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Abstract

Motivation: The generation of a large volume of cancer genomes has allowed us to identify dis-

ease-related alterations more accurately, which is expected to enhance our understanding regard-

ing the mechanism of cancer development. With genomic alterations detected, one challenge is to

pinpoint cancer-driver genes that cause functional abnormalities.

Results: Here, we propose a method for uncovering the dominant effects of cancer-driver genes

(DEOD) based on a partial covariance selection approach. Inspired by a convex optimization tech-

nique, it estimates the dominant effects of candidate cancer-driver genes on the expression level

changes of their target genes. It constructs a gene network as a directed-weighted graph by inte-

grating DNA copy numbers, single nucleotide mutations and gene expressions from matched

tumor samples, and estimates partial covariances between driver genes and their target genes.

Then, a scoring function to measure the cancer-driver score for each gene is applied. To test the

performance of DEOD, a novel scheme is designed for simulating conditional multivariate normal

variables (targets and free genes) given a group of variables (driver genes). When we applied the

DEOD method to both the simulated data and breast cancer data, DEOD successfully uncovered

driver variables in the simulation data, and identified well-known oncogenes in breast cancer. In

addition, two highly ranked genes by DEOD were related to survival time. The copy number ampli-

fications of MYC (8q24.21) and TRPS1 (8q23.3) were closely related to the survival time with

P-values¼ 0.00246 and 0.00092, respectively. The results demonstrate that DEOD can efficiently

uncover cancer-driver genes.

Availability and implementation: DEOD was implemented in Matlab, and source codes and data

are available at http://combio.gist.ac.kr/softwares/.

Contact: hyunjulee@gist.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

By building systematic knowledge about genetic alterations in can-

cer, we can enhance our understanding concerning the mechanisms

of cancer development and so can identify actionable target genes

for cancer treatment. Genomic events in cancer are a mixture of

driving events that promote cancer development and passenger

events that represent random somatic alterations (Beroukhim et al.,

2007). Hence, it is important to distinguish the two events since ef-

fective therapies against cancer should target dominant driver genes

that promote cell migration and invasion into malignant derivatives
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(Danussi et al., 2013). Although many methods based on aberra-

tions in genome sequences, such as copy number changes or muta-

tions, have been proposed to address this challenge, limitations still

remain. For example, Beroukhim et al. (2007) developed an analytic

approach (GISTIC) for identifying significantly aberrant regions of

genomes that are frequently found in multiple tumors. However, the

identified aberrant regions were often large and contained many

neighborhood genes of cancer-driver genes. By incorporating prior

knowledge, several frameworks were designed to represent the po-

tential effects of disease-causing alterations. Using eight sequence-

based and three structure-based predictive features, a prediction

method was developed to estimate the probability of the damaging

effect of a missense mutation (Adzhubei et al., 2010). A similar ap-

proach (Kumar et al., 2009) was developed to assess the probability

that a non-synonymous single nucleotide polymorphism or a single

amino acid substitution affects protein functions. A scoring function

measuring the effect of a particular mutation was described to cover

activation of neighborhoods in a local pathway (Ng et al., 2012).

However, following this method, pathway information was used to

define the existence of edges in the network so that interactions in

only known pathways were considered in the scoring function.

Since disease-causing genetic alterations can be observed from

several data types, such as copy numbers, gene expressions or muta-

tions, various statistical approaches to integrate different data types

were developed. Bayesian network-based methods such as

CONEXIC (Akavia et al., 2010) and Multi-Reg (Danussi et al.,

2013) recommend the highest scoring candidate driver within the

aberrant regions. For example, in CONEXIC, genes in significant

copy number aberrant regions were initially identified as candidate

drivers by using the JISTIC method (Sanchez-Garcia et al., 2010), a

modified version of GISTIC. Then, for each candidate, a Bayesian

scoring function was used to measure the influences of the candidate

driver on the genes in its module, which was constructed by the

Module Networks algorithm (Segal et al., 2003). In this process, re-

lationships between driver genes and their target genes were calcu-

lated based on the expression levels of the genes. Hence, the effects

of copy number changes of driver genes on the expression levels of

target genes were not fully incorporated.

In this study, we propose a method for uncovering the dominant

effects of cancer-driver genes (DEOD) on their target genes by incor-

porating both chromosomal changes and expression changes. We first

describe a statistical graph estimation model to construct a gene net-

work from an integration of matched copy number, gene expression

and mutation data. It is formulated as a convex optimization problem,

which minimizes a least square error under a sparsity constraint. To

measure the dominant effect of each gene throughout the entire net-

work, a scoring function is proposed to compare the downstream con-

sequences of a gene’s activity to influences from upstream regulators.

We first tested the performance of our method using the simu-

lated datasets, which are generated based on the principle of a con-

ditional multivariate normal distribution. Then, we applied the

proposed method to breast cancer data. From TCGA, we collected

genes from three groups, which consist of genes having significant

genomic alteration of copy numbers, mutations or expression

changes. Then, the method was used to uncover the driver genes

that make a dominant contribution to the union of the three types of

alterations. Based on the estimation of directional interaction behav-

iors, the dominant drivers are correctly pinpointed with the highest

scores of contributions, which increase our confidence in the predic-

tion of novel drivers. The results demonstrated that our method effi-

ciently uncovers the dominant behaviors of driver genes under the

investigated conditions.

2 Methods

An overview of the workflow is presented in Figure 1. We first

describe a statistical graph estimation model based on a convex opti-

mization technique (Fig. 1A and B). For each gene, it estimates the

incoming effects from the other genes, which are edge scores in a

network in Figure 1C. We then propose a scoring function to meas-

ure the dominant effect of a gene throughout an entire network in

Figure 1D.

