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Krylov complexity as an order parameter for quantum chaotic-integrable transitions
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Krylov complexity has recently emerged as a new paradigm to characterize quantum chaos in many-body
systems. However, which features of Krylov complexity are a prerogative of quantum chaotic systems and
how they relate to more standard probes, such as spectral statistics or out-of-time-order correlators (OTOCs),
remain open questions. Recent insights have revealed that in quantum chaotic systems Krylov state complexity
exhibits a distinct peak during time evolution before settling into a well-understood late-time plateau. In this
work we propose that this Krylov complexity peak (KCP) is a hallmark of quantum chaotic systems and
suggest that its height could serve as an order parameter for quantum chaos. We demonstrate that the KCP
effectively identifies chaotic-integrable transitions in two representative quantum-mechanical models at both
infinite and finite temperature: the mass-deformed Sachdev-Ye-Kitaev model and the sparse Sachdev-Ye-Kitaev
model. Our findings align with established results from spectral statistics and OTOCs while introducing an
operator-independent diagnostic for quantum chaos, offering more universal insights and a deeper understanding

of the general properties of quantum chaotic systems.
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I. INTRODUCTION

Chaos is a widespread phenomenon in nature. While sub-
stantial progress has been made in understanding classical
chaos [1], its definition and characterization in the quantum
realm, particularly in many-body systems, remain signifi-
cantly less understood.

Traditionally, quantum chaos has been linked to the
Bohigas-Giannoni-Schmit conjecture [2-5], asserting that the
energy spectra of quantum systems with chaotic classical
counterparts match the statistical predictions of random ma-
trix theory (RMT). Specifically, quantum chaotic systems are
expected to display RMT features such as level repulsion and
spectral rigidity [2,6,7], which are therefore accepted as fin-
gerprints of late-time quantum chaos in many-body systems.

Conversely, in quantum chaotic systems with many de-
grees of freedom, ranging from the Sachdev- Ye-Kitaev (SYK)
model to black holes and other large-N systems, at early times,
the time evolution of specific out-of-time-order correlators
(OTOCs) exhibits a phase of exponential growth [8,9], gov-
erned by a nonzero Lyapunov exponent A; < 2wkgT /R [10].
This behavior serves as an additional indicator of quantum
chaos at complementary timescales.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2643-1564/2025/7(2)/023028(11)

023028-1

Modern explorations of quantum chaos have prominently
featured both level statistics and OTOCs, bolstered by
intriguing links between many-body chaos and quantum grav-
itational systems [11-16]. In this context, Krylov complexity
[17,18] has recently emerged as a new valuable tool for char-
acterizing quantum chaos, providing an alternative diagnostic
beyond traditional analyses. It has been employed in RMT
[18-22] and many other quantum chaotic systems, including
quantum billiards [23-25], spin chains [26-31], and vari-
ous flavors of the SYK model [32-36]. Additionally, Krylov
complexity has been discussed in several other contexts in-
cluding topological and quantum phase transitions [37—40],
quantum batteries [41], bosonic systems describing ultracold
atoms [42], saddle-dominated scrambling [43,44], and open
quantum systems [45-50], among others (see [51] for a com-
prehensive review). Two forms of Krylov complexity have
been proposed in the literature: the original type, which ad-
dresses operator growth [17], and a newer version, which
evaluates the spread of a time-evolving quantum state within
a specific subspace of the Hilbert space [18]. The latter will
be the focus of this paper.

For time-evolved thermofield double (TFD) states in RMT
(see [30] for a discussion on state dependence of Krylov com-
plexity), Krylov state complexity exhibits four distinct phases:
an initial linear ramp, a peak, a subsequent decline, and a
plateau. According to [18], the peak overshooting the plateau
followed by a decline appears to be a universal characteris-
tic of quantum chaotic many-body systems and is therefore
expected to be absent in integrable systems. In this context,
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the importance of the TFD state is motivated not only by its
role in its connection between Krylov complexity and other
chaos probes, such as the spectral form factor (discussed in
detail later in the text), but also by its potential relevance
in holography, where it serves as the holographic dual of a
two-sided black hole.

Building on these observations, this paper provides fur-
ther evidence that the Krylov complexity peak (KCP) is a
defining feature of quantum chaos, potentially serving as an
order parameter for quantum chaotic phases. Simply put, we
propose that the KCP vanishes in integrable systems and that
its height exhibits critical dynamics, capable of diagnosing
quantum chaotic to integrable transitions at both infinite and
finite temperature.

