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ABSTRACT
Background Immune checkpoint inhibitors (ICIs) have 
transformed treatment and have provided significant 
clinical benefits and durable responses for patients with 
advanced non- small cell lung cancer (NSCLC). However, 
only a small percentage of patients respond to ICI 
treatment, and immune- related adverse events (irAEs) 
leading to treatment discontinuation remain challenging. 
Despite the recognized need for biomarkers to predict both 
the efficacy of ICIs and the risk of irAEs, such biomarkers 
are yet to be clearly identified.
Methods In this study, we performed single- cell 
RNA sequencing (scRNA- seq) of peripheral blood 
mononuclear cells (PBMCs) from 33 patients with 
NSCLC before ICIs treatment. To validate our findings, 
we reanalyzed public scRNA- seq data, conducted 
a cytometric bead array (CBA), and supported our 
findings with T- cell receptor sequencing.
Results While the immune response was more 
pronounced in patients with a favorable prognosis, the 
hypoxic pathway was more prominent in patients with 
primary resistance. Lymphocytes such as CD8 T cells, 
CD4 T cells, and natural killer cells were primarily 
involved in these pathways, with PRF1 and GZMB 
expression showing strong associations with favorable 
prognosis. In contrast, irAEs were mainly linked to 
myeloid cells, such as monocytes and macrophages. 
As irAE severity increased, inflammation and the TNF- 
NFKB1 pathway were more prominent. Specifically, 
increased expression of IL1B, CXCL8, and CXCL2 
in monocytes and TNF in macrophages was closely 
associated with severe irAE through involvement in 
these pathways.
Notably, the increase of PRF1 and GZMB expression 
showed a close association with both a favorable 
prognosis and a reduced severity of irAE, which 
was validated through CBA analysis. Moreover, the 
expression of these key markers varied according 
to prognosis and irAE severity regardless of patient 
background, such as programmed death- ligand 1 
expression levels, tumor histology, or prior treatment 
regimens.
Conclusions This study identified biological pathways 
and key biomarkers associated with ICI prognosis and 
irAE severity using PBMC samples before treatment. 
These findings provide a foundation for improved 
therapeutic strategies that enhance clinical outcomes 
while minimizing ICI treatment- associated risks.

BACKGROUND
Immune checkpoint inhibitors (ICIs) have 
revolutionized treatment paradigms for 
patients with advanced non- small cell lung 
cancer (NSCLC), offering remarkable clin-
ical benefits and durable responses.1 As ICI 
use has increased not only in advanced lung 
cancer but also in the early stages, nearly all 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ While immune checkpoint inhibitors (ICIs) have 
emerged as innovative and broadly used treatments 
that enhance the host immune response, biomark-
ers and mechanisms to identify patients with low 
responsiveness or those at risk of immune- related 
adverse events (irAEs) remain unclear.

WHAT THIS STUDY ADDS
 ⇒ Lymphocytes—including CD8+ T cells, CD4 T cells, 
and natural killer (NK) cells—were primarily asso-
ciated with favorable responses to ICIs (complete 
response, CR) and showed the upregulation of im-
mune activation and interferon/cytokine signaling 
pathways. Notably, PRF1 and GZMB were CR specif-
ically elevated in CD8 T cells and NK cells.

 ⇒ In contrast, myeloid cells, such as monocytes and 
macrophages, were predominantly involved in the 
severity of irAEs, with heightened activation of in-
flammatory and TNF–NF-κB signaling pathways ob-
served in severe irAEs. Specifically, the expression 
of CXCL8 and IL1B in monocytes and TNF in mac-
rophages was markedly increased in severe irAEs.

 ⇒ Interestingly, PRF1 and GZMB, which are closely as-
sociated with favorable responses, were also upreg-
ulated in mild- to- moderate irAEs associated with a 
favorable prognosis.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ This study provided biomarkers that potential-
ly serve as a non- invasive screening tool that can 
identify appropriate patients who are likely to ben-
efit from ICI therapy before treatment. Incorporating 
such biomarkers into clinical decision- making could 
help optimize patient selection and minimize the 
risk of severe toxicity.

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies. 
.

T
ech

n
o

lo
g

y
at G

w
an

g
ju

 In
stitu

te o
f S

cien
ce an

d
 

o
n

 Ju
n

e 16, 2025
 

h
ttp

://jitc.b
m

j.co
m

/
D

o
w

n
lo

ad
ed

 fro
m

 
22 M

ay 2025. 
10.1136/jitc-2025-011636 o

n
 

J Im
m

u
n

o
th

er C
an

cer: first p
u

b
lish

ed
 as 

https://jitc.bmj.com/
http://orcid.org/0000-0002-9288-6341
http://orcid.org/0000-0002-3495-0931
https://doi.org/10.1136/jitc-2025-011636
https://doi.org/10.1136/jitc-2025-011636
http://crossmark.crossref.org/dialog/?doi=10.1136/jitc-2025-011636&domain=pdf&date_stamp=2025-05-22
http://jitc.bmj.com/


2 Kim GD, et al. J Immunother Cancer 2025;13:e011636. doi:10.1136/jitc-2025-011636

Open access 

patients with lung cancer now receive this therapy.2 Unlike 
conventional treatments targeting tumors directly, ICIs 
enhance the host immune system ability to recognize and 
eliminate cancer cells, instead of focusing on the tumor 
itself as is the case in conventional cancer treatments.3 
This shift has highlighted the growing importance of 
circulating immune cells in cancer cells.

A hallmark of ICIs is their durable response, attributed 
to adaptive immune memory.4 However, such long- lasting 
response expected when ICIs were first developed was 
observed in only a very small percentage of patients, and 
the majority of patients experienced primary or acquired 
resistance (AR). In patients with lung cancer receiving 
ICI treatment, primary resistance, defined as resistance to 
the initial treatment, is reported to be 40%.5 Even among 
patients who initially respond to ICI treatment, more 
than half eventually experience disease progression, 
which is defined as AR.6 Various studies have attempted 
to identify the underlying mechanisms of ICI resistance, 
and it is assumed that both intrinsic and extrinsic tumor 
cell factors contribute to ICI resistance.4 7

ICIs target the programmed death- 1 (PD- 1)/
programmed death ligand 1 (PD- L1) pathway, which 
regulates immune response termination and plays an 
important role in self- tolerance.8 Blocking this PD- 1/
PD- L1 pathway with ICIs can disrupt this regulation, 
promoting autoimmune and inflammatory responses 
and resulting in various immune- related adverse events 
(irAEs).9 IrAEs can occur in all organs, with the endo-
crine glands, skin, and liver being relatively commonly 
involved, and rarely in the pulmonary, central nervous, 
and musculoskeletal systems.10 A systematic analysis of 
23 studies involving patients with NSCLC receiving ICIs, 
reported an overall incidence of irAEs of approximately 
65%, with severe irAEs (grade 3 or higher) occurring 
in 14–21%.11 Various factors such as autoantibodies, 
cytokines, T cells, and the microbiome are associated 
with irAEs, indicating diverse and heterogeneous mech-
anisms.12 Most patients who develop irAEs recover with 
corticosteroids or immunosuppressive drugs; however, 
severe cases lead to treatment discontinuation and even 
death.13 Therefore, predicting which patients are at risk 
of developing irAEs, particularly severe ones.

Single- cell RNA sequencing (scRNA- seq) has enabled 
the analysis of complex cellular heterogeneity within the 
tumors and their immune microenvironment, such as 
cancer cells, fibroblasts, and various immune cells.14–16 
In this study, we performed scRNA- seq on peripheral 
blood mononuclear cells (PBMC) collected from patients 
before ICI treatment to characterize immune cell hetero-
geneity and investigate mechanisms underlying ICI resis-
tance and irAEs. Using scRNA- seq, we identified and 
characterized biomarkers that can predict ICI resistance 
and irAE severity before treatment. Our study facilitated 
the identification of appropriate patients likely to have a 
favorable response to ICIs or reduced irAE severity based 
only on PBMC collected before treatment. Ultimately, our 
research contributes to minimizing the risks associated 

with immunotherapy, enhancing treatment outcomes, 
optimizing patient care, and developing effective immu-
notherapeutic approaches.

