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Abstract

In the fault diagnosis of rolling element bearings (REBs), spall size is a typical indicator of fault severity. Conventionally, spall size
estimation relies on expert-knowledge-based or data-driven approaches. Expert-knowledge-based approaches require accurate as-
sumptions about spall-excited events, making them challenging to apply in field environments. In contrast, data-driven approaches
often struggle with insufficient training data and limited generalization across various operating conditions. To address this chal-
lenge, this paper proposes a frequency-enhanced neural network (FENN) with a hybrid spall-size estimator (HSSE). The proposed
FENN employs both one-dimensional convolution in the time domain and Fourier convolution on the frequency magnitude, while
preserving phase information in the frequency domain to enhance frequency components that are associated with spall in REBs.
The novel HSSE proposed here integrates a data-driven spall-size estimator and an expert-knowledge-guided spall-size estimator
to capture spall entry and exit events between rolling elements and raceways. Model validation results, which analyzed both sim-
ulation and experimental data from roller and ball bearings, demonstrate that the proposed approach provides accurate predic-
tions of spall size, even with limited training data. Additionally, it is confirmed that the proposed model identifies the mechani-
cal frequencies associated with spall events, providing interpretable results from raw vibration signals without requiring further
processing.
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1. Introduction ing technologies. These data-driven methods train algorithms to
identify patterns and predict outcomes using large datasets (Qin
et al., 2022; Xiyang et al., 2023; Kumar et al., 2024). While these
approaches have demonstrated remarkable adaptability to com-
plex patterns, their performance depends heavily on training data
availability and can face challenges in generalizing across differ-
ent operating conditions (Ko et al., 2023; Li et al., 2024; Park et al,,
2023, 2025; Wang et al., 2023; Xu et al., 2024; Zio, 2022).

Recent developments in prognostics and health management
suggest that combining these approaches could leverage their
complementary strengths. Several studies have successfully inte-
grated expert knowledge with deep-learning models to enhance
system performance and interpretability (Hu et al., 2023; Kan et
al., 2024, 2024; Kim & Lee, 2023; Kim et al., 2024). For instance, the
machining tool-wear prediction method was enhanced by incor-
porating physics-guided neural networks with empirical cutting
equations (Wang et al.,, 2020). Similarly, an interpretable neural
network was developed for identifying resonant frequency bands
in bearing defects (Wang et al., 2022). The knowledge-informed
deep network (KIDN) demonstrated how fusing domain exper-
tise with deep learning can improve fault detection accuracy
across various experimental datasets (Su et al., 2024). Zhou et
al. further showed how combining state-space models with neu-
ral networks could enhance bearing condition monitoring un-
der varying operating conditions (Zhou et al., 2023). Nonetheless,
the advances in hybrid methodologies have not yet been fully

Rolling element bearings (REBs) are critical components in various
industries, including manufacturing, transportation, petrochemi-
cal, and power generation (Tao et al., 2007; Tyagi & Panigrahi, 2017).
Despite proper maintenance, REBs are prone to spalling due to fa-
tigue failure. Failure of a REB can result in significant damage to
the system in which it is installed. Thus, accurate spall-size esti-
mation is crucial for condition-based maintenance, as it can accu-
rately indicate the severity of damage. However, the complex na-
ture of spalling—affected by factors such as residual stress and
material properties (Branch et al., 2013; Toumi et al., 2018; Gaz-
izulin et al., 2020)—poses a significant challenge to the develop-
ment of accurate spall-size estimation methods.

The research field of spall-size estimation has evolved through
two distinct but complementary methodological approaches,
each offering unique insights into bearing fault diagnosis. The
first approach, based on expert knowledge, uses various pre-
processing strategies to identify the entry and exit points of spall
events (Cui et al, 2016; Kogan et al, 2018; Larizza et al., 2020;
Moazen Ahmadi et al.,, 2016; Sawalhi & Randall, 2011; Zhao et
al., 2013). This conventional method provides strong theoretical
foundations and clear interpretability. However, its effectiveness
can vary when applied to diverse field conditions where bear-
ing wear patterns can deviate from theoretical models. The sec-
ond approach emerged with the advancement of machine learn-
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explored for the specific challenge of spall-size estimation, where
precise defect measurement remains crucial for maintenance de-
cisions.

The primary objective of this research is to enhance the per-
formance of REB fault diagnosis by integrating expert knowledge
into a data-driven approach for estimating spall size. This re-
search addresses two key challenges: (1) preserving phase infor-
mation during frequency analysis and (2) enabling the direct in-
tegration of expert knowledge into model training. To this end,
this paper introduces a new spall-size estimation model that em-
phasizes the frequency components linked to raceway defects
in REBs.

The proposed model features a multi-Fourier convolution
layer, referred to as the frequency-enhanced neural network
(FENN) and a hybrid spall-size estimator (HSSE). The Fourier
convolution layer combines one-dimensional (1D) convolution
in the time domain and Fourier convolution in the frequency
domain. HSSE merges a data-driven spall-size estimator (dd-SSE)
with an expert-knowledge-guided spall-size estimator (ekg-
SSE), connecting rolling element (RE) and raceway interactions.
By integrating these complementary approaches, our method
overcomes the limitations of both expert-knowledge-based and
data-driven methods, while maintaining interpretability through
its physics-based components. The proposed model provides
robust spall-size estimations using limited training data by
employing a raw signal input, eliminating the need for addi-
tional processing. The main contributions of this research are as
follows:

(1) FENN is proposed to leverage information from the fre-
quency domain that is not easily discernible in the time
domain alone. This network extracts spectral features from
vibration impulses attributed to the entry and exit of REs
into the spall. The novel phase-preserving mechanism in
the Fourier convolution layer enables superior capture of
both magnitude and phase characteristics of spall-excited
events, unlike conventional approaches that either operate
purely in the time domain and lose phase information dur-
ing frequency analysis.

(2) HSSE is proposed by combining an expert-knowledge-
based approach with a data-driven approach. A novel al-
gorithm is introduced to enable backpropagation through
expert-knowledge formulas during model training, al-
lowing seamless integration of domain expertise with
data-driven learning. The cumulative autocorrelation and
clamping mechanisms specifically address the challenge of
maintaining differentiability while incorporating physics-
based constraints.

(3) The proposed FENN model with HSSE demonstrates ro-
bust performance in both intra-domain prediction and do-
main generalization tasks. Through extensive validation
using both simulation and experimental data, it is demon-
strated that the phase-preserving frequency enhancement
and hybrid estimation framework significantly enhances
diagnostic accuracy and reduces domain-generalization er-
ror compared to conventional approaches.

(4) The proposed hybrid approach provides interpretable
results by highlighting specific frequency components
associated with spall events, making it more reliable for
practical applications. The model identifies mechanical
frequencies associated with spall events, ranging from
several tens to hundreds of Hz, providing transparent

insights into the fault diagnosis process without requiring
additional signal processing steps.

The remainder of this paper is organized as follows. Section
2 provides an overview of existing spall-size estimation methods
and neural network architectures with Fourier convolution. Sec-
tion 3 describes FENN and HSSE that estimate the spall size of
REBs. Sections 4 and 5 discuss two case studies examined to eval-
uate the effectiveness of the proposed model. Section 6 presents
the conclusions of this study and offers suggestions for future re-
search.