To provide evidence for our proposal, we turn to the SYK
model and its variants, which serve as useful toy models.
Specifically, we focus on two representative examples, the
mass-deformed SYK [52-54] and the sparse SYK [55,56]
models, which have been extensively studied for their rele-
vance to quantum chaotic to integrable transitions and have
been thoroughly characterized through both level statistics
and properties of the OTOCs [52-66].

This paper is structured as follows. Section II introduces
the SYK models under consideration. Section III provides an
overview of Krylov complexity and the spectral form factor. In
Sec. IV we show that Krylov complexity effectively identifies
chaotic-integrable transitions in these models, in line with the
appearance and disappearance of the ramp in the spectral form
factor. Section V summarizes and discusses our results.

II. COMPUTATIONAL MODELS
A. Mass-deformed SYK model

As a first example, we consider the mass-deformed SYK
model [54], which involves N fermions in 0 + 1 dimensions.
This model extends the original SYK model [67] by including
an additional quadratic term, known as the random mass term,
alongside the random quartic interactions. The Hamiltonian of
the model is given by

N N
1 i
H= ) Ek/ Jijkt XiXj X Xt + 2 E 1’¢inin~ (H
i,j.k,I=1 i,j=

Here yx; are Majorana fermions satisfying {x;, x;} = &;;, re-
siding in a Hilbert space of dimension 2¥/2. The coupling
constants J;;i; and «;; are Gaussian-distributed random vari-
ables with zero mean. Their standard deviations are +/6.J /N3/2
and « /+/N, respectively.

In the absence of a mass deformation, the SYK model
is maximally chaotic and saturates the Maldacena-Shenker-
Stanford bound on quantum chaos [10]. Conversely, the
purely quadratic Hamiltonian corresponds to an integrable
system, inherently lacking any chaotic hallmark. As the vari-
ance of the random mass deformation « increases, the model
transitions from chaotic to integrable, effectively detected
through level statistics [54]. More precisely, the analysis of
level-spacing distribution and r-parameter statistics yield a
critical value k. &~ 66 for 8 = 0. This transition is further
confirmed by the OTOC and the value of the Lyapunov expo-
nent, though there are open discussions on this point [58,59].

Moreover, it has been analytically proven [68] that for k > k.,
all states are many-body localized, and spectral correlations
are well described by Poisson statistics, as expected for an
integrable system.

B. Sparse SYK model

As a second example, we consider the sparse SYK model
[55,56]. In this case, the Hamiltonian is

N

1
H = 1 Z Xijkt i jit Xi X Xk X1 )
ijkl=1

where x; are Majorana fermions satisfying {x;, x;} = d;;. The
coupling constants J;jz; are Gaussian-distributed random vari-
ables with zero mean and standard deviation

| 6J2

Furthermore, x;ji; equals 1 with probability p and 0 with
probability 1 — p. The parameter p determines the number of
nonzero terms in the Hamiltonian, kN, given by

kN = p(];’) )

which controls the amount of sparseness of the model. For
p = 1, the model reduces to the standard SYK model. As p
(or equivalently k) decreases, the model transitions towards
an integrable regime, as evidenced by level statistics analysis
[56,63,64], which identifies a critical value of k. ~ 1 for this
transition. This transition is further reflected in the behavior of
the Lyapunov exponent, indicated by a significant reduction in
the exponential growth of OTOCs [65]. In a parallel analysis
it is shown that the emergence of gravitational physics at low
temperatures, specifically the onset of Schwarzian dynamics,
requires k to lie within the range from 1/4 to 4 [55].

The Krylov complexity of states has been examined in the
sparse SYK model, as discussed in [69], though from a differ-
ent perspective. In contrast to their approach, we will use the
TFD state as our initial condition, aligning with the original
conjecture for Krylov complexity [18]. Additionally, we will
extend the analysis to investigate the temperature dependence
of this complexity.

Overall, these two variants of the SYK model serve as ideal
playgrounds for exploring the features of Krylov complexity
that are unique to quantum chaotic systems and examining
how these features evolve as the system transitions to an
integrable phase. For both models, we will take J = 1 for our
computations.

III. KRYLOV COMPLEXITY AND SPECTRAL
FORM FACTOR

The calculation of Krylov complexity involves construct-
ing the Krylov basis {|K,)}, achieved through the so-called
Lanczos algorithm [70,71]. This procedure yields two sets of
Lanczos coefficients {a,, b,}, which encode all information
regarding the system’s dynamics. These coefficients corre-
spond to the tridiagonal elements of the Hamiltonian when
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expressed in the Krylov basis:
HIK,) = an|Ky) + but1|Kng1) + bul Ky &)

Given the Lanczos coefficients, the Krylov wave functions
¥, (¢) satisfy the iterative differential equation

iatwn(t) = anl/fn(l) + anrll/fnJrl(t) + bn‘/fnfl([)v (6)

which represents the Schrodinger equation within the Krylov
space governed by the Hamiltonian H such that the time-
evolved state is given by |Y (1)) =), ¥,(¢)|K,). Finally,
Krylov complexity is defined as

C@) =Y nlyu@)I. )

n

It measures the average depth of a time-evolving state in the
Krylov basis, reflecting the spread of the wave function in this
basis.