METHODS
Patients and sample collection
This study included patients diagnosed with advanced 
NSCLC who underwent treatment with ICIs as mono-
therapy at Chungnam National University Hospital from 
March 2019 to October 2023. Patients with oncogenic 
driver mutations for which targeted therapies are recom-
mended as first- line treatment (eg, EGFR, ALK) were 
excluded from the study. Patients received intravenous 
administration of atezolizumab (1,200 mg every 3 weeks), 
nivolumab (3 mg/kg body weight every 2 weeks), or 
pembrolizumab (2 mg/kg of body weight or 200 mg every 
3 weeks). Treatment persisted until patients encoun-
tered severe adverse events (AEs), were confirmed to 
have investigator- assessed disease progression, or opted 
to withdraw informed consent. Patients anticipated to 
derive clinical benefit were allowed to continue treat-
ment beyond radiologic disease progression. Peripheral 
blood samples were obtained from patients prior to ICI 
administration. PBMCs for scRNA- seq analysis were sepa-
rated from whole blood using standard Ficoll- Paque (GE 
HealthCare, Uppsala, Sweden) density gradient centrif-
ugation, frozen in freezing media, and stored in liquid 
nitrogen until use. All samples showed a high viability of 
about 90% on average after thawing. Plasma excluding 
cells was obtained by centrifugation at 4,000 rpm at 4°C 
for 10 min. The supernatant aliquot 1.5 mL e- tube and 
store at −80°C until use. Frozen plasma was thawed and 
centrifuged at 13,000 rpm at 4°C for 5 min before use in 
the experiment.

Response and adverse events evaluation
A response assessment with CT was performed every 
three cycles for patients treated with pembrolizumab or 
atezolizumab, and every four cycles for patients treated 
with nivolumab. The response to ICI treatment was 
assessed based on the Response Evaluation Criteria in 
Solid Tumors, V.1.1. The complete remission (CR) was 
defined as completion of ICI treatment for more than 2 
years and CR of the disease. Primary resistance (priR) was 
defined as disease progression at the first response evalu-
ation after ICI treatment. AR was defined as a continuous 
(complete or partial) objective response lasting at least 
6 months after treatment but was discontinued within 
2 years due to disease progression. irAEs were charac-
terized as dysimmune toxicities resulting from immune 
system dysregulation, primarily affecting the skin, gastro-
intestinal tract, liver, endocrine glands, or lungs, though 
they could manifest in any tissue. AEs were assessed based 
on the National Cancer Institute Common Terminology 
Criteria for Adverse Events, V.4.0. Mild irAEs were cate-
gorized as grade 1, moderate as grade 2, and severe irAEs 
were defined as grade 3 or higher.
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T-cell receptor sequencing preparation from patients with 
NSCLC PBMC
T- cell receptor (TCR) libraries were constructed 
using total RNA which is isolated from cryopreserved 
PBMCs of patients with NSCLC. As the protocol of the 
SMART- Seq Human TCR kit (Takara) was described, 
the first strand of TCR complementary DNA (cDNA) 
was generated and then two rounds of semi- nested 
PCR were performed to amplify TCR cDNAs. All the 
libraries were multiplexed and sequenced on the Illu-
mina MiSeq to produce 301 bp paired- end reads.

Single-cell RNA-seq library construction
Library preparation for scRNA- seq was followed 
according to the Chromium Single Cell 3’ Reagent 
Kits User Guide (V.3.1, 10x Genomics). Single- cell 
suspensions were filtered through a 40 µm Flowmi 
cell strainer (Bel- Art), counted using a Countess II 
automated cell counter (Thermo Fisher), and then 
loaded onto a microfluidic chip. In the Chromium 
Controller, cells were separated into Gel beads- in- 
EMulsion (GEMs) where polyadenylated RNAs in 
individual cells were tagged with a UMI (unique 
molecular identifier) and cell barcode. As soon as 
GEM generation was finished, reverse transcription 
was performed to produce barcoded cDNAs. cDNAs 
were amplified through PCR and amplified cDNAs 
were used for sequencing library construction. 
Briefly, cDNA amplicons were enzymatically frag-
mented, end- repaired, dA- tailed, and ligated with a 
sequencing adaptor. The final sequencing libraries 
were generated by sample index PCR and sequenced 
using a HiSeq 2500 (Illumina).

Single-cell RNA sequencing analysis
Raw base call files were demultiplexed using 
mkfastq application (Cell Ranger V.7.1.0) to make 
FASTQ files. Sequencing reads were mapped to the 
Ensembl genes (GRCh38) using the count appli-
cation (Cell Ranger V.7.1.0) with default settings.17 
Quality control and basic downstream analyses were 
performed as in our previous studies.18 19 To remove 
ambient RNA, the CellBender package (V.0.2.2) 
was used with default settings. Next, we used the 
following criteria at the cell- line analysis to filter 
out low- quality cells and genes: minimal expression 
of 200 genes per cell; maximum expression of 5,000 
genes per cell; total expression less than 20,000 UMIs 
per cell; mitochondrial content less than 10%. Next, 
to remove double cells, the DoubletFinder package 
(V.2.0.3) was used per samples in compliance with 
10x Genomics criteria indicating doublet probability 
per cell number.20 Total 222,144 PBMC cells were 
obtained after filtering steps. Data were normalized 
using the “LogNormalize” method with a scale factor 
of 10,000 using the Seurat package (V.4.3.0).21 Scale-
Data function of Seurat was used to regress out the 
number of UMI, the number of genes and per cent 

mitochondrial genes to remove unwanted sources 
of variation. Top 2,000 variably expressed genes 
were identified by FindVariableFeature function of 
Seurat with “vst” option. Batch effects between the 
samples were removed by using “RunHarmony” in 
the harmony package (V.0.1.1).22 After the principal 
components analysis, cells were clustered using the 
FindClusters function of Seurat (resolution=0.4) on 
the basis of shared nearest neighbor using the iden-
tified 21 principal components. The cells were visu-
alized by using Uniform Manifold Approximation 
and Projection (UMAP) embedding. After UMAP 
embedding, a total of 11 clusters were identified 
and annotated based on already unveiled markers 
information. Each cell type was subclustered and 
annotated based on well- known marker information. 
Differentially expressed genes (DEGs) between every 
pair of clusters were identified by using FindMarkers 
(p_val_adj<0.01 and avg_log2FC>1). Then, clusters 
were merged if the number of DEGs was less than 10 
between two clusters. The marker genes were identi-
fied by using the FindAllMarkers function of Seurat 
with the Wilcoxon test (p_val_adj<0.01). DEGs used 
in the volcano plot, heatmap, and dotplot were identi-
fied (p_val_adj<0.05 and avr_log2>0.25). Pseudo- bulk 
analysis was performed using the AverageExpression 
function from the Seurat R package. Raw UMI count 
was used as input and pseudo time was calculated 
using the reduceDimension and orderCells function 
of Monocle2 (V.2.26.0). Through the differentialGe-
neTest function of Monocle2, trajectory patterns were 
determined. The significance of gene expression was 
calculated using the Wilcoxon rank- sum test in case 
compared between two groups, and the Kruskal- Wallis 
test was used in more than three groups.

TCR sequencing analysis
The TCR raw FASTQ data were subjected to processing 
using MIXCR (V.4.3.2).23 The aligning of the raw 
data was processed through the align function within 
MIXCR. Subsequently, the assembly of CDR3 regions was 
performed using the assemble function in MIXCR. To 
identify the TCR diversity and clonality, the immunarch 
R package (V.0.9.0) was employed for visualization.24 The 
TCR diversity and clonality were assessed using the repDi-
versity and trackClonotypes functions within the immun-
arch package, respectively.

Cell–cell communication analysis
CellPhoneDB (https://github.com/Teichlab/cell-
phonedb), a public repository of ligands, recep-
tors and their interactions, was used to perform the 
cell–cell communication analysis.25 Normalized UMI 
count and cluster identities were used as the input 
file for statistical_analysis function with a p value of 
0.05. Visualization was done using ggplot2 R package. 
In addition to CEllPhoneDB, Nichenet was used to 
identify cell- to- cell interactions and targets that were 
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regulated by ligands.26 Their interaction and target 
regulating potential were calculated using the Nichent 
database, and it was visualized by the pheatmap R 
package (V.1.0.12).

Gene co-expression network
Gene co- expression networks were constructed using 
the high- dimensional weighted gene co- expression 
network analysis (WGCNA) R package (V.0.28.1).27 
The parameter settings were configured in accordance 
with the manufacturer’s instructions. The calculation 
of the weighted adjacency between genes was based 
on the Pearson correlation. To enhance the accuracy 
of the co- expression network, a soft power threshold 
of 4 was set. This threshold facilitated the removal 
of noise and weak connections, contributing to the 
construction of an accurate co- expression network. 
Each network was characterized by its biological path-
ways using DAVID. The differences in fold change 
were visualized using the ggplot2 R package.

BIOLOGICAL FUNCTIONS AND PATHWAYS
The inflammation and TNFA_NFKB1 score were 
calculated using the AddModuleScore function in 
Seurat. The genes comprising each module were from 
the MSigDB hallmark database.28 A natural killer 
(NK) cell- mediated cytotoxicity pathway was obtained 
from KEGG (Kyoto Encyclopedia of Genes and 
Genomes).29 The biological pathways in the heatmap 
were identified using Enrichr (https://maayanlab. 
cloud/Enrichr/) and DAVID (https://david.ncifcrf. 
gov/summary.jsp), which is a gene ontology web user 
interface.30 31 Significant biological functions were 
selected applying to pathways, below a p value of 
<0.05. Heatmap was generated using “pheatmap” R 
package.