2. Previous Studies
2.1. Spall-size estimation

Spall-size estimation methods developed for REBs can be cate-
gorized into two approaches: expert-knowledge-based and data-
driven. As shown in Table 1, expert-knowledge-based approaches
can be further divided into three groups. In previous studies, spall-
excited events during the entry and exit of REs were defined in dif-
ferent ways. One group (Cui et al., 2016; Sawalhi & Randall, 2011;
Zhao et al., 2013) assumed two distinct events, including a low-
frequency entry event and a high-frequency impact exit event.
Under this assumption, for example, the spall size (I) can be es-
timated as

7 fo(D2 — d?)
Dy fs

where T; is the time-to-impact (samples), f; is the shaft speed of
the rotor, fs is the sampling frequency (Hz), Dy, is the pitch di-
ameter, and d is the ball diameter. Another group defined spall-
excited events as low-frequency entry, transient high-frequency
impact, and low-frequency exit (or rattling after impact) (Kogan
et al., 2018; Moazen Ahmadi et al., 2016). These terms describe the
characteristic transitions in the vibration signal as RE interacts
with the spall: the low-frequency entry corresponds to the ini-
tial contact with the spall, the high-frequency impact represents
the direct collision at the spall, and the low-frequency exit indi-
cates the REs departure from the spall. These transitions are used
to determine T; by measuring the timing of these events, which
delineates the spall size. The last group defined the spall-excited
events into four distinct events: initial unloading, complete load-
ing, high-frequency impact, and partial reloading to estimate spall
size (Larizza et al., 2020; Larizza, Howard, Grainger et al.,, 2020).
Prior approaches based on expert knowledge have offered accu-
rate spall-size estimation results when the assumptions about
the spall-excited events exactly match the wearout mechanism
of the REBs under study. However, it is sometimes challenging to
predict the wearout mechanism of REBs that is to be expected in
in-use field conditions. Incorrect assumptions about spall-excited
events can lead to considerable deviations in spall-size estima-
tion results. Thus, it is difficult to ensure accuracy when applying
these methods in real-world settings.

Data-driven approaches do not require expert knowledge about
spall-excited events. Deep-learning models can be trained with
vibration signals collected from computational simulations and
testbeds. For example, Kumar et al. (2024) employed an ensem-
ble tree to predict the spall size. Xiyang et al. (2023) proposed
a combination of the convolutional neural network (CNN) and
the bidirectional long-short-term memory (BiLSTM). This method
robustly predicts spall size while accounting for the changes in
shaft speeds. Furthermore, the back propagation neural network
(BPNN) was developed to correlate the root mean square values of
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Table 1: Existing spall-size estimation methods for REBs.

Entry/exit time point

Approach Spall-excited events Pre-processing selection Spall-size estimation formula or model References
o 7 fy (D -d?) .
Expert-knowledge- Low-frequency entry and Pre-whitening and filtered MED ~ Max envelope Cepstrum | = eyttt (Sawalhi & Randall,
based high-frequency impact P 2011)
EMD and ApEn Max envelope Cepstrum (Zhao et al., 2013)
- Matching pursuit (Cui et al., 2016)
Low frequency entry, Pre-whitening and low-pass filter Max envelope 1= Dp;d sin(28, + B1) (Moazen Ahmadi et

high-frequency impact
and low-frequency exit
Band-pass and high-pass filter

Mode value from first

al,, 2016)

I = lgisconnect + limp + ITE (Kogan et al., 2018)

impact; maximum
acceleration

Initial unloading, complete Power spectral density
loading, high-frequency

impact and Partial

reloading

Spectrogram

D )
1= Tp (L.501p_op + eop_3p + 1.503,_g4p)  (Larizza et al., 2020)

Data-driven Not applicable Wavelet envelope
Matrix diagram

RMS feature

Ensemble tree (Kumar et al., 2024)
CNN and BiLSTM (Xiyang et al., 2023)
BPNN (Qin et al., 2022)

measured vibration signals with spall size, representing the evo-
lution law over the bearing’s life (Qin et al., 2022). It is evident that
advanced architecture can be employed to enhance the perfor-
mance of this method. However, the model’s accuracy relies on
the quantity and quality of the training data, limiting its general-
izability under different operating conditions. In summary, both
the expert-knowledge-based and data-driven approaches have
strengths and limitations. Thus, it is natural to devise a hybrid ap-
proach that leverages the strengths of these two approaches while
minimizing their weaknesses.

2.2. Neural network architecture with Fourier
convolution

Neural network architectures often incorporate Fourier trans-
forms to improve efficiency. Previous studies have demonstrated
that the neural architecture training process can be acceler-
ated. For example, Mathieu et al. employed fast Fourier trans-
forms (FFT) by computing convolutions as pointwise products
in the Fourier domain (Mathieu et al,, 2013). Furthermore, this
study demonstrated that, with numerical experiments, the sim-
ple Fourier transform-based algorithm can accelerate the train-
ing and inference processes by a significant factor. A Fourier layer
architecture was devised to processes features through parallel
local and global paths effectively, where the global path selec-
tively preserves lower frequency components for computational
efficiency (Li et al., 2020). In that study, it was demonstrated that
the Fourier layer was highly efficient, as the multilayer architec-
ture solved partial differential equations (PDEs) up to three orders
of magnitude faster compared to conventional PDE solvers.
While these studies focused on computational efficiency, con-
ventional convolution operations have demonstrated effective-
ness in bearing fault diagnosis (Liang & Zhao, 2021, 2022; Liu et
al., 2020). The convolution operation of the I layer is defined as

M
I 1 1-1 lcony.
hicOnvm _ Z Wi * Uj + biCDn D )
j=1

where hlfﬂ"”w is the i output vector of the convolution of the layer
I, wi; is the weight of the {"™ filter at layer I; uj"* denotes the j™
feature vector with M channels generated from layer -1, blf""“f’
is the i™ bias vector for the convolution at the layer I; and w%.j
and blf‘m“D are the parameters that are optimized through train-
ing. Despite the proven effectiveness of convolution operations in

CNN models (Kim et al., 2020), conventional convolutions in mod-
ern deep networks are limited by their local operation within the
receptive field, making them ineffective for learning non-local fea-
tures (Wang et al., 2018). Although these limitations can be par-
tially addressed through enlarged receptive fields (Han et al., 2019)
and multi-receptive fields (Liet al., 2020), additional improvements
have been sought through Fourier-based approaches.

Building upon these developments, fast Fourier convolution
has been studied to further enhance the accuracy of neural net-
work performance. The fast Fourier convolution architecture was
developed to leverage the complementary nature of local and
global information processing effectively (Chi et al., 2020). This ap-
proach allows for internal information sharing between the local
and global paths, enabling each path to benefit from the features
extracted by the other. This architecture demonstrated significant
performance improvements in computer vision tasks. More re-
cently, Sinha et al. proposed the non-local attention-aided Fourier
convolution architecture to widen the receptive field and learn
long-range dependencies (Sinha et al., 2022). For image super reso-
lution tasks, this Fourier-convolution-based architecture achieved
performance comparable to that of other approaches, while using
fewer model parameters.

In summary, the application of Fourier transforms in existing
neural architectures has demonstrated promise in accelerating
model training and enhancing performance for various tasks, in-
cluding image recognition, human key-point detection, and im-
age super-resolution. For spall-size estimation in bearing fault
diagnostics, prior work has reported that the frequency compo-
nents between several tens and hundreds of Hz are closely as-
sociated with the spall size, when analysing the vibration im-
pulses measured from bearings with spalls (Moazen Ahmadi et
al.,, 2016; Sawalhi & Randall, 2011). Consequently, it is anticipated
that a Fourier-convolution-based method has more potential than
a conventional-convolution-based method for enhancing specific
frequency components in vibration impulses. However, to the best
of our knowledge, the potential of a Fourier-convolution-based
neural architecture has not yet been exploited for spall-size es-
timation of REBs.

3. Proposed Method

As stated earlier, it is desirable to leverage the benefits of
both the expert-knowledge-based and data-driven approaches.
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Figure 1: Existing Fourier-layer architecture. (A) Fourier layer (Li et al., 2020). (B) Fast Fourier convolution layer (Chi et al., 2020).

