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Abstract
Background: Protein function prediction has been one of the most important issues in functional
genomics. With the current availability of various genomic data sets, many researchers have
attempted to develop integration models that combine all available genomic data for protein
function prediction. These efforts have resulted in the improvement of prediction quality and the
extension of prediction coverage. However, it has also been observed that integrating more data
sources does not always increase the prediction quality. Therefore, selecting data sources that
highly contribute to the protein function prediction has become an important issue.

Results: We present systematic feature selection methods that assess the contribution of
genome-wide data sets to predict protein functions and then investigate the relationship between
genomic data sources and protein functions. In this study, we use ten different genomic data
sources in Mus musculus, including: protein-domains, protein-protein interactions, gene
expressions, phenotype ontology, phylogenetic profiles and disease data sources to predict protein
functions that are labelled with Gene Ontology (GO) terms. We then apply two approaches to
feature selection: exhaustive search feature selection using a kernel based logistic regression (KLR),
and a kernel based L1-norm regularized logistic regression (KL1LR). In the first approach, we
exhaustively measure the contribution of each data set for each function based on its prediction
quality. In the second approach, we use the estimated coefficients of features as measures of
contribution of data sources. Our results show that the proposed methods improve the prediction
quality compared to the full integration of all data sources and other filter-based feature selection
methods. We also show that contributing data sources can differ depending on the protein
function. Furthermore, we observe that highly contributing data sets can be similar among a group
of protein functions that have the same parent in the GO hierarchy.

Conclusions: In contrast to previous integration methods, our approaches not only increase the
prediction quality but also gather information about highly contributing data sources for each
protein function. This information can help researchers collect relevant data sources for annotating
protein functions.
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Background
Due to extensive efforts during the past decades, the
genome sequences of many species have been completed.
However, researchers have realized the limitations of
knowing the genome sequence information if there is no
functional information included. For this reason, assign-
ing functions to unknown proteins has become one of the
most important topics in functional genomics; although
experimental methods have identified a number of pro-
tein functions with high accuracy, these approaches have
required extensive resources in terms of both time and
labour. Therefore, computational methods are necessary
to overcome the limitations of these experiments. To this
end, computational approaches were first proposed by
using the protein sequences, which allowed for the iden-
tification of homologous proteins and then to infer spe-
cific protein functions [1,2]. Determining the structures of
proteins has also identified several interactions between
proteins, which subsequently enabled the prediction of
protein functions [3]; see a review [4] for the computa-
tional methods used for predicting protein functions
based on protein structures and protein-protein interac-
tions. In addition, genomic data sets such as protein
domain data, protein-protein interaction, gene expression
data, phylogenetic profile, phenotype ontology, disease
data, and protein complex data have been extensively
used to predict protein functions.

Many researchers have also attempted to develop integra-
tion models based on various machine learning algo-
rithms and statistical approaches [5-19]. For example,
Deng et al. [6,7] proposed a Markov random field method
for predicting protein function by integrating protein-pro-
tein interaction and protein domain data sets. And inte-
grative models based on the kernel were introduced by
[8,9] and heterogeneous data sources were integrated in a
Bayesian framework for function prediction [10,11]. It
should be noted that these methods have outperformed
previous approaches that used only one data source
[20,21], and that their coverage has also been extended
because different data sources can cover the lack of infor-
mation in others. However, Lu et al. and other groups
[20,22] showed that the integration of all available data
sources is not always the most effective method for
increasing prediction quality. For instance, for a given
protein function, some data sources highly contribute to
improving prediction performance, though others rarely
do. Therefore, selecting the most relevant set of data
sources is very important in precisely predicting protein
function, instead of attempting to use all available data
sources.

Feature selection methods have also been applied to
many other computational biology problems. For exam-
ple, to predict protein-protein interactions using protein

sequence order information and protein properties, Liu et
al. [23] selected important features by combining filer-
based and wrapper-based feature selection methods. Also,
feature selection approaches such as a correlation-based
feature subset selection (CFSS) method have been applied
to protein structure predictions and protein folding rate
predictions to reduce the dimensionality of the protein
sequences [24,25]. In any case, all of these studies have
demonstrated the importance of feature selection. In this
paper, we further posit that the selection of different
genomic data sets dependent on the GO term is important
for accurate protein function prediction.

The majority of protein function prediction methods have
focused on non-mammalian model organisms, and it has
not been made clear how accurate function predictions
can be made for mammalian organisms. To investigate
these problems, nine bioinformatics teams performed an
evaluation process using diverse computational
approaches in Mus musculus to predict protein function
based on the integrated data sources [26]. They confirmed
that computational approaches integrating various
genomic data sets are quite promising for protein function
predictions in mammals.

In this study, we investigate the relationship between
genomic data sources and protein functions in order to
select a group of highly contributed data sources for func-
tion prediction in Mus musculus and to increase the predic-
tion quality. Here, Gene Ontology (GO) terms are used as
the protein function labels and the ten different genomic
data sources in Mus musculus include protein-domains,
protein-protein interactions, gene expressions, phenotype
ontology, phylogenetic profiles and diseases. We then
apply two feature selection approaches to improve the
prediction quality. In the first approach, the contribution
of each data source is measured based on its prediction
accuracy of the AUC (i.e., the area under a curve of the
sensitivity and false positive rate) using a kernel based
logistic regression (KLR) method [5]. We repeat the pre-
diction of 1,726 Gene Ontology Biological Process (GO-
BP) terms ten times, where each prediction is performed
using a different data source. We then select the data
source that provides the highest prediction quality for
each GO term; we refer this method as an exhaustive
search feature selection approach. As a systematic feature
selection method, we next introduce a kernel based L1-
norm regularized logistic regression (KL1LR) method. In
this method, the coefficients of non-contributing features
shrink to zero so that we can evaluate the importance of
the data source for each protein function. KL1LR outper-
forms the exhaustive search approach especially for spe-
cific GO terms covered by the small number of proteins.
We subsequently analyze the contributing data sources
obtained using these two approaches. Generally, the pro-
Page 2 of 19
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:455 http://www.biomedcentral.com/1471-2105/10/455
tein domain data set is an important data source for a
large number of GO functions, though protein-protein
interaction and phenotype data sets are also important
features of many GO terms. We also investigate whether
or not there is agreement between parents and off-springs
in the GO hierarchy for most of the contributing data sets.
We are able to find many GO terms, in which most off-
springs of the given GO term are predicted accurately
using the same data set.

Finally, we apply a filter-based feature selection method,
Relief [27], and compare the performances between the
proposed approaches in this paper and the Relief method.
It is found that the proposed methods outperform the
Relief method. In addition, consistent results are observed
when these methods are applied to the protein function
prediction for yeast.

