in the
mart Diagnosis and Design Optimization (SDDO) Laboratory at
he Gwangju Institute of Science and Technology (GIST), Korea. As
hown in Figure 9 , the rotational shaft is supported b y tw o bear-
ngs. One bearing included a spall defect. Based on the pr e vious
tudy (Chen & Kurfess, 2019 ; Zhang et al., 2021 ), the axial length of
he spall was determined to be 5 mm. The width of the spall varied
rom 0.6 to 1.6 mm, with an interval of 0.1 mm. The spall depth
as 100 μm (Sawalhi & Randall, 2011 ). The defect was pr ecisel y

abricated by electrical disc har ge mac hining. 
The defective bearing was installed on the right-hand side of
he testbed. An accelerometer whose sensing direction was the
 -axis was mounted on the bearing housing. The sampling fre-
uenc y w as 25.6 kHz. Vibration data w ere collected at the shaft
peeds of 450, 600, and 750 RPM. 

.2. Model training 

he input data length was determined based on the bearing’s
a ge fr equency at thr ee shaft speeds . T he minim um r equir ed data
oints were calculated to be 952 at the lo w est speed. Based on
his calculation, the input length was set to 1 024 data points, a
 alue r easonable to accommodate signal pr operties acr oss differ-
nt speeds . T he input signal underwent pr epr ocessing, including
ivision without ov erla p and standardization to zer o mean and
nit variance . T he number of training samples was determined
y m ultipl ying the ten-second data acquisition time by the bear-

ng outer-race fault frequencies, resulting in 269 samples per shaft
peed. The test dataset size was set to one-third of the training
amples. 

A study was conducted to determine a set of r ele v ant hyper-
arameters . T he datasets used for the hyper par ameter optimiza-
ion task are shown in Table 10 . During the training process, the

odel with MAE loss function was selected from combinations of
yper par ameters, including the number of layers, channel combi-
ations , and ekg-SSE locations , as detailed in Table 11 . T he batch
ize , learning rate , and number of epoc hs wer e set to 1024, 10 −4 ,
nd 250, r espectiv el y. To account for the influence of weight ini-
ialization, a grid search approach was used to determine the

odel arc hitectur e thr ough thr ee r andom seed tests . T he optimal
onfiguration was achieved with six la yers , channel combinations
rom 2 5 to 2 10 , and the ekg-SSE layer positioned at the fifth layer.
his setup resulted in an MAE of 0.108. 

The performance of the proposed model was evaluated using
he dataset from the extr a polation estimation task, as shown in
 able 10 . T o ensur e r obustness, the e v aluation r esults wer e av er-
 ged acr oss fiv e unique r andom seeds. 

.3. Results and discussion 

.3.1. Results 
he proposed model predicted the spall size with an av er a ge r ela-
iv e err or of 23.37% when e v aluated using the dataset used in the
yper par ameter optimization task. This result can also be consid-
red as the performance in the interpolation task. 

The extr a polation performance of the HSSE model is summa-
ized in Table 12 , where the predicted average spall size is com-
ared with the true spall size and the r elativ e err or is anal yzed
t eac h r otational speed. T he a v er a ge r elativ e err or incr eased as
he spall size deviated from the training domain. The smallest er-
or (22.77%) was observed at 1.2 mm, which was closest to the
raining domain. A comparison with the av er a ge inter polation
erformance sho w ed similar spall-size estimations within a 1%
rr or mar gin. For the lar gest tested spall size of 1.6 mm, which
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Figure 6: Re presentati ve example of feature map visualization of modified Fourier convolution layers. (A) Intra-domain prediction task. (B) 
Domain-generalization task. 
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Table 8: Ablation study: spall-size prediction accuracy (%). 