Plasma measurements of cytokines and cytotoxic effector 
molecules
The levels of plasma IL- 1β, CXCL8 (IL- 8) were deter-
mined using cytometric bead array (CBA) Enhanced 
Sensitivity Flex Set System (BD Biosciences, San Diego, 
California, USA) according to following the manufac-
turer’s instructions. Plasma samples were thawed and 
pre- cleared by centrifuging at 13,000 rpm for 5 min. 
To measure the cytokines using 50 µL plasma, samples 
were analyzed on BD LSRFortessa X- 20 (BD Biosci-
ences, San Diego, California, USA). The data were 
analyzed using BD Biosciences CBA software. Plasma 
CXCL2 levels were measured using a Human CXCL2/
GRO beta DuoSet ELISA (R&D Systems, catalog no. 
DY276- 05). Plasma levels of interferon- gamma (IFN-γ) 
were quantified using an ELISA kit (Cat# DY285B- 
05, R&D Systems, Minneapolis, Minnesota, USA) in 
accordance with the manufacturer’s protocol. Plasma 
levels of perforin and granzyme B were measured 
using selected targets from the LEGENDplex Human 

CD8/NK Panel (BioLegend, San Diego, California, 
USA), following the manufacturer’s instructions. 
Data were acquired by flow cytometry and analyzed 
using the LEGENDplex Data Analysis Software.

RESULTS
Single-cell analysis of PBMCs in patients with NSCLC prior to 
ICI therapy
The baseline characteristics and efficacy outcomes of 
the patients undergoing ICI treatment are summa-
rized in (online supplemental file 3). All participants 
had advanced stage III or IV NSCLC. The predominant 
histological types were adenocarcinomas (54.5%) and 
squamous cell carcinomas (33.3%). Regarding PD- L1 
expression, 60.6% (20/33) of patients exhibited high 
expression, while 39.4% (13/33) showed low or no 
expression. Of the 33 patients included, none harbored 
driver mutations eligible for first- line targeted therapy 
such as EGFR or ALK. Most patients had received at least 
one prior systemic treatment. Excluding five patients who 
discontinued ICI due to AEs and were unevaluated for 
treatment response, seven of the remaining 28 patients 
achieved CR, 13 exhibited priR, and eight showed AR. 
Among the 33 patients, six experienced mild- to- moderate 
irAEs, while seven experienced severe irAEs. In total, 13 
patients (39.4%) developed irAEs, with some experi-
encing more than one event. The most common irAEs 
were hepatitis (n=5), pneumonitis (n=4), and drug erup-
tion (n=3). A detailed list of irAE types and corresponding 
Common Terminology Criteria for Adverse Events 
(CTCAE) grades is provided in (online supplemental 
table 1). To identify key candidates associated with the 
efficacy of ICIs and irAEs, we collected 33 baseline PBMC 
samples from patients with NSCLC before ICI therapy 
and scrutinized them at the single- cell level (figure 1A, 
B). Following a rigorous quality control process, 222,144 
cells were obtained and divided into 11 distinct cell types 
(figure 1, online supplemental file 1). Each cell type was 
characterized using representative marker genes (online 
supplemental figure S1D).

Transcriptional profiling of immune cells reveals key 
pathways associated with complete response to ICIs
To investigate the immune cell profile linked to ICI effi-
cacy, we analyzed cell proportion and biological pathway 
changes across three prognosis groups: CR, AR, and 
priR. CD4 T- cell proportions decreased, while CD8 T 
cells increased in AR compared with CR, although these 
changes were not statistically significant (figure 1D). 
Additionally, no significant differences in cell proportions 
were observed based on PD- L1 expression levels, tumor 
histology, previous treatment regimen (online supple-
mental figure S2A). In contrast, significant alterations in 
the biological functions were observed when comparing 
CR to priR (figure 2A). CD8 T cells in CR demonstrated 
a robust upregulation of biological pathways associated 
with immune reactions linked to a favorable prognosis 
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Figure 1 Comprehensive profiling of 33 patients with NSCLC PBMC prior to ICI therapy. (A) Workflow showing overall study 
design. (B) Clinical information of each patient included in our study. IrAE grades are indicated by a numerical value, and cancer 
stage are denoted by letter. (C) UMAP (Uniform Manifold Approximation and Projection) depicting 11 major cell types. Each 
cell type is labeled on the UMAP, and distinct colors represent individual cell types. (D) Box plot illustrating changes in the 
proportions of three ICIs prognosis groups (CR, AR, priR) in whole cell types. Each color indicates a specific prognosis group. 
Adeno, adenocarcinoma; AR, acquired resistance; aPD- 1, anti- programmed cell death protein 1; aPD- L1, anti- programmed 
death- ligand 1; CD8_Pro, proliferating CD8 T cells; CR, complete remission; DC, dendritic cells; ICI, immune checkpoint 
inhibitor; irAE, immune- related adverse event; Macro, macrophages; Mono, Monocytes; NK, natural killer cells; NSCLC NOS, 
non- small cell lung cancer (NSCLC) not otherwise specified; PBMC, peripheral blood mononuclear cell; PD- 1, programmed 
death- 1; PD- L1, programmed death ligand 1; priR, primary resistance; SqCC, squamous cell carcinoma; TPS, tumor proportion 
score.
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Figure 2 Profiling of 33 non- small cell lung cancer peripheral blood mononuclear cell samples and characterization associated 
with CR (A). Heatmap demonstrating the biological pathway of genes increased in CR compared with priR in all cell types. 
Color indicates values of significance (−log10(p value)). (B) Box plot illustrating each biological pathway score among the three 
ICI prognosis groups (CR, AR, priR) in CD8 T cells. Each color indicates a specific prognosis group. (C) Heatmap exhibiting the 
biological pathway of genes increased in CR compared with AR and priR in CD8 T cells. The asterisk indicates the significance, 
and the color shows normalization enrichment score. (D) The fgsea displaying gene set enrichment of hypoxia and UV response 
pathway variation between AR and priR in CD8 T cells. (E) Heatmap showing target motif enrichment (left) and gene expression 
(right) of the transcription factors in the CD8 T cells. The color indicates enrichment and expression levels. (F) Violin plot 
showing expression of HIF1A and FOXO1 across the hypoxia scores. ∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001. (G) The fgsea displaying 
gene set enrichment of NK cell- mediated cytotoxicity pathway variation between CR and priR (upper) or CR and AR (lower) in 
NK cells. (H) The fgsea displaying gene set enrichment of hypoxia and UV response pathway variation between AR and priR 
in NK cells. (I) Heatmap showing target motif enrichment (left) and gene expression (right) of the transcription factors in the NK 
cells. The color indicates enrichment and expression levels. (J) Violin plot showing expression of HIF1A and FOXO1 across 
the hypoxia scores. ∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001. (K) UMAP depicting 10 subtypes of CD8 T cells. Each cell type is labeled 
on the UMAP, and distinct colors represent individual cell types. (L) The heatmap illustrating the biological pathway of genes 
increased in CR compared with priR in CD8 T- cell subtypes. Color indicates values of significance (−log10(p value)). (M) UMAP 
depicting 12 subtypes of CD4 T cells. Each cell type is labeled on the UMAP, and distinct colors represent individual cell types. 
(N) The heatmap illustrating the biological pathway of genes increased in CR compared with priR in CD4 T- cell subtypes. 
Color indicates values of significance (−log10(p value)). AR, acquired resistance; CR, complete remission; DC, dendritic cells; 
DP, double positive; fgsea, fast gene set enrichment analysis; Macro, macrophages; Mono, Monocytes; NES, normalized 
enrichment score; NK, natural killer cells; priR, primary resistance; pro_CD8, proliferating CD8 T; Tcm, central memory CD4 
T; TCR, T- cell receptor; Tem, effector memory CD4; Temra, terminally differentiated effector CD8; Tm, memory CD8 T; Tn, 
naive CD4 T; Treg, regulatory CD4; Trm rest, tissue resident memory resting CD4; UMAP, Uniform Manifold Approximation and 
Projection; UV, ultraviolet radiation.
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for ICI therapy, whereas no significant differences were 
observed between AR and priR (figure 2A and B; online 
supplemental figure S3A).32 33 While pathways related 
to hypoxia and ultraviolet radiation (UV) responses, 
which suppress immune suppression,34 35 were more 
pronounced in priR than in CR, with no significant differ-
ences between AR and CR (figure 2C). Direct compar-
ison of AR and priR confirmed elevated hypoxia and UV 
responses in priR (figure 2D). Additionally, priR showed 
upregulated expression of HIF1A and FOXO1, which are 
transcription factors (TFs) activated in hypoxic envi-
ronments, along with enrichment of their target motifs 
(figure 2E).36–38 Conversely, the gene expression and 
target motif enrichment of immunity- activating TFs, such 
as TBX21, BATF, and STAT1, were increased in the CR 
group (figure 2E). Furthermore, we observed a positive 
correlation between HIF1A and FOXO1 expression and 
increased hypoxia scores in priR patients and identified 
the elevation of protumorigenic inflammatory activity 
according to the upregulation of hypoxia in priR cells 
(online supplemental figure S3B).39

In NK cells, increased NK cell- mediated cytotoxicity 
was observed in CR compared with that in both AR and 
priR (figure 2G). Additionally, consistent with the CD8 
T- cell results, hypoxia and UV response pathways were 
upregulated in priR compared with AR (figure 2H and 
online supplemental figure S3B). While the expression 
and target motifs of TFs, such as TBX21 and RUNX3, 
which promote NK cell activation, were enriched in the 
CR group, HIF1A expression increased in the priR group 
(figure 2I). Furthermore, HIF1A was upregulated with 
increasing hypoxia scores in priR, but not in FOXO1 
(figure 2J).