The remainder of this paper is organized as follows. In the
Methods section, we first present the descriptions of the
various data sources and the definition of kernels for
measuring similarities between two proteins. Then, we
introduce two different feature selection approaches
before describing an enrichment test for detecting the con-
tributing genomic data sets for each GO function. In the
Results section, we compare the prediction quality of pro-
posed methods and then, we show the results of grouping
GO terms according to the contribution of each data
source. Finally, we summarize the contribution of our
approach and discuss the limitations of our approach.

Methods
Data sources
Throughout this study, ten data sources across six different
genomic data types of Mus musculus were used: three data
sets from gene expressions, two data sets from protein
annotations, one protein-protein interaction data set, one
phenotype ontology data set, two phylogenetic profile
data sets, and one disease association data set. All data
sources used were collected during a previous work [26].

1. Gene expression
Three different data sources of gene expression were used
and all data sources only contain the data with probes/
tags mapping to Mouse Genome Informatics (MGI)
genes. The relationship of mapping from probes/tags to
MGI genes can be either one to one or many to one. The
Zhang et al. [28] expression data source includes normal-
ized, median subtracted, and arcsinh intensity values for
13,566 genes across 55 mouse tissues. And the Su et al.
[29] expression data source includes normalized and
gcRMA-condensed values from Affymetrix arrays for
18,208 genes across 61 mouse tissues. In the Zhang et al.
and Su et al. expression data, multiple rows for the same
gene are averaged. The SAGE data source contains 99 qual-

ity tag counts cut from 139 SAGE libraries for 16,726
genes [30]; in the SAGE data source, we used the average
tag count for tags mapped to the same gene.

2. Protein annotations
The Pfam protein-domain [31] and Interpro protein-
domain [32] data sets were used. The Pfam data set con-
tains 15,569 genes with 3,133 Pfam-A protein families
(release 19), and the Interpro data source contains 16,965
genes with 5,404 sequence patterns (release 12.1) [32]. All
these data sources are represented as binary annotation
patterns.

3. Protein-protein interactions
The OPHID protein-protein interaction (PPI) data set
obtained by orthology (provided by MGI) was used [33].
It contains interactions among 7,125 genes (downloaded
in April 2006).

4. Phenotype ontology
The phenotype annotation data set containing 3,439
genes with 33 phenotypes was used [34]. This data source
was obtained from MGI and is represented as binary
annotation patterns (downloaded in Feb 2006 from
[35]).

5. Phylogenetic profile
Conservation patterns indicating whether 15,939 genes
have putative orthologues in 18 different species (from
yeast to human) were used [36]. These data source were
provided by bioMart (v38). The Inparanoid phylogenetic
profile data set (v4.0) contains conservation patterns
across 21 different species for 15,703 genes [37]; all are
represented as binary conservation patterns.

6. Disease associations
Disease association data from the Online Mendelian
Inheritance in Man (OMIM) database for 1,938 genes
with 2,488 diseases were used [38,39]. This data source
contains binary annotation patterns (downloaded in Jun
2006 from [40]).

To associate these ten biological data sources with protein
functional annotations, Pena-Castillo et al. [26] mapped
the gene identifiers of each data source to MGI gene iden-
tifiers (obtained from MGI in Feb 2006). They used only
non-inferred from electronic annotations (IEA) annota-
tions because most IEA annotations are computational
predictions that have not been reviewed by curators. From
a biological point of view, specific GO terms are interest-
ing, but if GO terms are too specific, there are number of
inherent difficulties in making accurate predictions due to
the limited number of positive training data sets; there-
fore, GO-BP terms with {3-300} genes annotated in the
database were used. In this study, we only used GO terms
Page 3 of 19
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:455 http://www.biomedcentral.com/1471-2105/10/455
from a category of biological process, so the final data col-
lection (with GO annotations obtained on Feb 2006)
encompassed the information of 21,135 MGI genes, of
which 7,557 were associated with at least one of the 1,726
GO terms that we investigated.

In addition, we collected MGI gene identifiers in Aug
2009 and found 2,808 newly annotated Mus musculus
genes for 1,051 GO terms since Feb 2006. We predicted
these newly annotated genes using the proposed methods
to show their prediction quality. Then, to evaluate the per-
formance of our approaches in other model organism, we
also used eight genomic data sets and GO terms for yeast
obtained from [22]. These data sets consisted of a protein-
protein interaction data set, four gene expression data sets,
a protein-domain annotation data set, a gene knock-out
phenotype data set and a protein localization data set. The
GO terms are the Jun 2006 version of the Yeast SGD data-
base; among them, we used 1,246 GO terms covered by
{3-300} genes.

Definition of kernel
We measure the similarity between two genes based on a
kernel approach, as we did previously in [5]. In the case of
the Pfam and Interpro domain data, we define vik = 1 if the
ith protein has the kth domain, and 0 otherwise. Then, the
kernel between the ith and the jth proteins is defined as

where n is the number of domains. The kernel is defined
similarly for other data sets such as the phenotype ontol-
ogy, phylogenetic profile, and disease data sets, where a
protein is represented by discrete values. On the other
hand, kernels for gene expression data sets such as Zhang
et al., Su et al., and SAGE gene expression data sources that
are represented by continuous values are defined as Kexpres-

sion(i, j) = PCC(i, j), the Pearson correlation coefficient
between proteins i and j. Then, the values are discretized
to 0 and 1 using the threshold 0.3.

For the protein-protein data set, the following diffusion
kernel matrix [5] are used.

where

where di is the degree of the ith protein in the protein inter-
action network, τ is the diffusion constant, and the diffu-
sion kernel matrix calculates the similarity between all
pairs of proteins in the protein interaction network. Here,
four different values (0.1, 0.5, 1, and 3) were tested as dif-
fusion constants, and 0.1 was subsequently selected as the
optimal diffusion constant (i.e. the diffusion constant 0.1
gives the best prediction accuracy). Note that in the com-
puted diffusion matrix, values less than the cut-off of
0.001 were considered as 0.

Standardization of data source
Before all the data sources could be integrated, we first
standardized each data source since the data sources were
each presented in a different scale. The standardized data
sources were defined as

where

where m is the number of proteins and n is the number of
features. As a preprocessing step, the standardization
results in a zero mean and unit variance for each data fea-
ture.