Moreover, incorporating Fourier convolution into a neural network
architecture has great potential for spall-size estimation tasks.
The key questions are (1) how to incorporate the expert knowl-
edge (i.e., spall-size estimation formula) into the neural network
and (2) how to design the Fourier convolution network architec-
ture that can enhance the frequency components associated with
the vibration of spall-like defects. To address these challenges,
Section 3.1 proposes a modified Fourier convolution layer that
can extract the spectral features associated with spall-excited
events without any assumptions about the spall-excited events.
Section 3.2 presents ekg-SSE. The section outlines the novel al-

gorithm that was devised to enable backpropagation through the
expert-knowledge-based formula during model training. Section
3.3 describes the proposed HSSE model for estimating the spall
size of REBs.

3.1. Modified Fourier convolution layer

As depicted in Figure 1A (Li et al., 2020), the local path performs
conventional convolutions on a subset of the input feature chan-
nels, while the global path operates in the frequency domain.
The Fourier convolution part is specially designed to selectively
preserve the lower frequency components (m; to me,) while
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Figure 2: Modified Fourier convolution layer.

filtering out the higher components. This selective preservation
enhances computational efficiency by focusing on the most signif-
icant frequency components, ensuring robust performance with-
out compromising accuracy. As presented in Figure 1B (Chi et
al., 2020), the fast Fourier convolution layer also conducts con-
ventional and Fourier convolution, where the information ex-
tracted from the two paths is internally shared, complementing
one another.

Inspired by the existing Fourier neural network architecture
in Chi et al. (2020) and Li et al.,, (2020), the proposed frequency
layer incorporates fast Fourier convolutions that have local and
Fourier convolution within the convolution unit, as shown in Fig-
ure 2. In particular, the proposed Fourier convolution has a novel
architecture to accommodate the characteristics of the vibration
impulses observed from defective REBs with spalls. The Fourier
convolution process starts with the Fourier transform of the in-
put feature channels, providing the magnitude and phase for each
channel:

V}’l[k] _ U?—l[n] ) exp—j(Zn/N)kn _ ’v}l—l[k]’ . expjivj’l[k]’
n=0
] = R )+ ()
V) = tan ! (1(VIR]) /R (VI R))), )

where Vj“[k] is the Fourier transform of Uj“[n} with an even
length N as the j™ feature vector at the I-1 layer; k is the frequency
index, which ranges from 0 to N/2 for a positive frequency; |V;"* k]|
is the magnitude of V;*[k] at the frequency index k; and £V ;-*[k]
denotes the phase angle of V;"*[k].

Then, the magnitude (|V;"![k]|) of each channel's frequency in-
dex k is element-wise multiplied with the filter, Kl-I , that consists
of learnable parameters with (N/2) + 1 length. Meanwhile, the
phase (£Vj"1[k]) of the feature spectrum undergoes element-wise
multiplication with a filter g}j where all k index values are set
to one:

s

Vi 10 = %K@ [k]- ‘V}’l[k]
g, ft

V2

M
_ Ll /-1
b = 2 sl V)
Finally, the magnitude of the feature spectrum, along with the
retained phase information, is transformed back to the time do-
main via inverse Fourier transform:

Tylcony.Fourer
1

= F71 (\71&/% [k] . eijV'lPha W)

N/2 ~

1 ~ A )

8 2o (7, - exp o 1) cexplenmiin, )
k=0

where hiﬁf is the i output vector found by the Fourier convo-
lution at the Fourier layer L.

The magnitude of the complex spectrum contains informa-
tion about the energy content of the signal across each frequency
component. The role of the filter Kilj is to identify the frequen-
cies associated with the entry and exit events appearing in the
signal when the RE passes through the spall. As the phase rep-
resents the relative position of each frequency component with
respect to the time reference point (Oppenheim & Lim, 1981),
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it is necessary to maintain the phase information of the en-
try and exit events. Therefore, by element-wise multiplication of
g}}. filters, in which all values are one, and phases, the phases
of each channel of the feature spectrum can be consistently
maintained.

Subsequently, the modified Fourier convolution layer outputs
a feature map by summing the result vectors of the 1D convolu-
tion and the Fourier convolution in an element-wise manner. The
summation of the two output feature vectors can be input into
the nonlinear activation function:

U% =0 (hIiCOnV L hgcanv.ﬂmner) , (6)

where v;! is the i output feature vector that sums the results of
each convolution operation at the Fourier layer [; o is the nonlin-
ear activation function. Pooling layers were excluded to preserve
frequency information. Consequently, the modified Fourier con-
volution layer leverages both local convolutions through the 1D
convolution and global convolutions in the Fourier convolution to
extract spall-related signal characteristics.

3.2. Expert-knowledge-guided spall-size
estimator

In this work, ekg-SSE is devised to effectively incorporate an em-
pirical equation developed by domain experts. Unlike conven-
tional methods that directly extract T; from raw signals through
signal processing techniques, the proposed approach uses the
modified Fourier convolution-based neural network to learn and
enhance spall-related features. The feature map output from the
modified Fourier convolution layer contains spatial information
regarding spall-excited events, specifically, the moments when
RE passes the spall's entry (Tenwy) and exit (Teyx;) points. For ex-
ample, as shown in the channel-averaged feature map in Fig-
ure 3A, the neural network processes vibration signals to ef-
fectively capture impact signals associated with spalling. Us-
ing the feature map, ekg-SSE determines the time difference
(Ti = Texit — Tenuy), which correlates with the physical size of
the spall as shown in Equation 1 (or another equivalent for-
mula), given the time difference, bearing geometry, and the shaft
speed.

Locating the time difference between the entry and exit
moments within the feature map vector appears to be straight-
forward, as it merely involves indexing that exceeds a threshold
within the feature map vector. However, simple indexing can
impede backpropagation. To address this challenge, a novel
algorithm is proposed in this section to calculate the time
difference while allowing backpropagation. This algorithm
incorporates cumulative autocorrelation, clamping, and an
element-wise product with linear functions, which is anal-
ogous to the reparameterization trick (Kingma & Welling,
2013) that enables backpropagation. The time difference
calculation module consists of eight steps, as illustrated in
Figure 3A.

The first step involves computing the channel-wise average of
the feature maps at the modified Fourier convolution layer.

M
1
x=) X, 7)
j=1

where x; represents the t™ value of the averaged feature map vec-
tor; Xl.ft is the feature vector of the t™ value at the j™ channel of
the layer Ir; and M is the total number of channels.

In the second step, the autocorrelation of the averaged feature
map is computed, allowing the identification of the periodically
repeating T; pattern. The autocorrelation coefficient vector (R) is
expressed below:

R ={ro,r1,--- .11},
L

L
Te= Y (X — X)Xy — >E)/X: (x — %)’ 8)
=

t=0

where 1o, 11, ..., 11 are the autocorrelation coefficient values; X
represents the (t-)™ value of x;; X denotes the average value of x;
and L is the length of x:.

The third step is to transform the autocorrelation coefficient
vector into a new vector (C) by sequentially accumulating the sum
of its individual components:

0 1 L
C={co, €1, --- 1} = Zﬁe,zm e, Zﬁe , 9)
k=0 k=0 k=0

where ¢, c1,..., ¢, are the cumulative sum of the autocorrelation
coefficient values.

The fourth step is to isolate the single T; pattern. This is
achieved by comparing the components of the new vector with
a trainable threshold parameter (cy,). In this step, the individual
components of the C vector are set to the threshold value if they
are smaller than the threshold:

C; if ¢; > ¢

. , 10
Cth if Ci < Ctn ( )

Cclamp =

The initial value of the threshold parameter is set to the av-
erage of the cumulative autocorrelation values corresponding to
the spall sizes of the training dataset for each shaft speed. The
threshold parameter is updated during model training.