Conventional CNN Hybrid CNN FENN 

Proposed FENN 

model with HSSE 

Including Fourier convolution la y ers No No Yes Yes 

Task Including ekg-SSE No Yes No Yes 

Intr a-domain pr ediction 53.54 ( ±44.01) 83.03 ( ±20.26) 88.33 ( ±8.69) 92.82 ( ±5.88) 
Domain generalization 17.96 ( ±35.97) 72.68 ( ±20.57) 78.81 ( ±11.28) 91.66 ( ±4.21) 

Figure 7: Relative error of the average spall-size estimation with respect 
to the number of training data. (A) Intra-domain prediction task. (B) 
Domain-generalization task. 
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Figure 8: A r epr esentativ e example of spall-size estimation results. (A) 
Varying load conditions. (B) Varying shaft-speed conditions. 
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 epr esented the furthest extr a polation fr om the tr aining domain,
he model sho w ed the highest r elativ e err or of 37.21%. 

Ho w e v er, this pr ediction pattern sho w ed inconsistent devia-
ions; notably, the 1.4 mm spall size exhibited a higher error
29.98%) than the 1.5 mm size (27.11%), despite being closer to
he training domain. Previous studies have indicated that spall
epth can affect the contact conditions and vibration response of
Es, potentially leading to size-estimation errors (Mufazzal et al.,
023 ). This study also found that deeper spalls can lead to contact
oss with the r ace way, r esulting in str onger impact forces that may
istort spall entry- and exit-based size estimation. Consequently,
urther analysis was conducted to identify whether the observed
r ediction err or was due to machining effects of spall size or spall
epth influence; this analysis is presented in Section 5.3.2. 

.3.2 Model performance assessment based on preciously
measured spall size and depth 

he spall-size estimation results were further analyzed by mea-
uring the actual machined dimensions, including spall size and
epth. Spall dimensions were measured using Bruker’s DektakXT
nd Micr o-vu’s EXCEL 501UC instruments, pr oviding detailed sur-
ace and three-dimensional measurements. As specified in 

able 13 , the ele v en spall widths, r epr esenting spall sizes, wer e
anufactured with an average error of 1.17% (0.01 mm). For the
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Table 9: Specifications of the deep-gr oov e ball bearing studied (SKF 6205–2RS JEM). 

Number 
of 
balls 

Separ a tion 
angle 

( ◦) 

Ball 
diameter 

(mm) 

Pitch 
diameter 

(mm) 

Inner r ace way 
diameter 

(mm) 

Outer r ace way 
diameter 

(mm) 

Dynamic load 
capacity 

(N) 

9 40 7.938 39.04 25.00 52.00 14 000 

Figure 9: Rotor testbed and ball bearings with different defect sizes. 

Table 10: Bearing datasets with different spall sizes. 

Task Purpose Spall size (mm) 

Hyper par ameter optimization Training 0.6 0.8 1.0 1.2 1.4 1.6 
Validation 0.7 0.9 1.1 1.3 1.5 

Extr a polation Training 0.6 0.7 0.8 0.9 1.0 1.1 
Test 1.2 1.3 1.4 1.5 1.6 
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spall sizes of interest, 1.4 and 1.5 mm, the manufacturing error 
was e v aluated to be within 1%, indicating a r eliable le v el of pr o- 
duction accuracy. For the 1.6 mm spall size, which represented 

the furthest extr a polation test point, the manufacturing error was 
similarl y well-contr olled at 1.25%, indicating that the incr eased 

pr ediction err or at this size was not attributable to manufactur- 
ing variations. 

To further investigate the cause of the higher error in the 1.4 
mm spall size, a detailed analysis of the defect depth was con- 
ducted using 3D laser profilometry. This analysis aimed to deter- 
mine whether the depth c har acteristics of the spall could con- 
tribute to the observed prediction errors, as the manufacturing 
r ocess had alr eady been confirmed to be accurate (Table 13 ). The
hr ee-dimensional pr ofile of the pr ocessed spall depth according
o the spall size is shown in Figure 10 , which illustrates the depth
 har acteristics thr ough high-r esolution surface measur ements.
or a compr ehensiv e understanding, Figur es 10 A–10 D pr esent the
urface topogr a phy acr oss differ ent spall widths (0.6, 1.3, 1.4, and
.5 mm), while Figure 10 E defines the k e y surface profile parame-
ers used for quantitative analysis . T he depth variations are quan-
ified using three critical parameters defined in Figure 10 E and

easured in Table 14 : R p (Maximum profile peak height), R v (Max-
m um pr ofile v alle y de pth), and R z (Maxim um height of pr ofile,
alculated as the difference between R p and R v ). 
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Table 11: Hyper par ameter study r esults of case study 2. 