Given the robust increase in immune reactions 
observed in CR of CD8 T cells, we further subclustered 
CD8 T cells to scrutinize (figure 2K and online supple-
mental figure S3C). While the proportion of each subtype 
among the three prognosis groups showed no signifi-
cance, biological pathway changes were markedly altered 
between CR and priR, particularly in memory CD8 T cell2 
(Tm2) (figure 2L and online supplemental figure S3D). 
Tm2 cells in the CR exhibited predominant activation of 
immune- related signals, including immune system and 
cytokine signaling, compared with the other two groups 
(figure 2L and online supplemental figure S3E). These 
increases were also observed in memory CD8 T cell1 and 
terminally differentiated effector memory CD8 T cells2, 
where immune- related pathways were upregulated in 
CR compared with AR and priR within these cell types 
(figure 2L and online supplemental figure S3F and 3G).

Despite no significant differences in biological pathways 
being observed between CR and priR in whole CD4 T cells, 
CD4 T- cell subtype- level analysis revealed distinct biolog-
ical pathway differences between CR and priR (figure 2A, 
M and N; online supplemental figure S4A). While 
tissue- resident memory resting CD4 (Trm rest1) cells 
showed no proportional changes among the three prog-
nostic groups, genes that increased in CR were strongly 

associated with immune reactions, including interferon 
and cytokine signals (figure 2N and online supplemental 
figure S4B, C). Additionally, immune activation pathways 
were intensified in CR of effector memory CD4 and regu-
latory CD4 cells, with both subtypes displaying upregula-
tion of these pathways in CR compared with AR and priR 
(figure 2N and online supplemental figure S4D, E).

Collectively, immune activation responses, such as inter-
feron and cytokine signaling, were significantly increased 
in CR compared with both AR and priR, whereas hypoxia- 
related signaling was notably prominent only in priR.

Discovery of key factors linked to ICI therapy prognosis in T 
and NK cells
Based on the CR- specific characterization confirmed 
in previous results, we conducted an analysis to identify 
key factors associated with ICI prognosis. We first exam-
ined Tm2 cells, which exhibited the most pronounced 
immune characteristic differences in CR of CD8 T cells 
(figure 2L). To explore genes specific to CR and associ-
ated with immune reactions, we performed a WGCNA to 
examine the co- expression patterns between transcripts 
in Tm2. We identified five modules, with the green 
module being significantly elevated in the CR group 
(figure 3A). Genes in the green module were associated 
with T- cell activation and immune responses (figure 3A). 
Moreover, this module showed a distinct increase in 
CR compared with both priR and AR among the four 
modules (figure 3B and online supplemental figure S5A). 
We further narrowed down the candidates by selecting 
CR- specific upregulated genes within the green modules 
and identified 52 genes (figure 3C, D). The expression 
of these genes was validated using public baseline PBMC 
data, where we isolated CD8 T cells and observed an 
elevation of these 52 gene set scores in the Tm of the 
ICI response group of public data (figure 3E and online 
supplemental file 1).40 Among the 52 genes, we identified 
three main candidates: NKG7, GZMH, and PRF1. These 
genes were selected based on their significant increases 
in both the CR of our data and the response group of 
the public dataset (figure 3F and G). Interestingly, we 
found that these genes are involved in antitumor activities 
by inducing inflammation and apoptosis in tumor cells 
and aiding granzyme delivery.41–43 Their expression was 
detected in almost all CD8 T cells regardless of subtype, 
and both datasets confirmed their increased expression 
in the ICI response group (CR and response) (online 
supplemental figure S5E- G). Additionally, we investigated 
their expression changes under different conditions, 
such as PD- L1 expression, tumor histology, and treatment 
regimen. Given the unbalanced sample distribution in 
each condition (online supplemental file 1), we analyzed 
specific groups and found that their expression was 
elevated in the CR, regardless of condition differences 
(online supplemental figure S5K- M). Next, to validate 
the marker’s expression in a large cohort, we performed 
a CBA assay on plasma samples from 122 patients and 
identified expression changes of perforin, which showed 
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Figure 3 Discovery of key candidates linked to ICI therapy prognosis in CD8 T and CD4, and NK cells (A). Volcano plot 
displaying differentially expressed modules, which resulted from weighted gene correlation network analysis, between CR 
and priR. Each color indicates each module, and numbers represent the number of genes belonging to each module. The x- 
axis represents avg_log2FC and y- axis shows −log(p_value). (B) Violin plot indicating gene set scores of genes belonging to 
a green module in memory CD8 T cell2. Each color represents each prognosis group. (C) Venn diagram showing the number 
of overlapping genes between CR specifically increased genes and green module genes. (D) Pseudo- bulk analysis showing 
expression levels of 52 genes overlapping between CR in CD8 T cells and green modules. The color indicates expression levels 
of each gene among different prognosis groups. (E) Box plot illustrating 52 gene scores between the ICI response group and 
no response groups from public data (GSE216329). (F) Venn diagram showing the number of overlapping genes between our 
data and public data. (G) Violin plot indicating NKG7, GZMH, and PRF1 expression levels in memory CD8 T cells of our data 
(left) and public data (right). (H) Bee swarm plot indicating perforin expression levels among three prognosis groups. The y- 
axis indicates expression levels. ∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001. (I) Box plot illustrating changes in the proportion of cells with 
higher expression levels than an average expression of PRF1 and NKG7 among CD8A positive cells. (J) Pseudo- bulk analysis 
showing expression levels of 18 genes increased in CR from Trm rest1 of CD4 T cells. The color indicates expression levels of 
each gene among different prognosis groups. (K) Venn diagram showing the number of overlapping genes between our data 
(18 genes) and public data. (L) Bar plot presenting biological pathways in CR of a Trm rest1 of CD4 T cells. The x- axis indicates 
−log10(p value). (M) Violin plot indicating STAT1 and GBP2 expression levels between three prognosis groups in Trm rest1 
(upper), whole CD4 T cells from public data (middle), and whole CD4 T cells from our data (lower). (N) UMAP depicting subtypes 
of NK cells (left) and violin plot showing NK cell- mediated cytotoxicity score (Kyoto Encyclopedia of Genes and Genomes) in NK 
subtypes. (O) Bar plot presenting biological pathways in CR of an NK subtype. The x- axis indicates −log10(p value). (P) Pseudo- 
bulk analysis showing expression levels of differentially increased in CR of NK cells. The color indicates expression levels of 
each. (Q) Violin plot indicating HLA- DRB5, GZMB, PRF1, and ITGAL expression levels between three prognosis groups in NK 
cells. (R) Box plot illustrating change in the proportion of NK cells with expression levels above an average expression of GZMB 
and positive expression of ITGAL. ∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001. (S) Bee swarm plot indicating granzyme B expression levels 
among three prognosis groups. The y- axis indicates expression levels. ∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001. AR, acquired resistance; 
CR, complete remission; DEG, differentially- expressed gene; GO, gene ontology; ICI, immune checkpoint inhibitor; NK, natural 
killer; priR, primary resistance; Trm rest1, tissue- resident memory resting CD4; UMAP, Uniform Manifold Approximation and 
Projection.
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the most distinct expression differences between prog-
nosis groups in single cell data (figure 3G and online 
supplemental figure 5SN). Its expression was signifi-
cantly increased in the CR compared with priR, with a 
similar trend observed in the AR (figure 3H). Then, to 
further enhance discriminative accuracy, we combined 
biomarkers. Among CD8- positive cells, those with high 
expression of both PRF1 and NKG7 or PRF1 and GZMH 
were predominantly observed in CR cells compared with 
AR and priR cells (figure 3I). Moreover, combining all 
three candidates resulted in significant discrimination 
accuracy among CR, AR, and priR (online supplemental 
figure S5O).