In the fifth step, the discrete second difference (S) is computed
to identify the corner point in Camp.

S= Azcclamp = Cclamp.Hl - champ,i + Cclamp,i—l- (11)

The sixth step is to calculate an element-wise product of the
normalized S and the linearly increasing vector (lgy).

T = %max(s) - litr = Fmax(s) (1,2 L = 2}
={T.To -+ T+, Tio} (12)

In the seventh step, the sample point corresponding to T; is de-
termined by extracting the maximum value from the feature vec-
tor T:

Ti=max(Ty, To, -+, Ti - -+, Tr2). (13)

Finally, the spall size in ekg-SSE is calculated by inputting the
estimated T; into Equation 1. The pseudo code used to implement
the steps is presented in Algorithm 1. During the backpropagation
of model training, the gradient is passed through the element as-
sociated with the maximum value, ensuring that the backpropa-
gation operation is possible.
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Proposed FENN with HSSE

L e

Feature ex_t[fgction

Frequency-enhanced

neural network 4

1%t modified Fourier layer

2 modified Fourier layer

(n-1)th modified Fourier layer
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n™ modified Fourier layer

A

Global average pooling

Regression

A

Y

Expert-knowledge-guided
spall-size estimator

Data-driven
spall-size estimator

Step 1

v

Step 2

Step 7

Step 8

Figure 3: Proposed method. (A) Step-by-step algorithmic flow of ekg-SSE. (B) Overall architecture of the proposed FENN model with HSSE.

The proposed model, as shown in Figure 3B, has two parts: feature
extraction and regression. The feature-extraction part consists of

a sequence of modified Fourier convolution layer blocks, while the
spall-size estimation part integrates ekg-SSE and dd-SSE in paral-
lel.

The modified Fourier convolution layer is stacked to construct
FENN that works as the feature extractor. The channels of the
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Algorithm 1: Expert-knowledge-guided spall-size estimation

Input: Feature map (X=[xi;]BaichxChannelxLength), TOtation speed (RS=[7i]gatchn), and trainable parameter

of threshold (Cth: [Cth,l] #ofiRotationispeed)

Output: Expert-knowledge-guided spall size (¥Yekg=[Veke,i|Batch)

1. Initialize Cy as the average target threshold for each RPM based on the training dataset

Assign the threshold [cw/] corresponding to [7] of [xix] to C=[cin.i]Baich

Function: ekg-SSE(X, RS, T)

Average the channels of feature map from X=[x;;«] to X=[x;]

Calculate the autocorrelation of X to R=[7;]Batchx (Length+1)

Clamp (C ¢lamp) all elements [c; ] of C into [cum,] if [cix]<[cw,]; otherwise [c;x]

Calculate the second difference(AZ Celamp) 0f Celamp as S

2
3
4
5
6. Calculate the cumulative sum of R to C=[c;]Batchx (Length+1)
7
8
9

Calculate dot product of Snorm=S/max(S) and I=[idxi=1 o 1-2](Length-2)

10. Calculate the samples of T;= [#]atch from max(7)

11. Calculate the Yz, by substituting 7; into the spall-size estimation formulation

12. Return the ¥eyg

last layer from the FENN structure are compressed through the
global average pooling (GAP) layer. Compressed channel informa-
tion is then transmitted to dd-SSE. As previously discussed, ekg-
SSE computes the spall size (Yey,) through the expert-knowledge-
guided process, incorporating a trainable threshold parameter
(cen). On the other hand, dd-SSE employs a conventional neural
network architecture that includes a GAP layer and fully con-
nected layers to compute the spall size (Y4q). Both estimators are
trained simultaneously, and HSSE outputs the estimate by using
the weighted sum of the two estimates derived from ekg-SSE and
dd-SSE:

YAvspall = (1 - O‘)Ydd + aYekgv (14)

where o is the weight that controls the strength of Ygq and Yey,.
In this study, « was set to 0.5, assigning an equal weight to the
contributions of ekg-SSE and dd-SSE. HSSE is designed to comple-
ment the limitations of the data-driven and expert-knowledge-
based methods.

The spall size estimated by HSSE is set to the learning target by
minimizing the mean absolute error (MAE) for the training sam-
ple:

MAE = Yspall,i - Yspall,i s (15)

N
i=1

where N is the total number of samples in the training data set
and Ygpa i is the i actual spall size.

Optimal structural parameters for the proposed HSSE model
must be determined. A grid search is employed to find struc-
tural hyperparameters, including the modified Fourier convo-
lution layers, the channel combinations, and ekg-SSE location.
The search spaces for the modified Fourier convolution layers
and channel combinations are determined based on findings

Zl=

from a previous study (Kim et al., 2022) and the doubling princi-
ple of VGGNet (Simonyan & Zisserman, 2014), respectively. The
layer location fed to ekg-SSE is determined through an exhaus-
tive search within the Fourier convolution layer search spaces.
Weights and biases are updated using the adaptive moment
estimation (Adam) optimizer. The optimal hyperparameter set
that yields the best performance is selected using a validation
dataset. Finally, the model’s accuracy is evaluated using a test
dataset.

In this research, all computations were conducted on a com-
puter equipped with an Intel Core 19-10980XE processor, 128 GB
of RAM, and an NVIDIA GeForce RTX 3090 graphics card, using
the PyTorch 1.7.1 framework.

4. Case Study 1: Cylindrical Roller Bearing

This study evaluates the proposed model using FAG N206E-TVP2
cylindrical roller bearings, as shown in Figure 4 for intra-domain
prediction and domain generalization. The intra-domain predic-
tion tests spall size estimation within simulation data, while do-
main generalization examines the model’s transfer from simula-
tion to experimental data. Bearing specifications are provided in
Table 2.

4.1. Data description

A simulation dataset was generated using a multi-body nonlin-
ear dynamic model (Moazen Ahmadi et al, 2015), as shown in
Figure 5. The parameters of the simulation model were cali-
brated to maximize the agreement between the computational
frequency response of the experimental results in (Larizza et
al., 2020). The calibrated simulation model parameters are listed
in Table 3. The simulation was carried out using MATLAB
Simulink 2019b. The acceleration signal contains 1 024 data points
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Rolling
element

Spall

Figure 4: Rolling element bearings with a spall-like defect on the outer raceway.

Table 2: Specifications of the cylindrical roller bearing studied (FAG N206E-TVP2).

Number Separation Roller Pitch Inner raceway Outer raceway Dynamic load
of angle diameter diameter diameter diameter capacity
rollers ) (mm) (mm) (mm) (mm) (N)
13 27.6 9.00 46.50 37.50 55.50 44000
Cylindrical roller bearing
Simulation Experiment l
Electric
\ 4
Tachometer
Support bearing
Accelerometers
Loading with Test bearing
hydraulic ram 1 »qer distance sensor
Train
Intra-domain test ¢ Domain generalization test¢

Figure 5: Data preparation including simulation model (Moazen Ahmadi et al., 2015) and test rig (Larizza et al., 2020).
calculated from the bearing cage frequency to capture the spall- modeled with a spall depth of 110 um. Data were collected with
like vibration signal as RE passes over the spall at the lowest shaft constant shaft speeds of 300, 450, 500, and 750 RPM, and constant
speed. loads of 2500, 5000, and 10000 N. To further emulate real-world

In the simulation, the spall size varied from 7.51 to 9.69 mm. conditions, white Gaussian noise was added to the simulated sig-
The corresponding arc angles (B in Figure 4) varied between 15.5 nals, resulting in a signal-to-noise ratio of 20 dB (Sawalhi et al,

and 20.5° in 0.5° increments. The bearing defect geometry was 2017).
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Table 3: Simulation model parameters.