Kernel-based logistic regression prediction model
In order to integrate ten genomic data sources using fea-
ture selection, we propose two approaches based on the
kernel-based logistic regression model (KLR) introduced
in [5]. In brief, Xi = 1 if the ith protein has the function, oth-
erwise Xi = 0. Let us first explain the case in which a single
data set is used. For a given function of interest, a single
data set generates two features: 1) the average of similari-
ties between the protein i and proteins having the func-
tion, and 2) the average of similarities between the
protein i and proteins not having the function. Then, let
the corresponding coefficients θ = {δ, ρ}. Here, the simi-
larity between two proteins i and j is calculated using the
kernel K(i,j). Then, we use the following logistic regres-
sion model.

where X [-i] = (X1, ..., Xi-1, Xi+1, ..., XN), N is the number of
proteins, and
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This model can be extended for multiple data sets, such
that

where D is the number of data sets, and  and 

can be obtained using Eq. (4) for the d-th data set. In this
study, we used a glm function (stats package in R) to
implement the KRL method.

Feature selection approaches
In order to investigate factors that highly contribute to
protein function prediction and improve the prediction
quality, we again introduce two approaches. Both
approaches consider one protein function at a time.

1. Exhaustive search
For each data set we estimate the probability of proteins
having the function of interest using Eq. (4). We repeat
this process for each of ten data sets. In this way, we
obtained the accuracy of the predictions for all ten data
sets for each GO function.

2. Kernel based L1-norm regularized logistic regression (KL1LR)
The concept of L1-norm regularization for feature selec-
tion has been widely used in a number of contexts because
it relatively easily generates an explainable model for sig-
nificant features by shrinking some coefficients into zero
[41]. For this regularization, let a set of parameters θ =
{α1, β1, ..., αD, βD} and rewrite Eq. (5) as follows.

Note that the log likelihood function from the observed
data i = 1 ... N, where N is the number of the observed
samples, is given as

. By

employing the L1-norm regularized logistic regression, we

can thus estimate the coefficients θ by maximizing the log
likelihood function and simultaneously penalizing coeffi-
cients for features having small contributions to subse-
quently predict the function.

where a regularization parameter λ (>0) controls the car-
dinality (the number of nonzero components) of θ. Gen-
erally a larger λ tends to yield a smaller cardinality of θ,
though it also provides a lower prediction accuracy. In an
empirical situation, various values of λ should be tested to
determine the modest trade-off between accuracy and effi-
ciency. In this study, we tested two sets of λ, where each
set consisted of ten sliding values of λ, that were uni-
formly distributed on a logarithmic scale over the interval
[0.1 λmax, λmax] and [0.01 λmax, λmax]. Here, λmax was
directly calculated from the feature data source. For this
study, we used an interior-point method [42] for the
implementation of KL1LR since it can be effectively
applied to all sizes of problems and has a low time com-
plexity.

Measurement of prediction performance for each method
To evaluate performance of prediction, we use two-fold
cross validation to predict GO terms covered by {3-10}
genes and five-fold cross validation for GO terms covered
by {10-300} genes. For a given GO term, the contribution
of each feature is measured using training sets and the per-
formance of the test set is then measured by predicting the
function based on the selected features. More specifically,
for the exhaustive search feature selection approach, the
AUC value of each data set is measured using the training
set, and the data set with the highest AUC value is then
selected as the feature for further testing. For the KL1LR
approach, the coefficients of the features are first meas-
ured by the training set and the features with non-zero
coefficients are selected as the features for testing. Finally,
the AUC and precision at 20% recall (P20R) values are cal-
culated for the test set.

Measurement of contributions of each data source
We measured the contribution of data sources for each
GO term and analyzed them. In the exhaustive search
approach, data sources providing the high AUC value
(≥0.75) and the high P20R value (≥0.2) for the test set
were selected as the highly contributing factors for each
GO-BP term. In the case of KL1LR, when the P20R value
was greater than or equal to 0.2, we considered features
with regression coefficients located outside the 1 standard
deviation (SD) as the highly contributing factors for pro-
tein function prediction.

Next, the enrichment test was employed to obtain a gen-
eral view of the GO terms that were well predicted by the
specific data source. Because GO is a directed acyclic
graph, we could derive the properties of specific groups of
GO terms by backtracking their common ancestor. In this
way, we investigated whether there is an agreement
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between parents and off-springs in the GO hierarchy for
most contributing data sets. In order to test the statistical
significance, we performed a hypergeometric test to com-
pare the actual number of descendent GO terms that were
well predicted using a given data source with the total
number of descendent GO terms.

For this task, we denoted the group Gd as the GO terms
having high predictive power based on data source d. For
each GO term in the group Gd, let m, n, k, and x be the
number of descendent GO terms, the number of non-
descendent GO terms, the number of GO terms in the
group Gd, and the number of descendent GO terms in the
group Gd, respectively. Then, the p-value is given by

Through this statistical approach, we could measure how
much the contributing data sources of each GO term
agreed with those of its descendent GO terms, thereby
allowing recognition of the overall tendencies of the GO
terms.

p value
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Results
Performance evaluation
We first show the significance of feature selection in inte-
grating multiple data sources. Table 1 and Figure 1 show
the averages of AUC values of four different categories of
GO terms predicted by the KLR method with Pfam or
Interpro data only, the KLR method with all data sources,
the KLR method with a data source selected by exhaustive
search, and the KL1LR method with all data sources.
When integrating the data sets, the AUC values for both
standardized and non-standardized data are used. In
KL1LR, it can be seen that the standardization of inte-
grated data has improved the prediction quality and that
the prediction accuracy of the AUC value is higher when
the relative parameter λ = 0.01 than when λ = 0.1. On the
other hand, performances in the KLR method integrating
all data sources with standardization and non-standardi-
zation are similar. Hence, we used the KL1LR results with
standardization and λ = 0.01 for the study in this paper.

Based on the prediction of protein functions using each
data set, we found that the domain data sets, including
Interpro and Pfam, were the most informative among the
six different types of data sets (see Additional File 1 for
more information). Surprisingly, the AUC values for the
Interpro data set for the categories of {3-10} and {11-30}
were higher than the AUC values when all the data sets
were integrated. This result is due to the fact that some
data sets actually act noise during modelling, thereby con-
firming the importance of accurate feature selection. To
this end, prediction accuracy could be increased here by
using the two feature selection approaches of exhaustive
search feature selection and KL1LR. The average AUC val-
ues of exhaustive search were 0.55, 0.82, 0.84, and 0.83
for the four GO term categories. However, KL1LR signifi-
cantly outperformed the exhaustive search feature selec-
tion for the {3-10} category (0.75) though it had
comparable prediction accuracies for the other general
categories (0.88, 0.88, and 0.86). As expected, the predic-
tion accuracy was generally lower in the category {3-10}

due to the small number of positives compared to nega-
tives. Note that the AUC value of all the GO terms for KLR
with each data source, KLR with all data sources, and
KL1LR are available in Additional File 1. Precision at vari-
ous recall values for KLR with each data source and KL1LR
(λ = 0.01, standardized data) are available in Additional
File 2.