In CD4 T cells, we also identified candidates that 
were commonly upregulated in response to ICI in both 
our data and public data.40 Specifically, we identified 32 
genes that were upregulated in CR from Trm rest1 that 
previously exhibited an active immune response in CR 
(figures 2N and 3J). Among these, STAT1, GBP2, and 
FYN were commonly upregulated in the response groups 
of both our data and the public datasets (figure 3K). 
Previous studies have shown that these genes are closely 
associated with multiple immune responses. Given the 
marked increase in IFN signaling during CR, we focused 
on STAT1 and GBP2, which are strongly linked to the 
interferon pathway (figure 3L). We observed a signif-
icant increase in these genes within CR of Trm rest1 
(figure 3M). Since the CD4 Trm rest1 cell type was not 
present in the public data, we analyzed total CD4 T cells 
in both datasets and confirmed their upregulation in CR 
(figure 3M, online supplemental figure S6A, B). Notably, 
these genes were elevated in almost all CR groups, regard-
less of PD- L1 expression, tumor histology, or treatment 
regimen (online supplemental figure S6C- E). Further-
more, the combination of these biomarkers enhanced 
the discrimination accuracy for CR, AR, and priR (online 
supplemental figure S6F).

In addition to CD4 T cells, we explored NK cells, which 
are known for their cytotoxicity against cancer cells. 
Considering the high population and cytotoxicity scores, 
we closely examined the NK cell subtypes (figure 3N, 
online supplemental figure S6G, H). Given the cell popu-
lation and the high score of NK cell- mediated cytotox-
icity, we scrutinized NK cells but not GZMKhi NK cells 
(figure 3N and online supplemental figure S6H). Genes 
upregulated in the CR of NK cells indicated the activation 
of immune responses and NK cell- mediated cytotoxicity 
(figure 3O). Among the various genes that were distinctly 
upregulated in the CR of NK cells, four key candidates 
were identified: HLA- DRB5, GZMB, ITGAL, and PRF1 
(figure 3P). HLA- DRB5 was reported to be expressed on 
activated NK cells, and ITGAL, GZMB, and PRF1 were 
revealed to be involved in regulating NK cell infiltration 
and antitumor activity.44–47 These genes were significantly 
elevated in the CR of NK cells, and the combination of 
biomarkers (ITGAL and GZMB) allowed clear discrimina-
tion between priR and CR (figure 3Q and R). Similar to 
CD4 and CD8 T cells, these marker genes were increased 

in almost all CR samples, irrespective of specific condi-
tions, such as PD- L1 expression level or tumor histology 
and treatment regimen (online supplemental figure 
S6I- K). Interestingly, among the four candidates, GZMB 
expression was increased in CR, not only in NK cells 
but also in Tm2 of CD8 T cells and whole CD8 T cells 
(figure 3D and Q; online supplemental figure S6L). 
Given that GZMB was a secreted cytokine, we identified 
its expression changes using a CBA assay. The granzyme 
B expression was distinctly elevated in the CR compared 
with the AR and priR, and patients with higher gran-
zyme B expression were majorly composed of CR (online 
supplemental file 1 and online supplemental figure 6SM).

Identification of irAE biomarkers in monocytes strongly 
associated with severe irAE
To identify biomarkers for predicting irAEs, we conducted 
a comprehensive analysis according to irAEs severity. We 
classified the patients into three categories: no irAEs, 
mild- to- moderate irAEs, and severe irAEs. We observed 
no significant differences in the proportions of the three 
irAE groups among various cell types (online supple-
mental figure S7A). However, monocytes exhibited the 
most distinct increase in severe irAEs compared with the 
other two groups and constituted the predominant cell 
type in the severe irAE group (online supplemental figure 
S7A). Additionally, monocytes displayed the highest 
inflammation score among all cell types, with inflam-
mation pathways being particularly pronounced in the 
severe irAE group compared with the other two groups, 
but showed no significant difference between the no 
irAE and mild/moderate irAE groups (figure 4A, online 
supplemental figure S7B, C). Increased active inflamma-
tion in severe irAE is associated with hypoxia,48 and in our 
study, we observed an increase in hypoxia- related path-
ways in severe irAE compared with no irAE and mild/
moderate irAE (figure 4B and online supplemental figure 
S7D). Next, we identified the genes that were specifically 
upregulated in severe irAEs and were relevant to inflam-
matory responses (figure 4C). From the various genes, we 
selected five candidates, CXCL8, CXCL2, IL1B, CCL3, and 
EREG, which are involved in diverse immune responses 
and are upregulated in severe irAEs (figure 4C and D). 
These genes were specifically expressed in monocytes 
and indicated a strong correlation with the inflammatory 
response, which was elevated in monocytes, particularly 
in severe irAEs (figure 4E and online supplemental figure 
S7E). Furthermore, these candidates showed increased 
expression in the group with heightened inflammation 
(figure 4F). Notably, their expression was upregulated 
in severe irAE across all conditions. Although we inves-
tigated expression changes in specific conditions due to 
sample distribution, their expression was significantly 
elevated in all severe irAE patients of diverse conditions 
except for NSCLC not otherwise specified (NOS), with 
strong upregulation of CXCL8 and IL1B (online supple-
mental figure S7F- I).
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Figure 4 Identification of irAE biomarkers in monocytes strongly associated with irAE severity (A). The heatmap illustrating 
the biological pathway of genes increased in severe_irAE compared with no_irAE in all cell types. The color visualizes values 
of significance (−log10(p value)). (B) The fgsea displaying gene set enrichment of hypoxia and UV response pathway variation 
between no irAE and severe irAE in monocytes. (C) Pseudo- bulk analysis showing gene expression levels specifically increased 
in severe_irAE of monocytes. The color indicates expression levels of each gene among different irAE groups. Biological 
pathways associated with each gene are denoted by a number. The main candidate genes were highlighted in red color. 
(D) Volcano plot displaying gene expression changes between severe_irAE and no_irAE. The main candidate genes are labeled 
on the plot. The red and blue dots indicated increased genes in severe_irAE and no_irAE, respectively. The x- axis represents 
avg_log2FC and y- axis shows −log10(p_val_adj). (E) Bubble plot showing expression levels of five main candidates (CXCL8, 
IL1B, CXCL2, CCL3, EREG) in whole cell types. The color and dot size represent expression levels and per cent of cells 
expressing each gene, respectively. (F) Violin plot showing expression of main candidate genes according to the inflammation 
score levels. ∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001. (G) Dot plot indicating IL1R- IL1B interaction intensities between three irAE 
groups of monocytes and DCs. The dot color represents interaction intensities (log2(mean)), and dot size indicates interaction 
significance. (H) Heatmap displaying interaction potential and ligand and target gene expression. Ligand expression indicates 
IL1B expression levels in monocytes and DC between the three irAE groups. Regulatory potential represents the likelihood that 
ligands regulate the target genes. Target expression indicates the expression levels of target genes. (I) Expression level of TNFA_
NFKB1 score between three irAE groups in monocytes. Each color represents each irAE group. (J) Line plot demonstrating 
the correlation between TNF_NKFB1 score and whole genes in monocytes. The main candidate genes are labeled on the plot. 
(K) Violin plot indicating NFKB1 expression levels in monocytes. (L) Violin plot indicating TNF expression levels in macrophages. 
(M) Dot plot indicating TNF- TNF receptor interaction intensities between three irAE groups of monocytes and macrophages. 
The dot color represents interaction intensities (log2(mean)), and dot size indicates interaction significance (−log10(p value)). 
(N) Heatmap displaying interaction potential and ligand and target gene expression. Ligand expression indicates TNF 
expression levels between the three irAE groups in macrophages. Regulatory potential represents the likelihood that ligands 
regulate the target genes. Target expression indicates the expression levels of target genes. (O) Heatmap showing target motif 
enrichment (upper) and gene expression (lower) of the transcription factors in the monocytes. The color indicates enrichment 
and expression levels. DC, dendritic cell; fgsea, fast gene set enrichment analysis; irAE, immune- related adverse event; NES, 
normalized enrichment score; UV, ultraviolet radiation.
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Next, we examined cell–cell interactions to elucidate 
the underlying mechanisms contributing to the elevation 
of candidates associated with severe irAEs. We focused on 
IL1B, which is involved in the pro- inflammatory response 
and increased in severe irAEs (figure 4C and D). Its 
receptors, IL1R1 and IL1R2, were specifically expressed 
in monocytes and dendritic cell (DC), and they were 
distinctly upregulated in severe irAEs (online supple-
mental S8A and 8B). Intriguingly, we noted progressive 
intensification in the interaction between these cells, 
from no irAEs to severe irAEs (figure 4G). Through 
ligand- target analysis, we found that IL1B showed strong 
regulatory potential modulating the candidate genes, 
revealing a close association between the IL1B- IL1R inter-
action and the candidate genes (figure 4H).