Resonant spring system

Bearing inner raceway

Hertzian contacts for outer raceway characteristics Pedestal characteristics

Kin = 249 MN/m m, =0.5kg m; =0.2kg Mp = 1.2403 kg

Kout = 249 MN/m Ko = 4934.8 MN/m Kex, Ky = 1152.7 MN/m Kpx = 0.0687 MN/m, Kpy = 0.0387 MN/m
C =800N s/m Co =993.5 N s/m Csx, Csy = 1214.7 N s/m Cpx, Cpy = 4006 N s/m
Variables

K: stiffness [MN/m], M: mass [kg], C: damping coefficient [N s/m]

Subscripts

in: inner raceway, out: outer raceway, o: resonant spring system for outer raceway, s;: support at i-direction, p;: pedestal at i-direction

The experimental dataset was obtained using a SpectraQuest
test rig, as shown in Figure 5. This dataset is publicly available
(Larizza, Howard, Grainger et al., 2020). The spall sizes were 8.2
and 9.69 mm, with spall edge angles varying at 5°, 20°, 30°, 45°,
and 90° (denoted as « in Figure 4). Further details can be found in
Larizza et al. (2020).

4.2. Task configuration and model training

The two tasks, along with the domain, spall geometry, and dataset
usage, are shown in Table 4. The intra-domain prediction task was
designed to evaluate the model’s prediction accuracy for different
spall sizes within the training domain using simulated data. The
domain-generalization task assessed the model’s ability to predict
spall sizes accurately across unseen domains by utilizing simula-
tion data for training and experimental data for testing.

The results of the hyperparameter study are presented in Ta-
ble 5. Within the search space, it was observed that MAE decreased
as the number of layers and channels increased. It was expected
that including additional layers and channels could improve the
performance of the approach. However, the maximum allowed
GPU memory is limited in practice. Therefore, a tradeoff between
performance and computational resources was needed. The opti-
mal layer location fed into ekg-SSE was the fifth layer, directly be-
fore the last. This placement was most effective in this case study.
The neural network learns more abstract knowledge in deeper lay-
ers, making the penultimate layer ideal for interpreting a spall’s
mechanical properties. Consequently, the proposed model’s archi-
tecture has 2° channels in the first layer. As the layers are stacked,
the number of channels expands by 2!, resulting in a total of six
layers. The model architecture was found to be most suitable for
ekg-SSE located in the fifth of these six layers. The mini-batch size,
learning rate, and stop criterion were 1024, 10~*, and 350 epochs,
respectively.

The performance of the proposed model was tested for each
condition of shaft speed and load per spall size. The number of
training samples was set to 35 for the intra-domain task and 83
for the domain-generalization task. The number of test samples
was set to 262, which represents the total cycles of bearing outer
race fault frequency measured over 10 seconds. To account for the
effect of weight initialization on model performance, prediction
results were averaged across five random seeds.

4.3. Results and discussion
4.3.1. Results
The spall-size estimation performance is presented in Table 6. To

evaluate the model’s accuracy, the correct spall size was com-
pared with the predicted spall size, absolute error, and relative

error as key metrics. For the intra-domain prediction task, the
model achieved an average absolute error of 0.635 mm and a rela-
tive error of 7.18% across five different spall sizes. In the domain-
generalization task, the model demonstrated an average relative
error of 8.57% for two spall sizes. These results indicate that
the proposed model performs comparably to previously reported
methods in the literature, which estimate spall size using conven-
tional signal-processing techniques with an approximate error of
5% (Larizza et al., 2020).

Table 7 compares spall-size estimation methods across signal
processing, data-driven, and hybrid approaches, revealing distinct
patterns in their performance characteristics. The conventional
signal processing method by Chen and Kurfess (2019) showed rea-
sonable accuracy in intra-domain prediction with a relative er-
ror of 7.42 (+7.50)%. However, its performance degraded signifi-
cantly in domain generalization tasks, reaching 14.13 (+£12.44)%.
This limitation suggests that pure signal processing approaches
may lack robustness when faced with varying operational con-
ditions. The data-driven approach by Jeong (2023) encountered
substantial challenges, particularly in the ensemble averaging
process, resulting in high relative errors of 22.10 (+4.03)% for
intra-domain prediction and 34.48% (+£16.63)% for domain gen-
eralization. However, Kumar et al. (2024) demonstrated that com-
bining data-driven techniques with signal processing could sig-
nificantly reduce these errors, achieving 8.02 (+5.94)% and 9.58
(£7.19)% for intra-domain and domain generalization tasks, re-
spectively. The proposed model, which integrates physical knowl-
edge with deep learning, achieved the most consistent perfor-
mance across both tasks. Its relative errors of 7.18 (+5.00)% for
intra-domain prediction and 8.57 (+4.13)% for domain general-
ization demonstrate the effectiveness of incorporating domain ex-
pertise into machine learning frameworks. These results highlight
how the synthesis of physical understanding and data-driven ap-
proaches can enhance both accuracy and generalization capa-
bility in bearing fault diagnosis. A noteworthy advantage of the
proposed model is its time and cost efficiency, as training can be
conducted using simulation data rather than requiring extensive
experimental testing. Moreover, its demonstrated ability to gen-
eralize across different bearing represents an advancement for
practical industrial applications, where diagnostics must remain
reliable across varied equipment configurations and operating
environments.

The feature visualization process of the proposed model uses
raw time-domain vibration signals as input, and multiple fea-
ture map channels in each FENN layer are averaged into a sin-
gle channel for visualization. The averaged feature maps are an-
alyzed in both time and frequency domains, and the frequency
analysisis inferred by transforming from the time-domain feature
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Table 4: Task configuration.

Task Domain Spall size (mm) Edge angle (°) Usage

Intra-domain prediction Simulation 7.51,7.99, 8.48, 8.96, 9.44, 9.93 90 Training
Simulation 7.75,8.23,8.72,9.20, 9.69 90 Test

Domain generalization Simulation 7.51,7.99, 8.48, 8.96, 9.44, 9.93 90 Training
Experiment 8.23 5 Test
Experiment 9.69 20, 30, 45, 90 Test

Table 5: Hyperparameter study results of case study 1.

Layer fed to ekg-SSE
(mean absolute error)

Number of Channel
layers combination 1 2 3 4 5 6
2 [21,22] 121 108 - - - -
[22, 23] 126 115 - - - -
[23,24] 125 105 - - - -
[2%,29] 128 116 - - - =
[25, 2] 129 127 - - - -
4 [21, 22,2324 121 110 1.08 107 -  —
[22,23,2%,2°] 1.18 1.04 1.00 1.02 - -
[23, 2%, 25 2] 127 115 112 112 — -
[2%,2°,25,27] 1.09 099 09 087 — -
[25,26,27, 28] 111 1.10 1.09 100 -  —
6

[21,22 23 2% 25 26] 1.20 1.07 1.05 1.03 1.05 1.04
[22,23,24, 25 26 27] 1.11 098 099 0.99 094 0.90
[23,2% 25 26,27 28] 1.11 1.03 0.94 093 0.92 0.88
[2¢,25,25,27 28 2°] 1.22 124 127 126 127 1.23
[25,26 27,28 29 2191 107 1.10 1.10 1.08 0.78 0.79

Table 6: Performance evaluation of the proposed model.

Answer spall Predicted Absolute Relative

size spall size  error error
Task (mm) (mm) (mm) (%)
Intra-domain prediction 7.75 7.35 0.619 7.98
8.23 8.23 0.316 3.84
8.72 8.40 0.476 5.46
9.20 8.68 0.725 7.88
9.69 8.90 1.039 10.72
Average 0.635 7.18
Domain generalization 8.23 8.64 0.685 8.33
9.69 9.37 0.836 8.63
Average 0.859 8.57

maps, assuming a one-second period. The objective was to ascer-
tain whether the frequencies identified in the feature map were
associated with the spall entry and exit events of REs. In previous
studies (Larizza et al., 2020), it was reported that frequencies of 200
and 1050 Hz were linked to the spall entry and exit events, respec-
tively. Feature map visualizations were conducted for all experi-
mental conditions listed in Table 6. As a representative example,
the results obtained at 5000 N and 600 RPM, intermediate values
of the dynamic conditions of load and shaft speed, are shown in
Figure 6.