Both exhaustive search feature selection and KL1LR meth-
ods are wrapper-based feature selection methods. There-
fore, to compare the performances between different
feature selection approaches in the genomic data sets, we
applied a filter-based feature selection method, Relief
[27]. As a pre-processor, Relief is usually used to remove
irrelevant attributes from data sets before learning. In
Relief, the weight of each feature is calculated by estimat-
ing the number of instances a feature can distinguish in
the same class from instances in a different class. The fea-
tures with the shortest distance in the same class and the
longest distance in a different class obtain a high weight.
Usually, normalized weights are used, at an interval of [-
1, 1]. This procedure is then repeated for n times, which is
a user parameter for determining the number of training
instances. In our experiment, the sampling rate was set as
25. We then calculated the weights for all 20 features
obtained from kernels using the 10 data sets. Finally, we
selected important features displaying more than 0.05 as
a weight. These sampling rates and thresholds were deter-
mined through experimentation.

After selecting features using the Relief method, we
applied the KLR method for further classification. The
AUC values of four categories were 0.58, 0.69, 0.64, and
0.61, which show low prediction accuracy (Table 1 and
Figure 1). Because mouse function data set contains a
small number of positive instances compared to negative
instances, this structure-based feature selection technique
seems unable to achieve a high prediction accuracy; pre-
diction accuracies were similar although the sampling
rates were set to be higher than 25. For all 1,726 GO terms,

Table 1: Prediction quality of different prediction approaches

Specificity # of GO terms KLR KL1LR KLR with Relief
Pfam Interpro All ES λ/λmax = 0.01 λ/λmax = 0.1

NOS S NOS S NOS S

3-10 952 0.60 0.58 0.55 0.54 0.55 0.73 0.75 0.72 0.74 0.58
11-30 435 0.74 0.76 0.70 0.70 0.82 0.85 0.88 0.79 0.85 0.69
31-100 239 0.79 0.79 0.82 0.82 0.84 0.84 0.88 0.78 0.86 0.64
101-300 100 0.80 0.80 0.84 0.84 0.83 0.82 0.86 0.73 0.84 0.61

GO terms are categorized into four groups based on the number of genes covering the GO term (specificity in the first column). Prediction quality 
is estimated using AUC values for KLR using Pfam or Interpro data only, KLR using all data sources, KLR using a data source selected by exhaustive 
search (ES), KL1LR, and KLR using data sources selected by the Relief method. In the case of KL1LR, two different values of the regularization 
parameter λ are used. NOS stands for non-standardization of features, and S for standardization.
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prediction accuracies of the AUC values and Relief weights
of 20 features are available in Additional File 3.

Contributions of each data source for protein function 
predictions
Using the feature selection methods, we improved the
prediction performance compared to the method integrat-
ing all the data sets. In addition, we were able to deter-
mine which data sources are informative for predicting
each GO term; further details for each GO term of which
are presented in Additional File 2. Here, we investigated
how many GO terms are highly accurately predicted using
each data source in order to summarize the importance of
genomic data sets in protein function predictions.

During this investigation, we selected data sources with
high prediction accuracies for each GO term. For the KLR
method with exhaustive search, we selected a data set hav-
ing thresholds of AUC of ≥ 0.75 and P20R of ≥ 0.2 from
the test set (see Additional File 2 for the data). For the
KL1LR method, we selected data sources having a high
regression coefficient (outside of 1 SD) and a high P20R
value (≥ 0.2). These criteria were adjusted so that there
were a similar total number of GO terms between the
exhaustive search feature selection method and the KL1LR
method. Table 2 shows the number of GO terms selected
for each data source and the average of the prediction
accuracies with the respective data source (see Additional
File 4 for the lists of GO terms selected for each data
source). In this analysis, we observed that the domain
data sources are informative for the largest number of pro-
tein functions.

Specifically, using the exhaustive search, 40% of the GO
terms (697 of 1,726 terms) have a high prediction accu-
racy with domain information; this is also the case for the
KL1LR method. Also, the protein interaction and the phe-
notype data sets turned out to be the informative data
sources for many of the GO terms. Conversely, phyloge-
netic profile, disease, and gene expression data sets were
only informative for a small fraction of the GO terms; 5%
(95/1,726), 2% (41/1,726), and 3% (55/1,726), respec-
tively.

For the exhaustive search feature selection approach, the
informative data sources were independently selected
from other data sources. However, the KL1LR method
tends to shrink the coefficients of similar features to select
more relevant features when several redundant data
sources are available. Hence, the contribution of each data
set might not be accurately detected. The last column in
Table 2 indicates the number of GO terms common in
two feature selection approaches. As can be seen, the frac-
tions of intersections are pretty high when considering the
fact that the features selected by the KL1LR method are
affected by the redundant data sources. Among the GO
terms selected by using the exhaustive search approach,
51% (266/522), 43% (83/192), and 61% (129/213) of
the terms were also selected using the KL1LR approach
from Interpro domain data, protein-protein interaction
data, and phenotype data, respectively. These observa-
tions confirmed that the general importance of genomic
data types was consistently observed throughout the two
feature selection approaches.

Table 2: Contributions of genomic data sources

Data source Exhaustive search KL1LR
# of GO terms (# in union) AUC # of GO terms (# in union) AUC NCG

Protein-protein interactions OPHID 192 0.82 201 0.89 83

Protein domain Interpro 522 (697) 0.87 408 (518) 0.89 266
Pfam 600 0.86 311 0.89 210

Phenotype MGI 213 0.87 346 0.90 129

Phylogenetic profile BioMart 33 (95) 0.83 59 (166) 0.88 4
Inparanoid 70 0.84 124 0.88 22

Disease OMIM 41 0.85 32 0.88 3

Gene expression Zhang et al. 28 0.81 147 0.90 10
Su et al. 21 (55) 0.82 158 (309) 0.89 8

Sage et al. 16 0.83 113 0.90 7

The numbers of GO terms satisfying the cut-off of prediction accuracies by the AUC and P20R values are presented for each data source along with 
the average AUC values of the GO terms. For the protein domain, phylogenetic profile, and gene expression data, the number of terms in the union 
set is shown in parentheses. The numbers of common terms between the two approaches are shown in the last column (NCG).
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To enhance the understanding of the relationship
between protein functions and genomic data sets, we also
investigated the group of GO terms that have a high pre-
diction quality based on only one data set. For this task,
we selected a set of GO terms using the exhaustive search
for each data type, in which the given data source had the

highest AUC value for a given GO term; the AUC score
was ≥ 0.75 and the P20R value was ≥ 0.2, and the AUC
value difference with the second highest AUC value from
other data sources was larger than 0.1. Note that if the
data sets with the highest and the second highest accuracy
were in the same class of data type, we compared the high-