As the initial state, we consider the TFD state

4/_21(/3) 2P mem. @

with |n) and E,, indicating the eigenstates and the eigenvalues
of the Hamiltonian H, respectively. This TFD state is built
from the tensor product of two copies of the original Hilbert
space. Here Z(B) = Y_, e P is the partition function at in-
verse temperature 8.! Recall that the TFD state evolves under
(Hp + Hg)/2, where H; and Hg act independently on the left
and right copies of the Hamiltonian, respectively.

The spectral form factor (SFF) is another valuable tool to
probe the dynamics of quantum chaos, which may be linked to
level statistics. Specifically, for quantum systems with discrete
energy levels {E,}, the SSF is defined via the analytically
continued partition function [4,72]

1Z(B +ir)|?
Z(B)I?

1 :
—B(En+Ey) ,i(En—Ey)t
767 mEn e e . &)

Both in RMT and in the SYK model, SFF(z) displays a char-
acteristic slope-dip-ramp-plateau behavior.

Given the definitions provided in Egs. (7) and (9), it is
natural to assume that a direct link between Krylov complex-
ity and the SFF might exist. In fact, considering the Krylov
complexity of the TFD state, the SFF can be interpreted as
the survival probability of the time-evolved TFD state [21,73],
SFF(t) = |Y(t)|?, where y,—o(t) is determined by solving
Eq. (6). Additionally, for the TFD state with § = 0, which
is a maximally entangled state, the late-time behavior of the
Krylov complexity obeys the identity [14,32,35,74]

v (0) =

SFF(t) :=

17 1
Jim _/ SFF()= —————  (10)
T—oo T Jo 142C(t — o00)

'In the Hessenberg form using Householder reflections, the stan-
dard initial state is chosen as (1,0,0,...)T. Therefore, a basis
transformation is required to align the given initial vector with this
standard state. For more details, see [18].
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FIG. 1. (a) Normalized Krylov complexity C(¢)/d with the TFD
as the initial state for various values of the parameter « from 0
(red) to 300 (purple) for N =26 and B = 0. (b) Normalized dif-
ference between the peak value C(f = fpca) and the late-time value
C(t — 00), as a function of « for 8 =0, 1, 3, 5, and 10 (red, orange,
green, blue, and purple, respectively).

where C(t = 00) = (d — 1)/2, with d the system size related
to N as d = 2V/?~12 This identity provides a nonlocal (in
time) constraint relating SFF(¢) to C(¢), reminiscent of a sum
rule.

IV. RESULTS

A. Mass-deformed SYK model

We calculate the time-dependent Krylov complexity, as
defined in Eq. (7), for the mass-deformed SYK model as a
function of the mass parameter « and the inverse temperature
B. We perform our computations with a system size of N = 26
and express all dimensionful quantities in units of the coupling
J, following Ref. [54]. As noted in [18], N = 26 is sufficiently
large to ensure convergence of the numerical results. There-
fore, finite-size effects on Krylov complexity are minimal for
this choice of N. For further details on the numerical methods,
we refer the reader to the Appendix.

In Fig. 1(a) we show the normalized Krylov complexity
C(t)/d as a function of time for various values of ¥ € [0, 300],
with colors ranging from red to purple at infinite temperature
(B = 0). For low values of «, Krylov complexity distinctly
exhibits the four hallmark stages of chaotic dynamics: It first
undergoes a linear ramp up to a peak at f = fpeqx, followed by
a decline that levels off into a constant plateau. The value of
C(t) at the plateau as t — oo is independent of the parameter

’In the case of the TFD state with finite 8, i.e., when the system
is no longer in a maximally entangled state, a simple relation as in
Eq. (10) may no longer hold. For further details on this point, see
Ref. [35].
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k, only depending on the system size, with C(t — 00)/d ~
1/2. Furthermore, as « increases, we note the KCP occurs
at progressively earlier times and eventually vanishes when
k becomes sufficiently large.