In the intra-domain prediction task, from the time-domain vi-
sualization on the left side of Figure 64, it is evident that as the
layers deepen from the first to the fifth, the spike components
associated with spall entry and exit events become progressively
more pronounced. This indicates that the feature map from the

fifth layer is well-suited for input to ekg-SSE. In contrast, at the
sixth and final layer, the previously emphasized components in
the time domain are diminished. The frequency-domain visual-
ization on the right side of Figure 6A clarifies this behaviour, show-
ing that the network effectively suppresses non-spall-related fre-
quency components while enhancing spall-related signals, such
as the 200 Hz component linked to spall entry. This selective fea-
ture extraction ensures that the final-layer feature map retains
only the most relevant spectral components. Therefore, it is ap-
propriate to use this feature map as input to dd-SSE, demonstrat-
ing the effectiveness of the modified Fourier convolution layers in
extracting spall-related features.

In the domain-generalization task, the visual inspection results
were similar to those of the intra-domain prediction task. An ob-
servation is that, in the feature map of the 6 layer, the frequency
components at 200 Hz showed a prominent amplitude, as shown
in Figure 6B. Furthermore, the frequency range from 925 to 1075
Hz was identified in previous research (Larizza et al., 2020) as sig-
nificant for capturing spall exit events, although this range ap-
pears with much lower amplitude than the 200 Hz component
in our spectrum analysis. This differential prominence between
entry and exit frequency components is consistent with previous
observations. This suggests that the proposed model has an en-
hanced ability to broadly predict spall characteristics.

The stability of the proposed model was evaluated by an
ablation study, as presented in Table 8. For example, in the
domain-generalization task, the prediction accuracy and stan-
dard deviation increased from 72.68% (Hybrid CNN) to 91.66%
(Proposed model) and from 20.57% to 4.21%, respectively, when
the modified Fourier convolution layers were adopted. As an-
other example, the prediction accuracy and standard deviation
increased from 78.81% (FENN) to 91.66% (Proposed model) and
from 11.28% to 4.21%, respectively, when ekg-SSE was adopted.
Thus, it was corroborated that the proposed model is accurate and
robust in the intra-domain prediction and domain-generalization
tasks.

4.3.2. Discussion on different training sample sizes

The performance of the proposed model was examined across dif-
ferent amounts of training data. The relative error of the spall-size
predictions is described in Figure 7. As expected, the relative error
for both tasks decreased as the amount of training data increased.
The training data intervals are scaled logarithmically. The error
bar in the figure indicates the variation between different shaft
speeds and different loading conditions.

For the intra-domain prediction task, as presented in Figure 7A,
the relative error results of the proposed model quickly converged.
This result suggests that spall-size estimation was possible with
a small number of training data, when the training and test data
were sampled from identical domains (i.e., simulation model).
Conversely, in the case of the domain-generalization task, the in-
creased number of training data is required for convergence in
the relative error, as shown in Figure 7B, when the training and
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Table 7: Comparison of spall size estimation between existing and proposed models.

Signal processing

Method (Chen and Kurfess, 2019)

Data-driven
(Jeong, 2023)

Data-driven with
signal processing
(Kumar et al., 2024)

Proposed FENN
model with HSSE

Intra-domain prediction
Domain generalization

7.42 (+7.50)%
14.13 (£12.44)%

22.10 (+4.03)%
34.48 (+16.63)%

8.02 (£5.94)%
9.58 (£7.19)%

7.18 (£5.00)%
8.57 (+4.13)%

test data were sampled from different domains (i.e., simulation
model and experimental using a test rig). It is worth noting that,
in the case of a dearth of real data for Al model training, the pro-
posed model can provide accurate prediction results of spall sizes
in bearings of a real test rig, when the calibrated simulation model
can precisely emulate the physical behavior of real bearings.

4.3.3. Discussion on performance evaluation under dy-
namic conditions

The performance of the proposed model was evaluated for pre-
dicting spall size under dynamic conditions of load and shaft
speed. As a representative example, the spall size of 8.23 mm was
selected. The proposed approach demonstrated superior accuracy
in interpolation tasks, even with a training sample size as small
as 35 samples. Figure 8A shows that the estimated spall size in-
creases with increasing load. The estimate remains close to the
true value, with a maximum relative error of 2.49%. Figure 8B
presents that the estimated spall sizes also increase as the shaft
speed increases. Across all four shaft-speed conditions, the model
maintained predictions within a 2.85% relative error of the true
spall size, which is considered negligible. Previous research (Mu-
fazzal et al, 2023) has demonstrated that increasing the radial
load yields stronger characteristic signals in vibration impulses.
Moreover, it was reported that, at low shaft speeds, spall entry-
exit impact peaks are sharp, while at higher shaft speeds, the
influence on the exit impulse diminishes. The results described
above, as observed in this study, are consistent with the findings
from previous research. Thus, it was corroborated that the pro-
posed model estimated the mean of the actual defect size with
negligible deviations, suggesting that the proposed model is ac-
curate in spall-size estimation across various dynamic operating
conditions.

5. Case Study 2: Deep-Groove Ball Bearing

This study examines the proposed model’s extrapolation capabil-
ities with SKF 6205-2RS JEM deep-groove ball bearings. It tests the
model’s prediction accuracy beyond its training range, reflecting
scenarios where bearing damage progresses over time. The speci-
fications of the ball bearing studied in this research are shown in
Table 9.

5.1. Data description

An experimental dataset was generated using a testbed in the
Smart Diagnosis and Design Optimization (SDDO) Laboratory at
the Gwangju Institute of Science and Technology (GIST), Korea. As
shown in Figure 9, the rotational shaft is supported by two bear-
ings. One bearing included a spall defect. Based on the previous
study (Chen & Kurfess, 2019; Zhang et al., 2021), the axial length of
the spall was determined to be 5 mm. The width of the spall varied
from 0.6 to 1.6 mm, with an interval of 0.1 mm. The spall depth
was 100 um (Sawalhi & Randall, 2011). The defect was precisely
fabricated by electrical discharge machining.

The defective bearing was installed on the right-hand side of
the testbed. An accelerometer whose sensing direction was the
y-axis was mounted on the bearing housing. The sampling fre-
quency was 25.6 kHz. Vibration data were collected at the shaft
speeds of 450, 600, and 750 RPM.

5.2. Model training

The input data length was determined based on the bearing’s
cage frequency at three shaft speeds. The minimum required data
points were calculated to be 952 at the lowest speed. Based on
this calculation, the input length was set to 1024 data points, a
value reasonable to accommodate signal properties across differ-
ent speeds. The input signal underwent preprocessing, including
division without overlap and standardization to zero mean and
unit variance. The number of training samples was determined
by multiplying the ten-second data acquisition time by the bear-
ing outer-race fault frequencies, resulting in 269 samples per shaft
speed. The test dataset size was set to one-third of the training
samples.

A study was conducted to determine a set of relevant hyper-
parameters. The datasets used for the hyperparameter optimiza-
tion task are shown in Table 10. During the training process, the
model with MAE loss function was selected from combinations of
hyperparameters, including the number of layers, channel combi-
nations, and ekg-SSE locations, as detailed in Table 11. The batch
size, learning rate, and number of epochs were set to 1024, 1074,
and 250, respectively. To account for the influence of weight ini-
tialization, a grid search approach was used to determine the
model architecture through three random seed tests. The optimal
configuration was achieved with six layers, channel combinations
from 2° to 2%, and the ekg-SSE layer positioned at the fifth layer.
This setup resulted in an MAE of 0.108.