Table 3: GO terms giving a high prediction quality using only one data source

Data source GO Term NPWG
D

NPWG AUC P20
R

DA

OPHID (PPI) 004848
9

synaptic vesicle transport 13 14 0.92 0.39 0.1
7

000688
7

exocytosis 21 27 0.91 0.87 0.1
2

Interpro (Domain) 000607
1

glycerol metabolism 10 11 0.87 0.8 0.4
4

000016
0

two-component signal transduction system 
(phosphorelay)

10 10 1 1 0.4
1

000680
1

superoxide metabolism modification-dependent 10 10 0.93 1 0.3
1

004363
2

macromolecule catabolism 47 47 0.96 0.5 0.2
8

000650
8

proteolysis 233 240 0.92 0.69 0.2
8

000681
2

cation transport 173 176 0.90 0.93 0.1
5

Pfam (Domain) 001631
1

dephosphorylation 48 51 0.97 0.81 0.3
5

000633
8

chromatin remodeling 21 22 0.91 0.28 0.3
3

003149
7

chromatin assembly protein amino acid 29 30 0.97 0.63 0.3
2

000647
0

Dephosphorylation 46 49 0.98 0.69 0.3
1

000633
3

chromatin assembly or disassembly 41 42 0.96 0.71 0.3

MGI (Phenotype) 000834
4

adult locomotory behavior 14 19 0.9 0.21 0.3
1

003053
4

adult behaviour 18 23 0.9 0.21 0.3

000760
5

sensory perception of sound 26 40 0.94 0.55 0.2
7

004823
2

male gamete generation 44 70 0.93 0.34 0.2
6

000728
3

spermatogenesis 44 70 0.94 0.28 0.2
5

000000
3

reproduction 101 152 0.87 0.52 0.2
0

OMIM (Diseases) 000864
3

carbohydrate transport 11 30 0.94 0.87 0.1
5

Zhang et al. (Gene expression) 000150
2

cartilage condensation 10 10 0.85 0.23 0.1
5

GO terms and data sources displaying the outstanding contributions to the prediction of the given GO term are listed, where only part of the lists 
among the GO terms covering greater than or equal to 10 proteins are presented. NPWGD stands for number of proteins having the given GO 
term and the given data source, NPWG is the number of proteins with the given GO term, and DA is the difference between the AUC score and 
the second highest accuracy.
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est prediction accuracy with the third highest accuracy.
Here, two protein domain data sets, three gene expression
data sets, and two phylogenetic profile data sets are con-
sidered as the same type of data. Table 3 shows a part of
the results with the entire table being available on Addi-
tional File 5. Additional File 6 then presents the data val-
ues for the most contributing data set for each GO term.

In the following section, we explain examples of GO
terms with their respective most contributing data types.

1) Domain
Interpro is the most informative data set for predicting
proteins involved in 'Cation transport' (GO:0006812) as
shown in Figure 2. Many genes with this function contain
the domains related to ion transport and cation channels

Illustration of genomic data sources for the genes with 'Cation transport' functionFigure 2
Illustration of genomic data sources for the genes with 'Cation transport' function. 176 genes have the 'Cation 
transport' (GO:0006812) function. The relationship between these genes and the five different genomic data sources are illus-
trated. For each data source, the AUC value and the P20R value with the KLR method are also represented. (a) Protein 
domains belonging to the genes with the given GO term are coloured blue in the matrix. Domains appearing in the more than 
10 genes are boxed in red in the matrix, and their names and identifiers are listed below. (b) Expression levels of genes with 
the given GO terms are presented. Genes and tissues are grouped based on the hierarchical bi-clustering of expression levels. 
Tissues commonly over-expressed in several genes are circled in blue and the names of tissues are listed below. (c) MGI phe-
notypes belonging to the genes with the given GO term are coloured blue in the matrix. Phenotypes appearing in the more 
than 15 genes are boxed in red in the matrix, and their names and identifiers are listed below. (d) Protein-protein interaction 
network of genes with the given GO term. Red (black) lines indicate the direct (indirect) interactions. Highly connected pro-
teins based on direct interactions are listed with their identifiers. (e) OMIM disease is similarly presented its domains and phe-
notypes.
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such as the K+ channel, which are the hallmark detecting
genes for 'Cation transport', which is supported by the
Interpro providing the manual assignments of GO terms
to each Interpro domain [32].

The prediction power for the 'Cation transport' using the
Interpro protein-domain information is considerably
higher than using the other data sets. However, the predic-
tion quality for the 'Positive regulation of nucleobase,
nucleoside, nucleotide and nucleic acid metabolism
(GO:0045935)' in Figure 3 is higher using both the pro-
tein-protein interaction and the Interpro domain data
sets. Many genes in this GO category commonly contain
domains related to DNA binding such as helix-loop-helix
DNA binding (IPR011598, 001092), winged helix repres-
sor DNA-binding (IPR011991), homeobox (IPR009057,
001356, 012287) and zinc finger C2H2 (IPR007087),

which might increase the prediction quality using the
Interpro data set. Concurrently, genes such as Sp1, Ep300,
Smad2, Ncoa1, Rxra, and Crebbp in this category belong
to transcription factor complexes, transcriptional regula-
tion, or signal transduction so that they work together
with other proteins in the same GO process by physically
interacting with each other [43-45], which might increase
the prediction quality using the protein-protein data set.

2)Phenotype
Table 3 and Figure 4 show that the MGI phenotype is the
most relevant data source for predicting proteins with
'Reproduction (GO: 0000003)'. Most of genes in this cat-
egory belong to the 'Reproductive system phenotype
(0005389)' which is the most powerful indicator for pre-
dicting this category. Also, more than 20 genes belong to
the same phenotype in 9 phenotype categories, which

Illustration of genomic data sources for the genes having a 'Positive regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism'Figure 3
Illustration of genomic data sources for the genes having a 'Positive regulation of nucleobase, nucleoside, 
nucleotide and nucleic acid metabolism'. 161 genes have the 'positive regulation of nucleobase, nucleoside, nucleotide 
and nucleic acid metabolism' (GO:0045935) function. (a) - (e) as described in Figure 2 (a) - (e).
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helps to predict their GO functions. Note that genes in
this GO term rarely interact with each other and only a
few genes have the same domain. (Additional Files 7, 8,
and 9 contain the data sets for Figures 2, 3, and 4.)