Location of ekg-SSE 

(mean absolute error) 

Number of 

la y ers Channel combination 1 2 3 4 5 6 

2 [2 1 , 2 2 ] 0.144 0.138 − − − −
[2 2 , 2 3 ] 0.168 0.136 − − − −
[2 3 , 2 4 ] 0.167 0.195 − − − −
[2 4 , 2 5 ] 0.158 0.143 − − − −
[2 5 , 2 6 ] 0.153 0.142 − − − −

4 [2 1 , 2 2 , 2 3 , 2 4 ] 0.143 0.132 0.142 0.131 − −
[2 2 , 2 3 , 2 4 , 2 5 ] 0.158 0.140 0.142 0.138 − −
[2 3 , 2 4 , 2 5 , 2 6 ] 0.151 0.137 0.124 0.125 − −
[2 4 , 2 5 , 2 6 , 2 7 ] 0.148 0.149 0.148 0.161 − −
[2 5 , 2 6 , 2 7 , 2 8 ] 0.145 0.136 0.128 0.152 − −

6 [2 1 , 2 2 , 2 3 , 2 4 , 2 5 , 2 6 ] 0.185 0.164 0.174 0.155 0.143 0.145 

[2 2 , 2 3 , 2 4 , 2 5 , 2 6 , 2 7 ] 0.203 0.174 0.166 0.160 0.175 0.174 

[2 3 , 2 4 , 2 5 , 2 6 , 2 7 , 2 8 ] 0.203 0.179 0.172 0.178 0.185 0.194 

[2 4 , 2 5 , 2 6 , 2 7 , 2 8 , 2 9 ] 0.195 0.199 0.189 0.171 0.210 0.218 

[2 5 , 2 6 , 2 7 , 2 8 , 2 9 , 2 10 ] 0.119 0.108 0.111 0.112 0.108 0.112 
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Unlike when the spall width is 0.6 mm in Figure 10 A, a dif-
erence in depth flatness can be visually confirmed as the spall
idth increases from 1.3 to 1.5 mm, as shown in Figures 10 B −D. In
articular, when quantifying the depth roughness in the case of
he 1.4 mm spall width in Figure 10 C, it was confirmed that R z was
55.0 μm, as shown in Table 14 . On the other hand, the depths R z 

f the 1.3 and 1.5 mm spall sizes were 122.5 and 124.2 μm, re-
pectiv el y. It was confirmed that the R z of the 1.4 mm spall had a
r eater height de viation than the R z of the 1.3 and 1.5 mm spall
izes by a ppr oximatel y 20.9 and 19.6%, r espectiv el y. Ther efor e, it
as found that the 1.4 mm spall size causes a difference in the
eak times of the entry and exit e v ents of the measurement sig-
al due to the depth deviation when the RE passes through the
 ace way, leading to an err or de viation in the model prediction. For
he 1.6 mm spall size, despite having well-controlled manufactur-
ng precision (1.25% error) and relatively uniform depth charac-
eristics ( R z = 110.5 μm), the model sho w ed r educed pr ediction
ccur acy. This observ ation, combined with the pr e vious r esults,
uggests that while the proposed model maintains reliable predic-
ions for spall sizes near its training domain, its performance de-
rades when estimating sizes that substantially exceed its train-
ng experience, e v en under ideal manufacturing conditions. 