The performance of the proposed model was evaluated using
the dataset from the extrapolation estimation task, as shown in
Table 10. To ensure robustness, the evaluation results were aver-
aged across five unique random seeds.

5.3. Results and discussion
5.3.1. Results

The proposed model predicted the spall size with an average rela-
tive error of 23.37% when evaluated using the dataset used in the
hyperparameter optimization task. This result can also be consid-
ered as the performance in the interpolation task.

The extrapolation performance of the HSSE model is summa-
rized in Table 12, where the predicted average spall size is com-
pared with the true spall size and the relative error is analyzed
at each rotational speed. The average relative error increased as
the spall size deviated from the training domain. The smallest er-
ror (22.77%) was observed at 1.2 mm, which was closest to the
training domain. A comparison with the average interpolation
performance showed similar spall-size estimations within a 1%
error margin. For the largest tested spall size of 1.6 mm, which
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Figure 6: Representative example of feature map visualization of modified Fourier convolution layers. (A) Intra-domain prediction task. (B)
Domain-generalization task.

Gz0z aunp /| uo Jasn ABojouyoa] @ 9ousIdg Jo ansul nr Buems) Aq 629601.8/1/S/Z L /a1onie/epal/woo dno-oiwspese//:sdny wolj papeojumoq



14 | Frequency-enhanced neural networks

Table 8: Ablation study: spall-size prediction accuracy (%).

Proposed FENN

Conventional CNN Hybrid CNN FENN model with HSSE
Including Fourier convolution layers No No Yes Yes
Task Including ekg-SSE No Yes No Yes
Intra-domain prediction 53.54 (+£44.01) 83.03 (£20.26) 88.33 (+8.69) 92.82 (+5.89)
Domain generalization 17.96 (£35.97) 72.68 (+£20.57) 78.81 (+£11.28) 91.66 (+4.21)
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Figure 7: Relative error of the average spall-size estimation with respect
to the number of training data. (A) Intra-domain prediction task. (B)
Domain-generalization task.

represented the furthest extrapolation from the training domain,
the model showed the highest relative error of 37.21%.

However, this prediction pattern showed inconsistent devia-
tions; notably, the 1.4 mm spall size exhibited a higher error
(29.98%) than the 1.5 mm size (27.11%), despite being closer to
the training domain. Previous studies have indicated that spall
depth can affect the contact conditions and vibration response of
REs, potentially leading to size-estimation errors (Mufazzal et al.,
2023). This study also found that deeper spalls can lead to contact
loss with the raceway, resulting in stronger impact forces that may
distort spall entry- and exit-based size estimation. Consequently,
further analysis was conducted to identify whether the observed

Figure 8: A representative example of spall-size estimation results. (A)
Varying load conditions. (B) Varying shaft-speed conditions.

prediction error was due to machining effects of spall size or spall
depth influence; this analysis is presented in Section 5.3.2.

5.3.2 Model performance assessment based on preciously
measured spall size and depth

The spall-size estimation results were further analyzed by mea-
suring the actual machined dimensions, including spall size and
depth. Spall dimensions were measured using Bruker’s DektakXT
and Micro-vu’s EXCEL 501UC instruments, providing detailed sur-
face and three-dimensional measurements. As specified in

Table 13, the eleven spall widths, representing spall sizes, were
manufactured with an average error of 1.17% (0.01 mm). For the
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Table 9: Specifications of the deep-groove ball bearing studied (SKF 6205-2RS JEM).

Number Separation Ball Pitch Inner raceway Outer raceway Dynamic load
of angle diameter diameter diameter diameter capacity
balls ) (mm) (mm) (mm) (mm) (N)
9 40 7.938 39.04 25.00 52.00 14000
Accelerometer
Coupling (y direction only)
Defect
bearing
0.7 mm 0.9 mm 1.1 mm 1.3 mm
0.6 mm 0.8 mm 1.0 mm 1.2mm 1.4 mm
Figure 9: Rotor testbed and ball bearings with different defect sizes.
Table 10: Bearing datasets with different spall sizes.
Task Purpose Spall size (mm)
Hyperparameter optimization Training 0.6 0.8 1.0 1.2 1.4 1.6
Validation 0.7 0.9 1.1 1.3 1.5
Extrapolation Training 0.6 0.7 0.8 0.9 1.0 1.1
Test 1.2 1.3 14 1.5 1.6

spall sizes of interest, 1.4 and 1.5 mm, the manufacturing error
was evaluated to be within 1%, indicating a reliable level of pro-
duction accuracy. For the 1.6 mm spall size, which represented
the furthest extrapolation test point, the manufacturing error was
similarly well-controlled at 1.25%, indicating that the increased
prediction error at this size was not attributable to manufactur-
ing variations.

To further investigate the cause of the higher error in the 1.4
mm spall size, a detailed analysis of the defect depth was con-
ducted using 3D laser profilometry. This analysis aimed to deter-
mine whether the depth characteristics of the spall could con-
tribute to the observed prediction errors, as the manufacturing

process had already been confirmed to be accurate (Table 13). The
three-dimensional profile of the processed spall depth according
to the spall size is shown in Figure 10, which illustrates the depth
characteristics through high-resolution surface measurements.
For a comprehensive understanding, Figures 10A-10D present the
surface topography across different spall widths (0.6, 1.3, 1.4, and
1.5 mm), while Figure 10E defines the key surface profile parame-
ters used for quantitative analysis. The depth variations are quan-
tified using three critical parameters defined in Figure 10E and
measured in Table 14: R, (Maximum profile peak height), Ry (Max-
imum profile valley depth), and R, (Maximum height of profile,
calculated as the difference between Ry, and Ry).
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Table 11: Hyperparameter study results of case study 2.

Location of ekg-SSE
(mean absolute error)

Number of
layers Channel combination 1 2 3 4 5 6
2 [21,22] 0.144 0138  — - - -
[22,2%] 0.168 0.136  — - - -
[23, 24 0.167 0195  — - - -
[24,2%] 0.158 0.143 - - - -
[2°, 28] 0153 0142  — - - -
4 [21,22,23,24] 0143 0132 0.142 0131 - -
[22,23,24,25] 0.158 0.140 0.142 0138  — -
[23,2%,25,29) 0151 0137 0.124 0125 - -
[2% 25,26,27] 0.148 0.149 0.148 0.161  — -
[2°,26,27, 28] 0.145 0.136 0.128 0.152  — -
6 [2%,22 23,2425 26] 0185 0.164 0.174 0.155 0.143 0.145

]
[22,23,2%,25,25,27] 0203 0174 0.166 0.160 0.175 0.174
[23,2% 25,2627 28] 0203 0179 0172 0.178 0.185 0.194
[24,25,25,27,28,29] 0195 0199 0.189 0.171 0.210 0.218
[25,2%,27 28 29 2101 0119 0.108 0.111 0.112 0.108 0.112

Unlike when the spall width is 0.6 mm in Figure 10A, a dif-
ference in depth flatness can be visually confirmed as the spall
width increases from 1.3 to 1.5 mm, as shown in Figures 10B—D. In
particular, when quantifying the depth roughness in the case of
the 1.4 mm spall width in Figure 10C, it was confirmed that R, was
155.0 um, as shown in Table 14. On the other hand, the depths R,
of the 1.3 and 1.5 mm spall sizes were 122.5 and 124.2 um, re-
spectively. It was confirmed that the R, of the 1.4 mm spall had a
greater height deviation than the R, of the 1.3 and 1.5 mm spall
sizes by approximately 20.9 and 19.6%, respectively. Therefore, it
was found that the 1.4 mm spall size causes a difference in the
peak times of the entry and exit events of the measurement sig-
nal due to the depth deviation when the RE passes through the
raceway, leading to an error deviation in the model prediction. For
the 1.6 mm spall size, despite having well-controlled manufactur-
ing precision (1.25% error) and relatively uniform depth charac-
teristics (R, = 110.5 um), the model showed reduced prediction
accuracy. This observation, combined with the previous results,
suggests that while the proposed model maintains reliable predic-
tions for spall sizes near its training domain, its performance de-
grades when estimating sizes that substantially exceed its train-
ing experience, even under ideal manufacturing conditions.