3) Gene expression
The prediction accuracy of cartilage condensation
(GO:0001502) using Zhang et al. [28] gene expression
data is very high, with an AUC value of 0.85, a P20R value
of 0.225, and the difference from the second highest AUC
value is 0.15. Genes with cartilage condensation function
are commonly highly expressed in the tissues of E14.5.
Head, femur, snout, teeth, thyroid, and trachea (see Addi-
tional File 6), most of which are tissues related to carti-
lage. Cartilage is a tissue found in the organs such as
femur, snout, and thyroid gland, and trachea is held open
by15~20 C-shaped rings of cartilage [46]. Genes belong-

ing to this GO term such as CTGF, Col11a1, Ror2, and
Thra are known to be expressed in skeletal cells [47], are
essential genes for skeletal morphogenesis and skeletal
system development [48,49], and are related to bone for-
mation [50].

An enrichment test for an informative data source in a GO 
hierarchy
It could be observed in Table 3 and Additional File 6 that
the GO terms highly accurately predicted with one data
source are sometimes in a parent-offspring relationship.
To obtain a general view of the relationship between GO
terms and genomic data sources, we performed an enrich-
ment test on an informative data source in the GO hierar-
chy, where the majority of the offspring GO terms of a
given GO term were highly accurately predicted using the
same data type. For this task, we used hypergeometic test

Illustration of genomic data sources for the genes having a 'Reproduction' functionFigure 4
Illustration of genomic data sources for the genes having a 'Reproduction' function. 152 genes have the 'Reproduc-
tion' (GO: 0000003) function. (a) - (e) as described in Figure 2 (a) - (e).
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Table 4: Enrichment test for an informative data source in the GO hierarchy

Data source GO term Description P-value NO NOPW

OPHID (PPI) 0001775 cell activation 1.24E-08 69 24
0046649 lymphocyte activation 1.47E-07 57 20
0016070 RNA metabolic process 1.90E-07 44 17
0045321 leukocyte activation 3.03E-07 64 21
0046651 lymphocyte proliferation 8.95E-07 16 9

Interpro (Domain) 0006811 ion transport 2.68E-07 23 18
0006812 cation transport 5.32E-07 15 13
0006807 nitrogen compound metabolic process 7.76E-07 57 34

Pfam (Domain) 0044271 nitrogen compound biosynthetic process 0 10 10
0006807 nitrogen compound metabolic process 3.98E-11 57 43
0009308 amine metabolic process 2.47E-09 52 38
0006519 amino acid and derivative metabolic process 5.53E-09 51 37
0006725 aromatic compound metabolic process 4.85E-08 25 21
0006520 amino acid metabolic process 5.36E-08 30 24
0006091 generation of precursor metabolites and energy 1.25E-07 15 14
0006811 ion transport 3.21E-07 23 19

MGI (Phenotype) 0001775 cell activation 3.42E-08 69 25
0046649 lymphocyte activation 2.61E-07 57 21
0045321 leukocyte activation 6.25E-07 64 22

BioMart (Phylogenetic profile) 0046164 alcohol catabolic process 1.21E-08 6 4
0030100 regulation of endocytosis 5.89E-07 5 3
0046365 monosaccharide catabolic process 5.89E-07 5 3

Inparanoid (Phylogenetic profile) 0001775 cell activation 3.45E-11 69 17
0051239 regulation of multicellular organismal process 3.58E-11 88 19
0050865 regulation of cell activation 2.70E-09 42 12
0046649 lymphocyte activation 1.76E-08 57 13
0045321 leukocyte activation 8.80E-08 64 13
0019220 regulation of phosphate metabolic process 1.93E-07 13 6
0051174 regulation of phosphorus metabolic process 3.74E-07 14 6
0042325 regulation of phosphorylation 6.77E-07 10 5
0051249 regulation of lymphocyte activation 9.39E-07 37 9

OMIM (Diseases) 0006812 cation transport 1.62E-05 15 4
0006118 electron transport 5.17E-05 4 2

Zhang et al (Gene expression) 0040013 negative regulation of locomotion 3.21E-06 3 2
0000279 M phase 5.70E-06 19 4
0019882 antigen processing and presentation 3.14E-05 5 2
0008380 RNA splicing 6.22E-05 6 2
0007049 cell cycle 8.95E-05 52 5

Su et al (Gene expression) 0050953 sensory perception of light stimulus 5.59E-06 4 2
0019882 antigen processing and presentation 1.39E-05 5 2
0007059 chromosome segregation 1.39E-05 5 2

SAGE (Gene expression) 0019882 antigen processing and presentation 4.45E-06 5 2
0050851 antigen receptor-mediated signaling pathway 1.54E-05 7 2
0042110 T cell activation 3.93E-05 26 3
0030217 T cell differentiation 5.21E-05 10 2
0019395 fatty acid oxidation 6.34E-05 2 1
Page 13 of 19
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:455 http://www.biomedcentral.com/1471-2105/10/455
described in the Method section. Table 4 summarizes
parts of the results based on the exhaustive search feature
selection approach. Because the informative data sources
for each GO term might differ between the exhaustive
search feature selection method and the KL1LR method,
the significant GO terms in the enrichment test detected
by the KL1LR method are highlighted in bold and italic
type. It should be noted that for some GO terms, the data
source was informative for the majority of the GO term's
off-spring, but not informative for the given GO term
itself. In this case, the informative data source for the GO
term itself from both approaches is underlined. The entire
table is available in Additional File 10.

From Table 4, we observed that the informative data
sources for the GO terms were not independent of each
other. For example, 'Ion transport' (GO:0006811, 232
genes) in Figure 5 is a highly significant term in the enrich-
ment test with the Interpro domain data set. Among the
23 off-spring GO terms of "Ion transport", 18 off-springs
have high prediction accuracy when the Interpro data set
is used, giving a p-value of 0.000000268. 'Cation trans-
port' (GO:0006812, 176 genes) in Figure 2, which has a
high AUC value when using only the Interpro data set, is
one of the off-spring of 'Ion transport'. Similarly, 'Repro-
duction' (GO:0000003, 152 genes) was found to be a sig-
nificant term in the MGI phenotype; the GO term
hierarchy of 'Reproduction' (GO:0000003) is also availa-
ble in Additional File 11. In total, 17 out of 47 descendent
GO terms could be well predicted using the MGI pheno-
type.

Performance of our prediction approach for newly 
annotated genes in Mus musculus and yeast
As one of the performance evaluation approaches for our
feature selection methods, we collected MGI gene identi-
fiers on Aug 2009 and predicted 2,808 genes newly anno-
tated since Feb 2006. We tested these genes using both
KLR with exhaustive search feature selection and KL1LR
methods based on selected features and the trained
parameters using data sets collected on Feb 2006. As a
result, it was found that among the 1,726 GO terms, 1,051
had newly annotated genes.