Next, we examined the TNF_NKFB1 signaling pathway, 
which showed the greatest increase in severe irAE 
compared with no irAE in almost all cell types (figure 4A). 
This pathway was activated within monocytes and inten-
sified in severe irAEs among the three irAE groups 
(figure 4I and online supplemental file 1). Furthermore, 
we observed a strong correlation between TNF_NKFB1 
signaling and candidate genes such as IL1B and CXCL8 
within monocytes (figure 4J). Notably, NFKB1, the pivotal 
TF orchestrating this signaling cascade, displayed a 
marked increase in severe irAE and exhibited a significant 
correlation with the TNF_NKFB1 signaling (figure 4J and 
K). Additionally, we found that the ligand inducing this 
signal, TNF, was distinctly expressed in macrophages, and 
its expression increased in severe irAEs (figure 4L and 
online supplemental figure S8D). Similar to monocytes, 
TNF expression was elevated in almost all severe irAEs 
regardless of specific conditions, such as PD- L1 expres-
sion level, tumor histology and treatment regimen (online 
supplemental S8E- G). We also detected an increased 
interaction between TNF and its receptor TNFRSF1A, 
with the downstream targets induced by this interaction 
actively increasing in severe irAEs (figure 4M and N). 
Furthermore, the TNF interaction exhibited high regu-
latory potential in modulating the expression of targets 
identified in this study (figure 4N). Additionally, we 
confirmed that both transcript expression and motifs of 
NFKB1 and AP- 1, the major TFs regulating inflammation- 
related signals activated by the TNF and IL1B interaction, 
were increased in severe irAE (figure 4O).

Validation of plasma cytotoxic effector molecules associated 
with irAE severity in a large cohort
Considering severity, expression specificity, and the 
involvement of biological functions, we provided candi-
dates for predicting irAEs. While CXCL8 and IL1B alone 
could predict irAE severity, cases in which both genes 
were positive demonstrated enhanced prediction accu-
racy (figure 5A). Additionally, the inclusion of one addi-
tional marker (CCL3 or EREG) alongside CXCL8 and 
IL1B further improved prediction accuracy (figure 5B). 
Notably, the expression of each gene or gene combination 
remained unaffected by PD- L1 expression or treatment 

regimen, while IL1B tended to increase in patients with 
squamous cell carcinoma (online supplemental figure 
S9A–C).

To validate our findings in a large cohort, we conducted a 
CBA using baseline plasma samples from 175 patients with 
NSCLC (figure 5C). We observed significant increases in 
CXCL8 and IL1B expression in patients with severe irAEs 
compared with those with no irAEs and mild/moderate 
irAEs (figure 5D and E). In addition, we observed an 
increase in CXCL2 expression in severe irAE compared 
with no irAE, although there was no statistically signifi-
cant difference between severe irAE and mild/moderate 
irAE (figure 5F). Moreover, when all three groups 
were compared simultaneously, we identified distinctly 
elevated expression levels of CXCL8 and IL1B in patients 
with severe irAEs (figure 5G). Although CXCL2 expres-
sion did not reach statistical significance, an increasing 
trend was noted across groups (figure 5G). Consistent 
with the scRNA- seq results, in the larger cohort, we iden-
tified that patients who exhibited high expression levels 
of CXCL8 and IL1B predominantly had severe irAEs 
(figure 5H). Additionally, simultaneously high expres-
sion of both CXCL8 and IL1B was mainly confirmed in 
patients with severe irAEs, and we obtained similar results 
when defining high expression above the median value 
considering sample heterogeneity (figure 5I). Addition-
ally, the proportion of patients with high expression of 
other gene combinations, such as CXCL8/CXCL2 and 
IL1B/CXCL2, was also significantly higher in severe 
irAEs compared with no or mild/moderate irAEs (online 
supplemental figure S9D, SE). Collectively, we identified 
effective candidate biomarkers, particularly CXCL8 and 
IL1B, for predicting irAE severity.

Identification of irAE severity biomarkers in CD8 T cells
Expanding our analysis beyond myeloid cells, we 
investigated the factors associated with the irAEs 
severity in lymphocytes. Referring to previous studies 
suggesting an elevation in IFNG levels with irAE 
severity, we examined IFNG expression in lympho-
cytes.49 IFNG was specifically expressed in CD8 T, 
pro_CD8 T, and NK cells and was increased in severe 
irAE compared with the other two groups (figure 6A 
and online supplemental figure S10A). Moreover, its 
expression was pronounced in the severe irAE within 
CD8 T and NK cells across almost all conditions, such 
as PD- L1 expression, tumor histology, and treatment 
regimen (online supplemental figure S10B- D). Inter-
estingly, IFNGR1 and IFNGR2, the receptors of IFNG, 
were distinctly expressed in monocytes, macrophages, 
and DC cells, with increased expression in severe irAE 
(figure 6B and online supplemental figure S10E). 
The intensity of IFNG- IFNGR interactions progres-
sively increased in severe irAEs in all cell types, with 
the most pronounced increase in the monocytes from 
severe irAE (figure 6C). We noted that IFNG- IFNGR 
demonstrated a high regulatory potential for the 
target genes we found in this study, implying that the 
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activated IFNG- IFNGR interaction induced various 
target genes associated with inflammation, particu-
larly in severe irAE monocytes (figure 6D). However, 
the CBA results showed no significant differences in 

IFN-γ expression between the irAE groups (online 
supplemental figure S10F). Although IFN-γ expres-
sion did not show expression differences in plasma, 

Figure 5 Validation of irAE severity biomarkers in large cohorts (A). Box plot illustrating changes in the proportion of cells 
expressing each gene CXCL8 (left) and IL1B (middle) or both genes (right) among three irAE groups of monocytes. (B) Box plot 
illustrating changes in the proportion of cells expressing all three genes (CXCL8, IL1B, and CCL3 or CXCL8, IL1B, and EREG) in 
three irAE groups of monocytes. (C) Workflow of CBA for the validation in a large cohort composing 175 patients with NSCLC 
prior to treatment. (D–F) Bee swarm plot indicating CXCL8 (D), IL1B (E), and CXCL2 (F) expression levels between no_irAE 
and severe_irAE (upper) or mild- to- moderate_irAE and severe_irAE (lower). The y- axis indicates expression levels. ∗p<0.05, 
∗∗p<0.01, ∗∗∗p<0.001. (G) Bee swarm plot indicating CXCL8 (left), IL1B (middle), and CXCL2 (right) expression levels among 
three irAE groups. The y- axis indicates expression levels. ∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001. (H) Bar plot indicating proportion 
changes of cells showing higher expression levels than mean expression of CXCL8 (left) or IL1B (right) in CBA assay. (I) Bar plot 
indicating proportion changes of cells showing higher expression levels than average expression (left) or median expression 
(right) of CXCL8 and IL1B in CBA assay. CBA, cytometric bead array; ICI, immune checkpoint inhibitor; irAE, immune- related 
adverse event; NSCLC, non- small cell lung cancer.
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considering the high expression of receptors and 
interaction intensity in severe irAE, IFNG- IFNGR 
interaction may influence other immune cells, such as 
myeloid cells, contributing to severe irAEs (figure 6C 
and D).

Lastly, beyond biomarker discovery through tran-
scriptional changes, we identified irAE severity- specific 
clonotypes using TCR sequencing at the bulk level 
in baseline PBMCs from 25 patients. Although TCR 
diversity was not significantly different among the 
three groups, we identified a few clonotypes unique 
to patients with severe irAEs (figure 6E and F, online 
supplemental figure S10G). These clonotypes were 
exclusive to patients with severe irAEs, suggesting the 
potential for TCR stimulation from various immune 
reactions in severe irAEs.

Unveiling biomarkers for favorable prognosis and reduced 
irAEs
Given that many patients in the CR group, associated 
with a favorable prognosis, had mild/moderate irAEs, 
these findings suggest that a mild immune response can 
effectively activate immunity and enhance antitumor 
effects (figure 7A and online supplemental figure S11A). 
In CD8 T cells from patients with mild/moderate irAEs, 
we observed the activation of immune system pathways 
associated with a favorable prognosis in the CR group, 
including NK- mediated cytotoxicity and T- cell activation 
pathways (figure 7B). Since mild/moderate irAEs consist 
of two prognostic groups (CR and AR), we investigated 
genes identified as CR- specific in both mild/moderate 
irAE and all irAE samples consisting of all prognostic 
groups (figure 7C). We identified 48 overlapping genes 
that were specific to CR (figure 7C). These genes were 