These observations indicate that the peak in Krylov com-
plexity could be used as a clear indicator for quantum chaos,
disappearing when the system becomes integrable, i.e., for
large k. To formalize this idea, we propose an order param-
eter derived from the KCP. This parameter can be defined
as the difference between the peak value C(f = fpeax) and
the late-time average (plateau) value C(t — oo) of Krylov
complexity,

AC :=C(t = tpea) — C(t — ). (11)

By definition, AC # 0 identifies a quantum chaotic system,
while AC = 0 indicates an integrable one.

In Fig. 1(b) we present the KCP order parameter AC as
a function of « for various values of the inverse temperature
B. The case at infinite temperature (8 = 0), depicted in red,
shows a smooth transition from AC ~ 0.1 at k — 0 to a
complete vanishing of AC at large k. The critical value of
« at which this transition occurs aligns with the critical value
k. & 66 reported in [54] based on spectral statistics methods.

As B increases and we move away from the infinite-
temperature limit, three key phenomena are observed. (i) In
the quantum chaotic phase (small «), the value of AC de-
creases, indicating that the height of the peak in C(¢) relative
to the late-time plateau value becomes temperature dependent.
This behavior is consistent with the results for k = 0 reported
in [18]. (ii) The point of continuous transition from AC # 0
to AC = 0 shifts to lower values of «. (iii) The width of this
transition (e.g., the width is from « =~ 5 to x =~ 30 for 8 = 0)
increases, with the KCP order parameter exhibiting a smooth
crossover rather than a sharp critical transition.

We define the critical point by identifying the value «, at
which the KCP order parameter vanishes, analogous to the
vanishing of the Lyapunov exponent observed in the OTOC
analysis of [54]. Using this definition, we construct a phase di-
agram for the mass-deformed SYK model as a function of the
mass-deformation parameter « and the inverse temperature S.
This phase diagram is illustrated in Fig. 2, with chaotic and
integrable phases depicted in red and blue, respectively.

As the temperature decreases, the integrable phase be-
comes more favorable and the critical point shifts to smaller
values of x. We observe that the critical line separating the
chaotic and integrable phases is well described by an empiri-
cal exponential function

Kk (B) ~ K (0)e™HmP (12)

which is shown as a black dashed line in Fig. 2. This indi-
cates a strong dependence on the inverse temperature 8. This
behavior can be potentially rationalized by noting that higher
temperatures enable the system to explore a broader range of
energy states, leading to a more comprehensive representation
of its spectral statistics. Additionally, the observed trend of
the critical point with respect to § aligns well with previous
results obtained using alternative methods [54].

Having established that the KCP is a signature of quan-
tum chaotic states and a useful order parameter for detecting
transitions from chaotic to integrable phases in many-body

Integrable

FIG. 2. Phase diagram of the mass-deformed SYK model as a
function of the parameter x and the inverse temperature . Black dots
indicate the critical values of « at which the KCP order parameter, as
shown in Fig. 1, vanishes. The dashed line represents the exponential
fit given by Eq. (12). The lower region (red) denotes the chaotic
phase, while the upper region (blue) represents the integrable phase,
with the dashed line marking the boundary between these two phases.

quantum systems, we now delve deeper into the relationship
between Krylov complexity and the SFF, as defined in Eq. (9).
The mass-deformed SYK model is especially advantageous
for this investigation, as it enables a comparative analysis both
within the quantum chaotic regime and across the transition to
its integrable phase.

A key feature of the SFF for chaotic systems is the presence
of an extended linear ramp [4] that follows after the dip. In
Fig. 3 we display the time-dependent SFF for various inverse
temperatures (. For the quantum chaotic case with 8 =0
(red), the linear ramp is clearly observed, as indicated by
the black dashed line in Fig. 3. Moreover, we have verified
explicitly that the relation with the late-time value of Krylov
complexity, Eq. (10), is obeyed to a high degree of accuracy.
As B increases, several notable changes occur. First, the r —
oo value of SFF(¢) rises, approaching the initial value of 1 as
B becomes large. Second, the intermediate-time dip in SFF(¢)
diminishes with increasing B and eventually disappears in the
large-B limit. Most significantly, the extent of the linear ramp
decreases as f increases, ultimately vanishing as the inverse
temperature approaches higher values.

Using the empirical function from Eq. (12) and taking
k.(0) =~ 66, we estimate that for ¥ = 1, the critical value of
B separating chaotic and integrable phases is approximately

10°
107!

1073

SFF(?)