.3.3. Discussion on fr equenc y enhancement 
he proposed model was analyzed by comparing feature maps
ith conventional CNN, Hybrid CNN, and FENN models. A spall

ize of 1.2 mm at 750 RPM was selected as a r epr esentativ e ex-
mple, as shown in Figure 11 . The conventional CNN model’s
eatur e ma ps (Figur e 11 A) show spall-like impulses at 0.01 and
able 12: Estimated r elativ e err or in the extr a polation task. 

pall size (mm) Predicted spall size (mm) 450 RPM 

.2 1.01 ± 0.09 27.87 ± 8.72 

.3 1.03 ± 0.07 24.02 ± 6.71 

.4 1.01 ± 0.06 29.77 ± 4.93 

.5 1.36 ± 0.11 27.84 ± 7.13 

.6 1.40 ± 0.11 37.53 ± 6.38 
.03 s, with time-domain patterns differing only in amplitude
etween the first and last la yers . No specific frequency compo-
ents were emphasized in its frequency-domain feature maps.
he hybrid CNN model (Figure 11 B) sho w ed similar limitations,
ith a decrease in feature amplification at higher frequencies.
he FENN model (Figur e 11 C) demonstr ated r educed amplifica-
ion in its last layer’s time-domain featur e ma p, while showing
 slight deviation from the monotonic decrease pattern in the
.4–3.8 kHz range of the corresponding frequency-domain fea-
ur e ma p. This differ ence arises because Figur es 11 A and B illus-
rate the spectral bias tendency of AI networks. In these networks,
earning of lo w er frequencies is prioritized leading to a continu-
us decline in emphasis as frequency increases. While the differ-
nce is subtle, the FENN model shows less pronounced spectral
ias in this fr equency r ange, suggesting a potential pr eserv ation
f higher-fr equency featur es that may be r ele v ant to fault dia g-
osis . T he proposed model (Figure 11 D) exhibited time-domain

eature patterns similar to the FENN model, with its last layer
pectrum emphasizing frequencies at 500 Hz, 1.2 kHz, and 2.4
Hz. While the FENN model exhibits moder ate fr equency compo-
ent amplification related to spall-like defect c har acteristics, the
r oposed model, whic h integr ates both FENN and HSSE, demon-
tr ates enhanced ca pability in ca pturing spectr al featur es associ-
ted with spall-like defects through more pronounced frequency-
omponent amplification. 

. Conclusions 

he proposed HSSE model integrates the interpretability of
xpert-knowledge-based methods with the adaptability of data-
riv en a ppr oac hes . T he HSSE model consists of two main mod-
les: (1) a feature extractor, FENN, and (2) a hybrid spall-size
stimator, HSSE. The featur e-extr action step combines 1D con-
olution in the time domain with both phase-pr eserv ation and
r equency-ma gnitude Fourier convolution in the frequency do-

ain, enhancing local and global feature maps to extract spall-
 elated featur es. In the HSSE step, the spall size is estimated in a
ata-driven manner using the output of the hidden layers from
he FENN network. Additionally, an expert-knowledge-guided es-
imator aligns the feature map output with the physical principles
f spall-size estimation, enabling end-to-end learning through
ac kpr opa gation. 

The pr oposed FENN model, integr ated with HSSE, exhibited ef-
ective spall size prediction performance in two case studies . T he
rst case study analyzed the relative errors for different spall
izes using both simulated and experimental signals. For intra-
omain prediction tasks, the model achieved an average relative
rror of 7.18%. For domain-generalization tasks, it maintained ac-
uracy with an 8.57% relative error when applying simulation-
rained models to experimental data. The proposed model’s fea-
ur e ma ps also r e v ealed pr ominent spall-r elated entry and exit
Relati v e error (%) 

600 RPM 750 RPM Average 

25.11 ± 9.26 15.32 ± 7.78 22.77 ± 10.15 
22.25 ± 6.09 23.47 ± 6.27 23.24 ± 6.40 
31.11 ± 5.31 29.06 ± 4.80 29.98 ± 5.09 
29.49 ± 5.83 24.00 ± 6.33 27.11 ± 6.85 
35.32 ± 6.72 38.78 ± 5.50 37.21 ± 6.38 

 2025
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Table 13: Bearing samples’ defect dimensions, measured by 3D laser profilometry. 