Figure 6 Identification of irAE severity biomarkers in CD8 T cells (A). Bubble plot and violin plot illustrating expression levels 
of IFNG in CD8 (left), Pro_CD8 (middle), and NK cells (right). (B) Violin plot indicating IFNGR1 and IFNGR2 expression levels 
between the three irAE groups of macrophages and monocytes, and DC. (C) Dot plot indicating IFNG- IFNGR interaction 
intensities between three irAE groups in various cell types. The dot color represents interaction intensities (log2(mean)), and dot 
size indicates interaction significance. (D) Heatmap displaying interaction potential, ligand, and target gene expression. Ligand 
expression indicates IFNG expression levels between the three irAE groups. Regulatory potential represents the likelihood that 
ligands regulate the target genes. Target expression indicates the expression levels of target genes. (E) Box plot illustrating TCR 
diversity among three irAE groups. The dot represents each sample. (F) Bar plot showing a TCR clonotype specifically identified 
in severe irAE. The x- axis indicates each sample, and the y- axis indicates the proportion of each clonotype in each sample. DC, 
dendritic cell; irAE, immune- related adverse event; NK, natural killer; TCR, T- cell receptor.
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Figure 7 Discovery of biomarkers indicating good prognosis and less irAE (A). Donut plot showing the composition of 
samples indicating prognosis in the mild/moderate irAE and no irAE groups, respectively. (B) Bar plot showing biological 
pathways activated in CR compared with AR in the mild/moderate irAE group of CD8 T cells. The x- axis indicates −log10(p 
value). (C) Venn diagram showing the number of overlapping genes upregulated in the CR of mild/moderate irAE group within 
CD8 T cells, and genes upregulated in CR (vs AR and priR of all irAE group within CD8 T cells. (D) Bar plot showing biological 
pathways of overlapped 48 genes from (C). The x- axis indicates −log10(p value). (E) Violin plot indicating overlapped 48 genes 
score between the three prognosis groups within CD8 T cells from no_irAE samples. (F) Violin plot indicating overlapped 
48 genes score between the three irAE groups within CD8 T cells. (G) Venn diagram showing the number of overlapping 
genes between 48 genes and genes upregulated in mild/moderate irAE (compared with severe irAE and no irAE) across CD8 
T cells. (H) Pseudo- bulk analysis showing expression levels of 14 genes from (G). The color indicates expression levels of 
each gene among different prognosis groups. (I) Violin plot indicating overlapped 14 genes score between response and no 
response groups from public data (GSE216329). (J) Violin plot showing two biological pathways score between response and 
no response groups from public data. CD8 T- cell activation (left) and NK cell- mediated cytotoxicity (right). (K) Venn diagram 
showing the number of overlapping genes between 14 genes and genes differentially increased in the response group of 
public data. (L) Violin plot showing two candidate expressions between the three prognosis groups from CD8 T cells of no irAE 
samples. (M) Line plot demonstrating the correlation between CD8 T- cell activation score and whole genes in CD8 T cells. The 
two candidate genes we found in (K) are labeled on the plot. (N) Box plot illustrating changes in the proportion of cells with 
higher expression levels than an average expression of PRF1 in CD8 T cells in the prognosis group (left) and irAE group (right). 
(O) Box plot illustrating the proportion of cells with higher expression levels than an average expression of PRF1 in CD8 T cells 
in the response group (left) and irAE grade group (right) from public data (GSE216329). (P) Bee swarm plot indicating perforin 
expression levels among three irAE groups. The y- axis indicates expression levels. ∗p<0.05, ∗∗p<0.01, ∗∗∗p<0.001. (Q) Bar 
plot indicating proportion changes of cells showing higher expression levels than the mean (left) and median expression (right) 
of perforin among three prognosis groups from the CBA assay. (R) Bar plot indicating proportion changes of cells showing 
higher expression levels than the mean (left) and median expression (right) of perforin among three irAE groups from the CBA 
assay. AR, acquired resistance; CBA, cytometric bead array; CR, complete remission; DEG, differentially- expressed gene; irAE, 
immune- related adverse event; NK, natural killer; priR, primary resistance; TCR, T- cell receptor.
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enriched in immune activation functions and were signifi-
cantly upregulated in both the CR and mild/moderate 
irAE groups (figure 7D–F).

Among these 48 genes, 14 were specifically upregu-
lated in the mild/moderate irAE group compared with 
the other subgroups, with significant involvement in 
NK- mediated cytotoxicity and CD8 T- cell activation, 
both supporting antitumor responses (figure 7G and H, 
(online supplemental figure S11B). These 14 genes were 
also upregulated in the immunotherapy response group 
of the public datasets, with the enrichment of two path-
ways associated with antitumor effects (figure 7I and J). 
Among the 14 genes, we identified PRF1 and RAP1GAP2 
as being differentially upregulated in the public datasets 
(figure 7K). In particular, we focused on PRF1, which 
exhibited increased expression in both the CR and mild/
moderate irAE within CD8 T cells and were significantly 
upregulated in the CR of no irAE samples (figure 7L 
and online supplementalfigure S11C, D). Additionally, 
PRF1 strongly correlated with NK- mediated cytotoxicity 
and CD8 T- cell activation and was increased in almost all 
CD8 T- cell subtypes from CR and mild/moderate irAEs 
(figure 7M; online supplemental figure S11E, F). Patients 
with high PRF1 expression in CD8 T cells were more 
frequently observed in the CR than in the AR or priR 
groups, with the highest proportion in the mild/moderate 
irAE subgroup compared with the no irAE and severe 
irAE groups (figure 7N). Interestingly, there were no 
significant proportional differences among groups within 
the different conditions, such as PD- L1 expression, tumor 
histology, and treatment regimen (online supplemental 
figure S11G). Further, PRF1 was increased in almost all 
CD8 T- cell subtypes in the CR, irrespective of conditions 
such as PD- L1 expression levels, tumor histology, and 
treatment regimen (online supplemental figure S12A). 
Similarly, in the comparison between irAE groups, most 
CD8 T- cell subtypes were elevated in the mild/moderate 
irAE across all conditions, except for NSCLC NOS 
(histology) and N/A (regimen) (online supplemental 
figure S12B). The public data further supported the 
finding that patients with high PRF1 expression in CD8 
T cells were primarily found in the response and mild/
moderate irAE groups (figure 7O). Perforin expression, 
validated using a CBA, showed a significant increase in 
mild/moderate irAE (figure 7P). Furthermore, we iden-
tified that patients with higher expression of perforin 
were majorly composed of CR and mild/moderate or no 
irAE using the CBA (figure 7Q, R). Similarly, granzyme B, 
which was CR specifically upregulated in the CD8 T and 
NK cells, increased in the no and mild/moderate irAE 
(online supplemental figure S13A, B). Additionally, we 
confirmed that its expression was elevated in the no irAE 
compared with severe irAE using CBA, and the patients 
showing higher expression of granzyme B were majorly 
distributed in the CR and no irAE groups (online supple-
mental figure S13C- E).

In summary, we have identified valuable biomarkers 
for predicting ICI efficacy and irAE severity in baseline 

PBMC. Our study sheds light on establishing appropriate 
guidelines for immunotherapy to enhance patient care 
and treatment outcomes.

DISCUSSION
In this study, we performed scRNA- seq of baseline 
PBMCs collected immediately before treatment from 
patients with lung cancer undergoing ICI treatment. We 
investigated the mechanisms underlying CR and distin-
guished them from those associated with priR and AR. 
In addition, we identified monocytes as a novel cell type 
strongly associated with the occurrence of irAEs. Based 
on these findings, we validated IL1B and CXCL8 as 
predictive markers of irAEs in a large cohort. In addition, 
we analyzed the overlapping pathways between mild- to- 
moderate irAEs and CR, driven by findings from multiple 
retrospective studies showing that patients experiencing 
mild- to- moderate irAEs tend to exhibit better treatment 
responses and improved prognoses.32 33 50 To support and 
extend these findings, we conducted additional valida-
tion in a larger patient cohort, analyzing plasma levels 
of perforin, granzyme B, and IFN-γ. These factors were 
investigated for their potential utility as clinically appli-
cable biomarkers predictive of both therapeutic response 
and irAEs.