10-3

1077
1072 10! 10! 103 10° 107

FIG. 3. Spectral form factor (9) as a function of time for k = 1,
N =26,and =0, 1, 3, 5, and 10 (red, orange, green, blue, and
purple, respectively). The black dashed line indicates the average
linear growth characteristic of the SFF in the ramp regime.
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Bc &~ 6.58. This value lies in between the blue and purple
lines in Fig. 3. Our numerical results show that this prediction,
derived from the new KCP order parameter, matches the ob-
served disappearance of the ramp in SFF(¢). This agreement
not only verifies that the presence of a ramp and correspond-
ing dip are clear indicators of quantum chaotic systems, which
disappear as the system becomes integrable, but also indepen-
dently supports the validity and utility of the order parameter
AC as a reliable benchmark for assessing quantum chaotic
behavior.

These observations hint at a deeper relationship between
Krylov complexity C(¢) and the SFF(z) that extends beyond
the constraints described in Eq. (10). As noted in [35], a
potential connection between the KCP and the ramp observed
in the SFF seems to be emerging. Additionally, variations of
the SFF explored in previous studies [54,57] merit further in-
vestigation, particularly regarding their relation and potential
interplay with Krylov complexity.

Together with the disappearance of the ramp, there is an
additional observation to be made. As shown in Fig. 1(b), for
a fixed value of k and varying g, there is a critical value at
which the KCP disappears. For example, for x = 1 the KCP
disappears in between 8 = 1 (orange) and 8 = 3 (green). This
transition is also evident in Fig. 3, where the dip in the SSF
vanishes at around the same value of 8 (green curve). It is
therefore plausible that the depth of the dip in the SFF may
serve as an alternative order parameter to detect the chaotic
to integrable transition, similar to the KCP proposed above.
However, as analyzed in detail in the Appendix 4, this is not
the case in general. In fact, we find that this feature is evident
only at finite B, but it disappears in the limit of 8 — 0. This
suggests that the KCP is a more robust indicator of the chaos-
integrable transition.

B. Sparse SYK model

To further illustrate the robustness of the KCP as an order
parameter for chaotic-integrable transitions, we investigate
the sparse SYK model. As with our study of the mass-
deformed SYK model, we use a system size of N = 26 and
examine Krylov complexity across different levels of sparsity,
parametrized by p, or k in Eq. (4).

Figure 4(a) illustrates the time evolution of normalized
Krylov complexity for various sparsity values in the range
p €[0.001, 1] at B = 0. As sparsity increases, i.e., as p de-
creases, two key observations emerge: (i) The saturation value
deviates from C(t = oo) = (d — 1)/2 and (ii) the peak height
diminishes.

The deviation in the saturation value arises because, in the
sparse SYK model at sufficiently small p (specifically, when
k < 1), a significant number of emergent discrete symmetries,
including chiral symmetries, can lead to exact degeneracies in
the spectrum [56]. These degeneracies modify the late-time
behavior of Krylov complexity of the TFD state, resulting
in a suppressed saturation value [30,35]. This behavior is
consistent with previous analyses of Krylov complexity in the
sparse SYK model using a different initial state [69].

In Fig. 4(b) we plot the KCP order parameter AC as a
function of k for various values of 8. We observe a transi-
tion to AC =~ 0 with the critical value of k. &~ 1, which is

0.60}
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0.40"
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0.20"
0.10¢

0.00t .
0 5000
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Cwt/d

10000 15000

tld

AC/d

k

FIG. 4. (a) Normalized Krylov complexity C(¢)/d with the TFD
as the initial state for various values of the parameter p from 1
(red) to 0.001 (purple) for N = 26 and g = 0. (b) Normalized dif-
ference between the peak value C(f = fpca) and the late-time value
C(t — 00), as a function of k for 8 =0, 1, 3, 5, and 10 (red, orange,
green, blue, and purple, respectively).

consistent with previous studies using spectral statistics meth-
ods such as the r-parameter statistics [56]. Furthermore, Fig. 5
corroborates this transition, demonstrating that the ramp in the
spectral form factor also disappears around k. ~ 1.

0.100+

0.001+

SFF(f)

105

1 104

0.1001

0.001r

SFF(#)

10F

1 104
t

FIG. 5. Spectral form factor (9) as a function of time for k = 575
(red), 1.150 (orange), and 0.805 (purple) for N =26 and (a) B =0
and (b) B = 5. The black dashed line indicates the average linear
growth characteristic of the SFF in the ramp regime.
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Our results from both the mass-deformed and sparse SYK
models indicate that the KCP serves as an effective order
parameter for chaotic-integrable transitions, consistent with
findings from conventional spectral statistics methods. No-
tably, unlike the mass-deformed SYK model, the critical k.
remains approximately constant at k. =~ 1, regardless of the
value of 8. This observation may be linked to the level statis-
tics analysis in [56], which demonstrated that at k ~ 1, the
system reaches a maximum level of sparsity, leading to the
absence of level repulsion.® This suggests that in the regime
k < 1, the Hamiltonian is too sparse to maintain quantum
chaotic features. In other words, the Hamiltonian loses its
chaotic nature, rendering the influence of the probe (such as g
through the TFD state) negligible.