Spall size (mm) 

Dimension 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 

Width (mm) 0.59 0.70 0.80 0.91 1.01 1.10 1.25 1.33 1.41 1.51 1.58 
Measur ement err or (%) 1.67 0.00 0.00 1.11 1.00 0.00 4.17 2.31 0.71 0.67 1.25 

Figure 10: Depth profile of spall-like defective deep-gr oov e ball bearings. (A) 0.6 mm spall size. (B) 1.3 mm spall size. (C) 1.4 mm spall size. (D) 1.5 mm 

spall size. (E) Depth profile parameters. 

Table 14: Depth surface profile parameters of three bearing spall 
sizes. 

Spall size (mm) 

Parameters 1.2 1.3 1.4 1.5 1.6 

R p (Maxim um pr ofile peak height) ( μm) 65.7 60.0 69.8 67.6 54.6 
R v (Maxim um pr ofile v alle y de pth) ( μm) −66.1 −54.5 −85.1 −56.5 −55.8 
R z (Maximum height of profile) ( μm) 131.7 122.5 155.0 124.2 110.5 
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frequency components at 200 Hz and in the frequency band of 
925 to 1 075 Hz, consistent with the existing signal processing 
liter atur e. In the second case study, the extr a polation task demon- 
strated the model’s ability to estimate spall sizes beyond the train- 
ing range, with an av er a ge err or of 22.77%, which is similar to its 
interpolation performance . T he feature map highlighted spall- 
elated specific frequencies as it passed through the spall. This
ndicates that the HSSE model provides interpretable results 
hrough its hybrid architecture. 

The experimental design incor por ated se v er al r eal-world com-
lexities: dynamic operating conditions with varying speeds, mul- 
iple fault se v erities , and en vir onmental v ariations suc h as mea-
urement noise. Under these conditions, the proposed model 
aintained robust and consistent performance acr oss differ ent 

perating scenarios. Ho w ever, industrial applications may present 
dditional challenges not fully captured in our current validation,
uc h as v arying load distributions, complex system inter actions,
nd more severe environmental disturbances . T hese limitations 
uggest the need for further validation in actual industrial set-
ings where bearing operations face more diverse operational con- 
itions and environmental factors. 

Futur e r esearc h dir ections include testing with div erse datasets
o impr ov e a pplicability to r eal-world spalls, whic h often differ
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Figure 11: SDDO testbed featur e-ma p anal ysis (first la yer and the last la yer featur e ma p fr om the input signal) for eac h model in the extr a polation 
task (1.20 mm target) with an operating condition of 750 RPM. (A) Conventional CNN. (B) Hybrid CNN. (C) FENN. (D) Proposed FENN model with HSSE. 
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r om artificiall y induced defects in terms of sha pe, depth, r ough-
ess, and irregular wear patterns. Additionall y, futur e r esearc h
ill focus on enhancing the model’s extr a polation ca pabili-

ies under noisy industrial envir onments thr ough adv anced
oise-r obust featur e extr action methods and tr ansfer learning
ec hniques. Futur e r esearc h will also examine whether the
bserv ed r elationship betw een netw ork lay er depth and specific
ec hanical fr equency ca ptur e is consistent acr oss differ ent

earing configurations. To further enhance model accuracy and
eneralization, efforts will focus on incorporating applied load
ariations and extended simulation-based testing, ultimately
alidating the robustness and effectiveness of the model for
eld applications under realistic conditions. Additionally, vali-
ations in industrial environments will be crucial to assess the
odel’s performance under more complex operating conditions,

ncluding varying load distributions , system interactions , and
n vironmental factors . T hese impro vements will significantly
nhance the accuracy and applicability of the proposed spall-size
stimation method in real-world scenarios. 
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