Table 5 shows the prediction results for the newly anno-
tated genes. In these results, the prediction accuracies of
newly annotated genes using the KL1LR method are quite
high; AUC values are 0.79, 0.81, 0.82, and 0.80 for four
categories, respectively. Surprisingly, the AUC values in
category {3-10} are also high and are comparable to other
categories. Since some inaccurate annotations are dis-
carded from older annotation data, the frequency of false
positive and false negative could be decreased, which con-
firms the robustness of our approaches. The full predic-
tion results and precision at various recall values,
including the number of newly annotated genes of each
GO term, are available on Additional Files 12 and 13.

To evaluate the performance of our approaches for other
model organisms, eight genomic data sets from yeast were
integrated using the proposed feature selection methods.
The data sets consist of a protein-protein interaction data
set, four gene expression data sets, a protein-domain
annotation data set, a gene knock-out phenotype data set,
and a protein localization data set [22]. Table 6 shows the

The data source in the first column is informative for predicting gene functions belonging to the GO terms in the second column and its off-spring 
GO terms. The p-values in the fourth column represent the significance of the number of off-springs that are well predicted using the given data 
source. This table presents GO terms having p-value <1.00E-04 and having a sufficient number of off-springs. The bold and italic fonts indicate the 
significant GO terms based on the enrichment tests from the exhaustive search feature selection and the KL1LR method for the given data source. 
Among them, if the data source is informative for the GO term itself, the GO term is underlined (see the main text for more explanation). NO 
stands for the number of all off-springs of a GO term and NOPW for the number of off-springs predicted well using a given data source.

Table 4: Enrichment test for an informative data source in the GO hierarchy (Continued)

The hierarchy of 'Ion transport' (GO:0006811)Figure 5
The hierarchy of 'Ion transport' (GO:0006811). Coloured GO terms have high AUC values based on the Interpro 
domain data set. Among them, the red boxes represent GO terms having a high AUC in only that data source. In parentheses, 
the number of genes having the given GO term (the number of genes having the Interpro data source is also represented), the 
AUC values, and P20R values having the Interpro data source are represented.
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average AUC values of GO terms for four different GO
term categories predicted using the KLR with all data sets,
KLR with a data source selected by exhaustive search, the
KL1LR method, and the Relief method. After the different
data sets were integrated, both the standardized and non-
standardized data were compared. Compared to predic-
tion results in Table 1 for Mus musculus data, the AUC val-
ues decreased. However, the integration approach based
on the features selected using the exhaustive search and
the KL1LR method consistently outperformed the other
approaches, such as KLR with all genomic data sets and
the Relief feature selection method. From these results, we
can confirm that the proposed approaches are also suita-
ble for use with other organisms. The full set of prediction
results and precision at various recall values of each GO
term are available in Additional Files 14 and 15.

Consistency of informative features in newly annotated 
genes in Mus musculus and yeast genes
We then investigated whether or not the informative
genomic data types collected on Feb 2006 were also
informative for newly annotated genes. Among the 1,051
GO terms having newly annotated genes, we selected
informative features (AUC ≥0.75) for the newly annotated
genes using the exhaustive search feature selection and

compared them with those from the Feb 2006 data sets
(Addition File 2). Table 7 shows that 506 GO terms have
the same informative feature types for both data sets; full
information for Table 7 is available in Additional File 16.

To investigate the consistency of informative genomic
data sets in yeast, among the 1,246 GO terms, we analyzed
622 GO terms that intersected with Mus musculus. Here,
the informative features were defined as data sets having
≥ 0.75 AUC. For the analysis, the same types of genomic
data sets between Mus musculus and yeast were consid-
ered; i.e., a protein-domain annotation data set, gene
expression data sets, a protein-protein interaction data set,
and a phenotype data set. Table 7 shows that 186 GO
terms have the same informative feature types for both
data sets; full information including the gene counts in
the yeast data for Table 7 is available in Additional File 17.

Discussion
The contribution of this paper compared to the study by
Pena-castillo et al. (2006) [26] is that the methods pro-
posed in this paper could systematically select important
genomic data types for function prediction and thereby
improve the prediction quality based on feature selection.
Pena-castillo et al. (2006) [26] presented two GO term
examples having different contributions of data types.
However, this information was used to explain the nature
of the supporting genomic data types in the prediction
results, but was not incorporated into the prediction
methods. In other words, these examples are independent
from the nine methods used in [26]. Our previous work in
[26], one of the nine bioinformatics teams evaluating
their methods for mouse function prediction, incorpo-
rated informative genomic data types into the KLR
method for each GO term. The previous method, similar
to the exhaustive search feature selection approach in this
paper, has been among the best prediction groups in the
general category of {31-100} and {101-300}, though it
showed relatively poor prediction performance in the spe-
cific category of {3-10}. The KL1LR method introduced in
this paper significantly improved the prediction quality in

Table 5: Prediction quality of newly annotated genes

Specificity # of genes KLR L1LR
Exhaustive search λ/λmax = 0.01

NOS* S*

3-10 540 0.61 0.76 0.79
11-30 273 0.71 0.79 0.81
31-100 163 0.72 0.80 0.82
101-300 75 0.69 0.78 0.80

GO terms are categorized into four groups based on the number of 
genes covering the GO term. Prediction quality is estimated by using 
the AUC values for KLR with a data source selected by exhaustive 
search and KL1LR with all data sources. In the case of KL1LR, two 
different values of regularization parameter λ are used. NOS stands 
for non-standardization, and S for standardization.

Table 6: Performance of GO term prediction of yeast genes

Specificity # of GO terms KLR K L1LR KLR with Relief
All ES λ/λmax = 0.01 λ/λmax = 0.1

NOS* S* NOS* S* NOS* S*

3-10 567 0.51 0.51 0.61 0.68 0.70 0.67 0.68 0.52
11-30 348 0.70 0.70 0.79 0.80 0.82 0.78 0.79 0.66
31-100 210 0.75 0.75 0.80 0.79 0.82 0.77 0.79 0.64
101-300 121 0.77 0.77 0.79 0.77 0.80 0.73 0.78 0.65

GO terms are categorized into four groups based on the number of genes covering the GO term. Prediction quality is estimated using AUC values 
for KLR with all data sources, KLR with a data source selected by exhaustive search (ES), KL1LR method (with two regularization parameters), and 
KLR with features selected by the Relief method. NOS stands for non-standardization of the features, S for standardization.
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the category of {3-10}. As a result, the prediction per-
formance of the KL1KR method was comparable to the
best approaches in [26] using the same data sets, although
the performance of the KL1KR method was still lower in
the categories of {3-10}. It is difficult to directly compare
the AUC values of these methods because the perform-
ance evaluation in this paper is based on the five-fold
cross validation, whereas [26] is based on a held-out blind
test set. However, the overall performance might be com-
pared by considering that they are assessed in the same
data sets. One of the best prediction groups in the catego-
ries of {3-10}, {11-30}, {31-100} and {101-300} of the
biological process had respective AUC values of around
0.873, 0.872, 0.881, and 0.84 (Group C in Figure 2(a) of
[26]) for the held-out blind test; those for the KL1LR
method were 0.75, 0.88, 0.88, and 0.86 for the five-fold
cross validation.