V. DISCUSSION

In this paper we proposed that the KCP may serve as a
defining feature of quantum chaos and could act as a robust
order parameter for identifying quantum chaotic phases in
many-body systems. We observed that the KCP vanishes in
integrable systems while displaying critical dynamics across
chaotic-to-integrable quantum and thermal transitions. By
computing the KCP using the TFD as an initial state, we
effectively identified the chaotic-integrable transitions in the
mass-deformed SYK and sparse SYK models at both infi-
nite and finite temperature. This finding is consistent with
the results obtained from traditional probes such as spectral
statistics and out-of-time-order correlators and aligns with the
independent prediction from the SFF.

Our results provide a compelling answer to the question
of which features of Krylov complexity are unique to quan-
tum chaotic systems and how these features change as the
system transitions towards integrable regimes. It is now es-
sential to further test our proposal and determine whether the
KCP is a universal probe of quantum chaos, comparable to
well-established concepts like level repulsion or the quantum
Lyapunov exponent. In this vein, it is important to gain a
deeper understanding of potential counterexamples, such as
quantum systems with integrable phases exhibiting saddle-
dominated scrambling, like the Lipkin-Meshkov-Glick model
[43.,44], or quantum systems with a mixed phase space, such
as the stringy matrix models recently considered in [75].

Finally, our analysis underscores the importance of the
TFD state in the study of quantum chaos in many-body sys-
tems, building on previous observations [30]. This state is
crucial for Krylov complexity to effectively probe random
matrix physics, likely because random matrix behavior en-
compasses the entire level-spacing spectrum of the system.
Consequently, any measure aimed at probing random matrix
behavior benefits from the TFD state’s ability to encom-
pass the full spectrum. Thermofield double states also play
a significant role in holography, serving as CFT duals of
two-sided black holes [76]. Recent findings suggest a con-
nection between the Krylov complexity of chord states in

3For further details, see [56], which elaborates on the observation
that the distribution width exceeds the level spacing, with the distri-
butions of the first ten eigenvalues being nearly identical.

the double-scaled SYK model and the length of the dual
Lorentzian wormhole in Jackiw-Teitelboim gravity [77], a
lower-dimensional realization of holography. Therefore, our
work might provide valuable insights into the holographic
dual description of chaotic-integrable transitions in quantum
systems and contribute to addressing the profound and long-
standing question of quantum gravity.

Furthermore, it may be worthwhile to explore the con-
nection between Krylov complexity and more classical
approaches to integrability. One interesting direction could
involve an “extended” definition of quantum chaos inspired
by the Liouville-Arnold theorem, stating that a system with N
degrees of freedom is considered regular if the number of the
first integrals M equals N, while the system is deemed chaotic
when M is less than N.

ACKNOWLEDGMENTS

We would like to thank Antonio M. Garcia-Garcia
for collaboration at the initial stage of this project and
Junggi Yoon for valuable suggestions. We would like to
thank Pratik Nandy and Debodirna Ghosh for useful com-
ments on an early version of this paper. M.B. would also
like to thank Dario Rosa for illuminating discussions on
complexity and quantum chaos. M.B. and K.-B.H. acknowl-
edge support from the Foreign Young Scholars Research
Fund Project (Grant No. 227033100604). M.B. acknowl-
edges sponsorship through the Yangyang Development Fund.
H.-S.J. and J.EP. were supported by the Spanish MINECO
Centro de Excelencia Severo Ochoa program under Grant
No. SEV-2012-0249, the Comunidad de Madrid Atraccion
de Talento program through Grant No. 2020-T1/TIC-20495,
and the Spanish Research Agency via Grants No. CEX2020-
001007-S and No. PID2021-123017NB-I00, funded by
MCIN/AEI/10.13039/501100011033 and the ERDF A way
of making Europe. K.-Y.K. was supported by the Basic
Science Research Program through the National Research
Foundation of Korea funded by the Ministry of Science, ICT
& Future Planning (Grant No. NRF-2021R1A2C1006791)
and the Al-based GIST Research Scientist Project grant
funded by the GIST. K.-Y.K. was also supported by the Cre-
ation of the Quantum Information Science R&D Ecosystem
(Grant No. 2022M3H3A106307411) through the National
Research Foundation of Korea funded by the Korean govern-
ment (Ministry of Science and ICT).