5.3.3. Discussion on frequency enhancement

The proposed model was analyzed by comparing feature maps
with conventional CNN, Hybrid CNN, and FENN models. A spall
size of 1.2 mm at 750 RPM was selected as a representative ex-
ample, as shown in Figure 11. The conventional CNN model’s
feature maps (Figure 11A) show spall-like impulses at 0.01 and

Table 12: Estimated relative error in the extrapolation task.

0.03 s, with time-domain patterns differing only in amplitude
between the first and last layers. No specific frequency compo-
nents were emphasized in its frequency-domain feature maps.
The hybrid CNN model (Figure 11B) showed similar limitations,
with a decrease in feature amplification at higher frequencies.
The FENN model (Figure 11C) demonstrated reduced amplifica-
tion in its last layer’s time-domain feature map, while showing
a slight deviation from the monotonic decrease pattern in the
2.4-3.8 kHz range of the corresponding frequency-domain fea-
ture map. This difference arises because Figures 11A and B illus-
trate the spectral bias tendency of Al networks. In these networks,
learning of lower frequencies is prioritized leading to a continu-
ous decline in emphasis as frequency increases. While the differ-
ence is subtle, the FENN model shows less pronounced spectral
bias in this frequency range, suggesting a potential preservation
of higher-frequency features that may be relevant to fault diag-
nosis. The proposed model (Figure 11D) exhibited time-domain
feature patterns similar to the FENN model, with its last layer
spectrum emphasizing frequencies at 500 Hz, 1.2 kHz, and 2.4
kHz. While the FENN model exhibits moderate frequency compo-
nent amplification related to spall-like defect characteristics, the
proposed model, which integrates both FENN and HSSE, demon-
strates enhanced capability in capturing spectral features associ-
ated with spall-like defects through more pronounced frequency-
component amplification.

6. Conclusions

The proposed HSSE model integrates the interpretability of
expert-knowledge-based methods with the adaptability of data-
driven approaches. The HSSE model consists of two main mod-
ules: (1) a feature extractor, FENN, and (2) a hybrid spall-size
estimator, HSSE. The feature-extraction step combines 1D con-
volution in the time domain with both phase-preservation and
frequency-magnitude Fourier convolution in the frequency do-
main, enhancing local and global feature maps to extract spall-
related features. In the HSSE step, the spall size is estimated in a
data-driven manner using the output of the hidden layers from
the FENN network. Additionally, an expert-knowledge-guided es-
timator aligns the feature map output with the physical principles
of spall-size estimation, enabling end-to-end learning through
backpropagation.

The proposed FENN model, integrated with HSSE, exhibited ef-
fective spall size prediction performance in two case studies. The
first case study analyzed the relative errors for different spall
sizes using both simulated and experimental signals. For intra-
domain prediction tasks, the model achieved an average relative
error of 7.18%. For domain-generalization tasks, it maintained ac-
curacy with an 8.57% relative error when applying simulation-
trained models to experimental data. The proposed model’s fea-
ture maps also revealed prominent spall-related entry and exit

Relative error (%)

Spall size (mm) Predicted spall size (mm) 450 RPM 600 RPM 750 RPM Average
1.2 1.01 £ 0.09 27.87 £ 8.72 25.11 + 9.26 1532 £ 7.78 22.77 £ 10.15
1.3 1.03 £ 0.07 24.02 £ 6.71 22.25 + 6.09 23.47 £ 6.27 23.24 £ 6.40
14 1.01 £ 0.06 29.77 £ 4.93 31.11 £ 5.31 29.06 £ 4.80 29.98 £ 5.09
1.5 1.36 £ 0.11 27.84 £ 7.13 29.49 + 5.83 24.00 £ 6.33 27.11 £ 6.85
1.6 140 £ 0.11 37.53 + 6.38 3532 £ 6.72 38.78 £ 5.50 37.21 £ 6.38
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Table 13: Bearing samples’ defect dimensions, measured by 3D laser profilometry.

Spall size (mm)

Dimension 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60
Width (mm) 0.59 0.70 0.80 0.91 1.01 1.10 1.25 1.33 1.41 1.51 1.58
Measurement error (%) 1.67 0.00 0.00 1.11 1.00 0.00 4.17 2.31 0.71 0.67 1.25

Figure 10: Depth profile of spall-like defective deep-groove ball bearings. (A) 0.6 mm spall size. (B) 1.3 mm spall size. (C) 1.4 mm spall size. (D) 1.5 mm

spall size. (E) Depth profile parameters.

Table 14: Depth surface profile parameters of three bearing spall
sizes.

Spall size (mm)

Parameters 1.2 13 14 15 1.6

Rp (Maximum profile peak height) (um) 657 60.0 69.8 67.6 54.6
Ry (Maximum profile valley depth) (um) —66.1-54.5-85.1 —56.5—55.8
R, (Maximum height of profile) (um) 131.7 122.5 155.0 124.2 110.5

frequency components at 200 Hz and in the frequency band of
925 to 1075 Hz, consistent with the existing signal processing
literature. In the second case study, the extrapolation task demon-
strated the model’s ability to estimate spall sizes beyond the train-
ing range, with an average error of 22.77%, which is similar to its
interpolation performance. The feature map highlighted spall-

related specific frequencies as it passed through the spall. This
indicates that the HSSE model provides interpretable results
through its hybrid architecture.

The experimental design incorporated several real-world com-
plexities: dynamic operating conditions with varying speeds, mul-
tiple fault severities, and environmental variations such as mea-
surement noise. Under these conditions, the proposed model
maintained robust and consistent performance across different
operating scenarios. However, industrial applications may present
additional challenges not fully captured in our current validation,
such as varying load distributions, complex system interactions,
and more severe environmental disturbances. These limitations
suggest the need for further validation in actual industrial set-
tings where bearing operations face more diverse operational con-
ditions and environmental factors.

Future research directions include testing with diverse datasets
to improve applicability to real-world spalls, which often differ
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Figure 11: SDDO testbed feature-map analysis (first layer and the last layer feature map from the input signal) for each model in the extrapolation
task (1.20 mm target) with an operating condition of 750 RPM. (A) Conventional CNN. (B) Hybrid CNN. (C) FENN. (D) Proposed FENN model with HSSE.

from artificially induced defects in terms of shape, depth, rough-
ness, and irregular wear patterns. Additionally, future research
will focus on enhancing the model’s extrapolation capabili-
ties under noisy industrial environments through advanced
noise-robust feature extraction methods and transfer learning
techniques. Future research will also examine whether the
observed relationship between network layer depth and specific
mechanical frequency capture is consistent across different
bearing configurations. To further enhance model accuracy and
generalization, efforts will focus on incorporating applied load
variations and extended simulation-based testing, ultimately
validating the robustness and effectiveness of the model for
field applications under realistic conditions. Additionally, vali-
dations in industrial environments will be crucial to assess the
model’s performance under more complex operating conditions,
including varying load distributions, system interactions, and
environmental factors. These improvements will significantly
enhance the accuracy and applicability of the proposed spall-size
estimation method in real-world scenarios.
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