In the results section, we presented the prediction accu-
racy using the AUC value. In the Additional Files, various
recall values are also calculated for each GO term and data
source. It should be noted, however, that the AUC value
might misinterpret the prediction when the number of the
positive genes is smaller than the number of negative
genes, though this can be compensated for by using the
various recall values. Hence, we used the P20R threshold
as one of the thresholds to select informative features, as
shown through Tables 2, 3, and 4.

Furthermore, we analyzed the informative features of each
GO term and the tendencies for informative genomic data
types in the parent-offspring relationship in the GO term
hierarchy. During the enrichment test in Table 4, we
observed that the informative data sources for the GO
terms are not independent of each other. As such, this
observation can be used to infer the informative genomic
data sets for the GO terms, even though their relation-
ships with genomic data sets have not previously been
analyzed. In an effort to guide the informative data
sources for GO terms such that the use of this information

by experimental and computational biologists who will
collect data sources and predict protein functions can be
made easier, a website [51] has been constructed. With the
input of GO terms, the AUC values and various recall val-
ues based on the exhaustive search are listed. Using this
website, biologists who plan for the prediction of func-
tions of new GO terms are informed which data sources
are needed to be collected first; users can also explore the
parent's GO terms. This developement helps to deterim-
ine the informative data sources even though the GO term
has yet to be analyzed.

Conclusions
For the assessment of contributions of genomic data
sources for protein function prediction, we proposed the
KLR method that uses the exhaustive search feature selec-
tion approach and the KL1LR method. The reason this
protein function prediction is successful is due to the esti-
mation of contributions of the data source, which directly
influences the prediction performance. Our approach has
the ability to find the relationship between protein func-
tions and genomic data types. Moreover, our approach
can be applied to any bioinformatics field that uses the
high dimensional data sources. Therefore, it can be used
as indispensable methodology for analyzing the subse-
quent genomic data.

Authors' contributions
SK implemented methods of the feature selection, ana-
lyzed the data and drafted the manuscript. HL initiated
and directed the research, developed integrative methods,
and helped in writing the manuscript. All authors read
and approved the final manuscript.

Table 7: Consistencies of informative genomic data types between old and new annotation data in Mus musculus and between Mus 
musculus and yeast

Mus musculus Yeast
Specificity # of GO terms # of GO terms having the same 

informative feature types
# of GO terms # of GO terms having the same 

informative feature types

3-10 540 203 270 61
11-30 273 177 176 59
31-100 163 91 119 41
101-300 75 35 57 25

Total 1051 506 622 186

GO terms are categorized into four groups based on the number of genes covering the GO term. The number of genes and the number of GO 
terms with the same informative feature types with Mus musculus Feb 2006 data are presented for newly annotated genes on Aug 2009 for Mus 
musculus and yeast data sets, respectively.
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Additional material

Additional file 1
Prediction results of each GO term. The AUC values and regression 
model coefficients of KLR based on the exhaustive search feature selection 
and the KL1LR method related to Table 1 are represented. Information 
about the gene count of GO terms in each data source is also included 
since each data source has different coverage. Each data source was 
reduced to two features, as in Eq. (4), so, there are two features for each 
data source.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-455-S1.XLS]

Additional file 2
Precision at various recall values. Precision at various recall values for 
the ES and KL1LR methods (λ = 0.01, standardized).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-455-S2.XLS]

Additional file 3
Prediction result of each GO term using the Relief method. The AUC 
values and regression model coefficients of the Relief method related to 
Table 1 are represented.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-455-S3.XLS]

Additional file 4
The lists of GO terms predicted well based on a given data source in 
two different approaches. To form these groups of GO terms, as high con-
tribution criteria, high prediction accuracy (≥ 0.75 AUC and ≥ 0.2 P20R 
value) and large coefficient (outside of 1SD and ≥ 0.2 P20R value) were 
used for the exhaustive search and KL1LR, respectively.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-455-S4.ZIP]

Additional file 5
GO terms giving high prediction quality from only one data source. 
The table showing the entire lists of the data presented in Table 3.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-455-S5.XLS]

Additional file 6
Underlying data of Table 3 and Additional File 5. The table with the 
underlying data of Table 3 (Additional File 5).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-455-S6.ZIP]

Additional file 7
Underlying data of Figure 2. The table with the underlying data of Fig-
ure 2.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-455-S7.ZIP]

Additional file 8
Underlying data of Figure 3. The table with the underlying data of Fig-
ure 3.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-455-S8.ZIP]

Additional file 9
Underlying data of Figure 4. The table with the underlying data of Fig-
ure 4.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-455-S9.ZIP]

Additional file 10
Enrichment test result. The entire lists of the data presented in Table 4.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-455-S10.ZIP]

Additional file 11
Hierarchy of 'Reproduction' (GO:0000003). The hierarchy of 'Repro-
duction' that has a high significant value based on MGI phenotype in the 
enrichment test is depicted. The dotted line describes an ancestor that is 
not a direct parent. In addition, 'Na' in parentheses indicates that a pre-
diction cannot be achieved when the number of gene products in the MGI 
phenotype is not sufficient for cross validation. For example, in the hierar-
chy, the total number of gene products of a 'Viral infectious cycle' 
(GO:0019058) is four, but the MGI phenotype data source only has data 
about one of them.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-455-S11.PNG]

Additional file 12
Prediction results of newly annotated mouse genes. AUC values and 
regression model coefficients related to Table 5 are presented.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-455-S12.XLS]

Additional file 13
Precision at various recall value of newly annotated genes of mouse. 
Precision at various recall values for ES and KL1LR (λ = 0.01, standard-
ized).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-455-S13.XLS]

Additional file 14
Prediction results of yeast genes. AUC values and regression model coef-
ficients related to Table 6 are presented.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-455-S14.XLS]

Additional file 15
Precision at various recall value of yeast gene precision. Precision at 
various recall values for ES and KL1LR (λ = 0.01, standardized).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-455-S15.XLS]
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