All authors contributed equally to this work.

APPENDIX: DETAILS ON THE NUMERICAL METHODS

In this Appendix we provide additional details on the nu-
merical computations discussed in the main text, along with
further analyses to substantiate our results. Here we primarily
focus on the mass-deformed SYK model; however, the key
features are consistent with those observed in the sparse SYK
model as well.

1. Block diagonalization of the SYK Hamiltonian

Block diagonalization of the Hamiltonian matrix is cru-
cial for analyzing spectral statistics of the energy spectrum.
By decomposing the Hamiltonian into smaller blocks based
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FIG. 6. Block-diagonalized mass-deformed SYK model for N =

26 and k = 1. The top-left block corresponds to the parity-odd sector,

while the bottom-right block corresponds to the parity-even sector.

on the system’s symmetries, the statistical properties of the
energy levels can be studied more efficiently. This approach
simplifies computations, improves numerical accuracy, and
reduces the effective size of the system.

Regarding the SYK model, its Hamiltonian possesses a
conserved charge parity operator P [78-80],

_ {(—iX1Xz)(—iX3X4)-~-(—ixN_1xN), N € even
(=ixix2)(=ix3xa) - (—ixnXoo)s N € odd,

(A1)

where x; (i =1,2,...,N) are Majorana fermions and N is

the system size. The SYK Hamiltonian H commutes with the

@ 40
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4000

3000

0 1000 2000

n
FIG. 7. Lanczos coefficients (a) a, and (b) b, for the mass-

deformed SYK model for various values of the mass-deformation
parameter, ranging from «k = 0 (red) to « = 300 (purple).
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FIG. 8. Variance of the Lanczos coefficients (a) 62 and (b) o as
a function of «.

parity operator P, [H, P] = 0, allowing the Hamiltonian to
be block diagonalized. Using an invertible matrix consisting
of the eigenvectors of P, the system is split into parity-even
and parity-odd sectors, each with a dimension d = 2"/~
Figure 6 illustrates the typical block-diagonalized Hamilto-
nian of a mass-deformed SYK model at finite «.

60t (b)
50¢
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2005 0.00 005  0.10
Log[bn / bn+1]

0
-0.10

FIG. 9. Histogram of the Lanczos coefficients (a) a, and (b) b,
for values of k ranging from k = 0 (red) to k = 300 (purple).
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FIG. 10. Normalization of the Krylov wave functions.

In our study, we have focused on numerical computations
within the parity-even sector for N = 26, using both Wolfram
Mathematica and MATLAB to cross-verify our results. We have
also confirmed that the parity-odd sector produces similar
outcomes for Krylov complexity.

2. Lanczos coefficients and quantum chaos

In the main text we focused on the Krylov complexity
derived from solving the Schrédinger equation using the given
Lanczos coefficients {a,, b,}. Here we examine the Lanczos
coefficients {a,, b,} of the mass-deformed SYK models. As
suggested in Refs. [23,81], the Lanczos coefficients can be
obtained through the Lanczos algorithm, which minimizes
numerical errors in the orthogonalization process, ensuring
consistency with those derived from the Hessenberg form. The
algorithm is outlined as follows.

(1) Initialize with by :=0, |Kp) := |¥(0)), and qg :=
(Ko|D|Kp), where D := diag(Ey, ..., Eg).

(2) For n>1, compute |A,)= (D —a,—1)|K,—1) —
bnfl |Kn72) .

(3) Replace |A,,) with |A4,) — Y0t (A Ko)|An).

(4) Set b, = (A,|A,)'/.

(5) If b, =0, terminate the algorithm; otherwise, set
|K,) = b;llAn) and a, = (K,|D|K,) and then return to
step 2.

In our study, we utilize the TFD state as the initial state
[ (0)). To illustrate our numerical results, we present specific
computations for the maximally entangled state, i.e., the TFD

state with § = 0. Using the Lanczos algorithm, we obtain
the Lanczos coefficients for the mass-deformed SYK model,
as shown in Fig. 7. We observe that a, exhibits oscillatory
behavior, while b, initially grows (see the inset), reaches a
peak, and then diminishes as n approaches the dimension of
the Krylov space. These characteristics are consistent with
those observed in the original SYK model (x = 0) [18] and
in RMT [35].