ICI treatment offers a significant paradigm shift in 
the treatment of patients with advanced lung cancer as 
it has the potential to induce durable responses and, in 
some cases, achieve CR.51 52 However, long- term follow- up 
data for pembrolizumab showed that the rate of patients 
maintaining a CR was approximately 1% in the entire 
cohort.53 In this context, identifying the characteristic 
mechanisms associated with CR is crucial for overcoming 
ICI resistance. In our cohort, CD8 T cells were the most 
critical cells for achieving CR. Notably, the gene expres-
sion of granzyme and perforin in these cells showed 
significant differences compared with that of priR and 
AR, suggesting that the cytotoxic T- cell immune response 
plays a crucial role. This finding aligns with previously 
established knowledge,54 and it has been reported that 
higher baseline concentrations of perforin are associated 
with longer progression- free survival and overall survival 
(OS) after ICI treatment.55 56 Interestingly, while there was 
a clear distinction in the expression patterns between CR 
and those with priR or AR, priR and AR showed similar 
expression profiles. However, pathways related to hypoxia 
and the UV response were significantly more pronounced 
in priR than in AR. These findings suggest that hypoxia 
is associated with priR. Moreover, the inhibition of the 
TF HIF1A, a crucial regulator of hypoxia, overcomes 
resistance to PD- 1 blockade, thereby enhancing the effi-
cacy of ICIs.57 58 Additionally, HIF1A inhibits interferon 
signaling, which is activated in CR.59 Indeed, tumors 
associated with necrosis are often considered to be in a 
hypoxic environment, and there are reports indicating 
that such conditions are associated with a poor response 
to ICI treatment.60 61
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In addition to CD8 T cells, CD4 T cells play a crucial 
role in regulating cytotoxic T- cell responses and in 
performing antitumor functions.62 Notably, high expres-
sion levels of the guanylate- binding protein (GBP) family 
have emerged as predictive markers for positive immuno-
therapy responses, strongly correlating with improved OS 
outcomes.63 Consistent with previous findings, our study 
revealed an increase in GBP1 and GBP2, which were all 
positively associated with immune cell infiltration, leading 
to improved OS of ICIs, thus reinforcing their prognostic 
significance in the context of ICI therapy.64–66 STAT1 
also modulates various inflammatory cytokine signaling 
pathways, and signatures activated by STAT1 improve the 
prognosis of ICI.67

In addition, in NK cells from CR, high expression of 
ITGAL, GZMB, and PRF1, which are associated with 
targeting and are essential for the efficient maturation 
and antitumor of NK cells, was confirmed.45 Previous 
lung cancer research revealed that ITGAL expression 
in NK cells was higher in normal tissues than in tumor 
samples, and that groups with high ITGAL expression 
demonstrated potential for improved immunotherapy 
outcomes.68 This finding suggests the high utility of 
ITGAL- mediated NK cells in predicting ICI prognosis.

As the clinical application of ICIs expands across various 
cancer types and stages, clinicians increasingly encounter 
irAEs that can manifest in a wide range of organs and 
various forms.69 70 These irAEs may become an obstacle 
to maintaining ICI treatment and, in severe cases, may 
require permanent discontinuation and may even threaten 
survival.71 72 In particular, immune- related pneumonitis 
occurs more frequently in patients with lung cancer than 
in those with other carcinomas, requiring attention73 74; 
however, there is currently no marker that can predict 
the occurrence of irAEs. IrAEs occur because of the over-
activation of the immune system induced by ICIs, which 
disrupts self- tolerance and fosters autoimmune reactions 
at various immunopathological levels.75 This phenom-
enon is believed to result from various mechanisms, 
including the autoreactive effects of CD4 and CD8 T cells, 
the release of self- antigens from tumor cells, the activation 
of autoreactive B cells, and the abnormal release of pro- 
inflammatory mediators such as cytokines and chemok-
ines, which drive to systemic inflammation.76 Multiple 
studies have linked cytokines such as tumor necrosis 
factor (TNF)- alpha, interleukin (IL)- 6, IL- 17, IL- 1β, and 
IL- 10 to the development of irAEs.77 Recent research has 
highlighted that an early increase in CXCL9, CXCL10, 
CXCL11, and IFN-γ within 1–2 weeks following therapy 
initiation may indicate a higher risk of irAEs. Addition-
ally, early expansion of Ki- 67+regulatory and Ki- 67+CD8+ 
T cells has been associated with a higher risk of irAEs.78 
While most previous studies have linked irAEs primarily 
associated with T- cell subpopulations, our research iden-
tified that several immune response- related signaling 
pathways, including TNF- alpha signaling, are predom-
inantly elevated in monocytes. One study reported that 
the CD16+monocyte population increased significantly 

in both mild and severe irAE cases, comprising a larger 
proportion of the total PBMC population compared with 
the cancer control group, whereas CD14+monocytes were 
more prevalent in irAE patients, with a notable increase 
observed in mild cases compared with severe cases.79 This 
suggests that monocytes are important for the occur-
rence of irAEs. We also identified potential candidates 
based on genes with increased expression in monocytes, 
of which CXCL8 and IL1B were validated using pretreat-
ment baseline plasma samples from 175 patients. Valida-
tion revealed that these markers were notably elevated 
in patients who experienced irAEs, particularly in those 
with severe irAEs. Consistent with these results, recent 
research has shown that IL1B high- expressing mono-
cytes in PBMCs differentiate into macrophages following 
immunotherapy, leading to inflammatory arthritis (IA) 
in synovial fluid mononuclear cells.80 Moreover, CXCL2 
and CXCL8, which play roles in recruiting immune cells 
and activating inflammatory responses, are significantly 
elevated in irAE patient samples in previous studies.80–83 
Given the upregulation of IL1B, CXCL2, and CXCL8 in 
monocytes from the baseline of our findings, this implies 
that the cytokines responsible for IA were already elevated 
at baseline, ultimately inducing irAE. This suggests that 
these markers could potentially be used for predicting 
irAEs in patients by using anti- CXCL8 (IL- 8) antibodies84 
could be explored as a therapeutic option for preventing 
irAEs. Additionally, considering that EREG and CCL3 
expression is increased in IL1B- high monocytes, which 
are closely associated with irAE- IA and irAE- pneumonitis, 
that these molecules are actively involved in proinflam-
matory activities, EREG and CCL3 may suggest a close 
relationship between these molecules and irAEs.80 83 85 86

Numerous studies have investigated the association 
between irAEs and effectiveness of ICIs, particularly in 
NSCLC.50 In pooled analyses of the IMpower trials, patients 
with irAEs, particularly grades 1–2, showed significantly 
longer OS compared with those without irAEs.87 Similarly, 
other studies reported that irAEs, especially endocrine- 
related events such as thyroid dysfunction, are associated 
with improved objective response rates, progression- free 
survival, and OS.88 Notably, patients experiencing multi-
system irAEs demonstrated even greater survival benefits 
than those experiencing single or no irAEs.89 However, 
this relationship is complex and influenced by various 
factors such as the type, severity, timing of onset, and 
management of irAEs, all of which can affect treatment 
outcomes. Moreover, confounding variables should be 
considered when assessing the association between irAEs 
and survival rates. For example, patients with longer 
survival duration may be more likely to develop irAEs 
because of extended exposure to ICIs. Consequently, the 
usefulness of irAEs as reliable surrogate markers of ICI 
efficacy remains unclear. Furthermore, the underlying 
mechanisms linking irAEs to improved treatment effi-
cacy and prognosis remain unclear and require further 
investigation. In this study, we identified specific pathways 
shared between mild- to- moderate irAEs and ICI efficacy, 
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providing novel insights into the potential biological 
basis of this association. NK- mediated cytotoxicity and 
CD8 T- cell activation pathways are commonly implicated 
in mild- to- moderate irAEs and improved efficacy. We vali-
dated these findings using a public dataset and found 
that PRF1 was strongly associated with these pathways. 
This suggests that targeting PRF1 could enhance the effi-
cacy of ICI treatment, potentially maximizing therapeutic 
outcomes. However, appropriate biomarkers predicting 
ICI response and irAE severity are still not established, 
and there are challenges in selecting candidates before-
hand. In our analysis, we found that higher baseline 
plasma levels of perforin and granzyme B were signifi-
cantly associated with both favorable treatment response 
and a lower incidence of severe irAEs. These observations 
suggest the potential clinical utility of these cytotoxic 
effector molecules as non- invasive biomarkers for patient 
stratification prior to ICI therapy. Pretreatment assess-
ment of perforin and granzyme B levels may aid in iden-
tifying patients more likely to derive clinical benefit while 
minimizing the risk of severe toxicity.

This study has several limitations. First, patients with 
intermediate response patterns—such as initial stable 
disease or partial response followed by early progres-
sion within 6 months—were not included. Future studies 
including these subgroups are needed to better reflect 
real- world clinical heterogeneity. Second, while periph-
eral blood samples are more suitable for biomarker 
discovery, their profiles may not fully represent the 
tumor microenvironment. In advanced lung cancer, 
limited tissue availability from small biopsies makes direct 
comparison challenging. Integrating data from both 
peripheral blood and tumor tissue, when available, would 
provide a more comprehensive understanding of immu-
notherapy responses.

Our study focused on pretreated PBMC samples to 
present biomarkers to select appropriate patients likely 
to have a good prognosis and low irAEs before ICI treat-
ment. However, longitudinal analyses can show how 
changes in these biomarkers influence ICI prognosis and 
irAE. Furthermore, by tracking gradual gene expression 
and cell type variations, we may identify new biomarkers 
that can estimate disease progression and irAE severity 
from each stage, providing insights for tracking the ICI 
effectiveness and treatment optimization. Although we 
focused on pretreated samples in this study, we increased 
the practical applicability of these biomarkers by vali-
dating them using larger cohorts and public datasets. 
In addition to predicting treatment outcomes, these 
biomarkers have been used as targets to enhance or 
mitigate treatment responsiveness and irAEs. Collec-
tively, our work highlights the potential of establishing 
and improving ICI treatment strategies before treatment 
using PBMC samples.
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