Two notable observations regarding the effect of « are as
follows. First, as « increases, the slope of the initial growth
of b, also increases (see the inset), indicating that the value
of b; is enhanced by the mass-deformation parameter. This
enhancement may explain the behavior of the slope of C(¢)
in Fig. 1 with increasing «, as the early-time behavior of the
Krylov complexity has been shown to follow C(t < 1) ~ bjt?
[44]. The second observation concerns the variance of the
Lanczos coefficients, defined as [23]

Wi
%2 = Var(x}”)), xf”) = log< 2 1),

ay;

by
of = Var(x”), x :=1log (%) (A2)

2i

For additional information on the variance of Lanczos co-
efficients in the context of Krylov operator complexity, see
[26,74]. We observe that the variance increases in the inte-
grable regime (large «) compared to the chaotic regime (small
k). This trend is especially pronounced for abz (see Fig. 8).
However, unlike the KCP, we do not observe a distinct feature
indicative of a critical phase transition around «,. ~ 66. This
suggests that the KCP may serve as a more effective order
parameter than the Lanczos coefficients themselves. Refer
to Fig. 9 for the histogram plot of the Lanczos coefficients’
distribution, which supports the conclusions drawn from the
variance analysis.

3. Normalization condition and Ehrenfest theorem

We have confirmed that our numerical results meet es-
sential consistency checks, including the wave function
normalization condition [18] and the Ehrenfest theorem [35].

R Y S
400}

200

150001
100001
5000¢

600000 ) 1
500000 ]
400000
300000
200000
100000

0

0.00 0.02 0.04 0.06 0.08 0.10
t

0 0.003  0.006 0.009 0.012 0.015

t t

FIG. 11. Ehrenfest theorem in the mass-deformed SYK models for (a) « = 0 (red), (b) x = 1 (orange), (c) k = 10 (yellow), (d) ¥ = 50
(green), (e) k = 100 (blue), and (f) k = 300 (purple). The solid lines correspond to the left-hand side of (AS), while the dots represent the

right-hand side of (AS5).
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k

FIG. 12. Plot of ASFF [Eq. (A6)] as a function of the parameters
« and k for (a) the mass-deformed SYK model and (b) the sparse
SYK model, for 8 =0, 1, 3, 5, and 10 (red, orange, green, blue, and
purple, respectively).

First, we address the normalization condition for the
Krylov wave functions,

D WP =1,

which ensures the unitarity of time evolution. As shown in
Fig. 10, this normalization condition is satisfied within our
time window for numerical computations of Krylov com-
plexity, specifically for ¢ < 2V/>*!. To maintain normalization
over a longer time window, including the late-time regime, it
is necessary to consider larger values of 7., as discussed in
[23,24]. Our results indicate that the chosen cutoff value of
nmax = d is adequate for capturing all key features of Krylov
complexity, i.e., the initial ramp, peak, decline, and plateau,
while satisfying the normalization condition. Second, an

(A3)

important aspect of Krylov complexity is its adherence to the
Ehrenfest theorem [35], expressed as

W (WICly) = —(yIlIC, L1, L1Y),

where € := > nlK) (K|, £L=H ®]I denotes the Liouvil-
lian, and I represents the identity operator. By applying the
Schrodinger equation along with the definition of Krylov
complexity, the Ehrenfest theorem (A4) can be formulated
in terms of the Lanczos coefficients and the Krylov wave
functions as

07C) =2 [(Bryy — bp) U)W (1)

(A4)

+ (anr1 = @)bu 1 Y1 (OY5 )], (A5)

where T, Tp) := 3(TaT» + T»Ta). In Fig. 11 we validate the
Ehrenfest theorem for mass-deformed SYK models, demon-
strating the relationship between the second time derivative of
Krylov complexity and a combination of Lanczos coefficients.
It is important to emphasize that this relationship, as expressed
in (A5), holds universally for any system by construction. This
verification strengthens the reliability of our numerical results.

4. Depth of the SFF hole

We further explore the dynamics of the dip in the SFF
as the system transitions from chaotic to integrable regimes.
Specifically, we observe that the depth of the dip tends to be
suppressed along this transition. To quantify this behavior, we
utilize Eq. (9) and define

ASFF = 10g[SFF(14;p)] — log[SFF(t = 00)], (A6)

which characterizes the difference between the dip and the
saturation value of the SFF.

Figure 12 presents the computed ASFF for the SYK mod-
els discussed in the main text. A comparison with the KCP,
as shown in Figs. 1(b) and 4(b), reveals a notable similarity
in the behavior. However, we find that the KCP serves as a
more robust indicator of the chaotic-to-integrable transition.
In particular, ASFF fails to effectively capture the transition
in the limit of 8 = 0 for the mass-deformed SYK model [red
data in Fig. 12(a)]. This is not a surprise, as the depth of the dip
is still manifest for the SYK model with two-body interaction
(corresponding to the k — oo case) in the limit of § = 0 [35].
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