2.1 A partial covariance selection model
The entire network is represented as a directed-weighted graph,

G ¼ ðV;EÞ, where a set of nodes V represents genes, and a set of

edges E represents the relationships among these genes. We propose

a partial covariance selection (PCS) model to construct a gene net-

work as a directed-weighted graph by integrating DNA copy num-

bers, gene expressions and single nucleotide mutations from the

same matched samples, and protein–protein interactions (PPI). For

each gene, expression changes of the gene are modeled as a combin-

ational effect of DNA copy number changes and DNA sequence mu-

tations of other genes in the network. We assume that alterations in

gene expression are affected by chromosomal aberrations in cancer,

because several studies have shown that copy number aberrations

often influence the expression of genes via changes in expression of

the driver gene (Akavia et al., 2010; Cervigne et al., 2014).

Furthermore, expression changes of a particular gene in cancer

might not only be inherent from its own copy number or mutation

Fig. 1. A schematic of our approach. (A) An input dataset consists of matched

sets of DNA copy numbers, gene expressions and mutations, and PPI. (B) A

convex optimization problem is formulated to obtain the partial correlation to

represent directional influences from regulators to their targets. All genes in

the network are considered as candidate targets, and a solution to the opti-

mization problem represents weights of influence from regulators to target

genes. (C) For each pair of genes j and l with a non-zero partial correlation co-

efficient, a partial covariance wlj is expressed as a partial correlation between

the copy number change of regulator gene gl and expression change of the

target gene gj. It is embedded as an edge score in the entire network. (D)

Finally, we describe a driver score for each gene gf by comparing the down-

stream consequences (red edges in D1) of a gene’s activity to the incoming

influences (green edges in D1) from its regulators. The colors of the edges in

D1 match with the colors of the equation in D2
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status, but also driven by the effects of alteration in copy numbers

and mutations of its dependent neighbors. Based on this assumption,

we simultaneously estimate the weights of all incoming influences

for each gene by solving the following convex optimization problem

in Equation (1). In the optimization problem, the expression of each

gene can be rewritten as a linear combination of the copy numbers

and the mutation status of its incoming neighbors. In other words,

although each patient could have a different combination of dele-

tions, amplifications and mutations, the optimization problem as-

signs more weights to the most relevant combination of copy

number changes and mutation effects.

Let k and n denote the numbers of cancer samples and genes, re-

spectively. For the ith cancer sample, let yij denote the gene expres-

sion value of gene gj and xil denote the copy number of gene gl.

ail ¼ 1þ pil is a damaging coefficient of mutations (multiple muta-

tions for some samples) occurring in the ith sample of gene l, where

pil is the sum of the probabilities of damaging effects of the muta-

tions and is calculated using a PolyPhen-2 web server (Adzhubei

et al., 2010) and a SIFT algorithm (Kumar et al., 2009) that predict

the harmful effect of a mutation occurring in DNA sequences.

Then, we can write the linear relationships mentioned above as

yij ¼
Pn

l¼1 ailxilqlj þ q0j. Note that ail is multiplied to xil. The reason

for adding a value of 1 to pil in ail (ail ¼ 1þ pil) is that the copy

number has still the same value when there is no mutation in the cor-

responding sample, while a higher aberration value is assigned to

the copy number when there is a mutation with a harmful effect.

Thus, our goal is to find the minimum of the least square error func-

tion subject to an l1 norm constraint on q�j in Equation (1).

minimize
q�j2Rnþ1

Xk

i¼1

yij �
Xn

l¼1

ailxilqlj � q0j

 !2

subject to
Xnþ1

l¼1

jqljj �1þ degreeðgjÞ
max
1�t�n

degreeðgtÞ
;

(1)

where degreeðgjÞ is the degree of gene gj in the PPI network. The

right side in the constraint inequality of Equation (1), ranging from

1 to 2, denotes the expected weight of the total incoming effect from

its neighbors to gene gj. For each gene j, an n-dimensional vector

ðq1j; q2j; . . . ; qnjÞ, obtained by solving the problem in Equation (1),

represents the weights of incoming effects from the other genes, and

qjj represents that expressions of gene j itself can be affected by its

own copy number status with mutation effects. q0j denotes the inter-

cept adjusting the fitness between random variables. Note that an

optimization variable qlj is a partial correlation coefficient represent-

ing the directional relationship between genes l and j. Consider

the ordinary correlation b12 between two random variables X1 and

X2. If X1 and X2 are correlated with n – 2 other variables

X3;X4; . . . ;Xn, we may regard b12 as a mixture of a direct correl-

ation between X1 and X2 and an indirect portion due to the presence

of other variables correlating with X1 and X2. The partial correl-

ation measuring the direct portion of the total correlation can be

defined as a correlation between X1 and X2 after removing effects

due to other variables by a linear regression. Therefore, the least

square linear regression coefficients are proportional to the partial

correlation coefficients (for a detailed description, see Fujikoshi

et al., 2010).

An accurate solution to Equation (1) is critical for the robust esti-

mation of relationships among genes in the large-scale network.

Although the objective function in Equation (1) is convex, the l1
norm in the sparsity constraint is a non-smooth function and deriva-

tive-based optimality conditions such as Lagrangian multipliers and

Karush–Kuhn–Tucker (KKT) conditions are not, in general, directly

applicable. An extension of function differentiation such as the sub-

differentiation might be required due to the non-smoothness. The l1
norm constraint can be decomposed as 2n inequality constraints

(Tibshirani, 1996). However, the direct application of the procedure

for handling 2n constraints might not be practically useful for the

large-scale problem. To overcome this issue, we applied the pro-

jected gradient method (Gafni and Bertsekas, 1984) to obtain the

optimal solution. A partial covariance between the copy number sta-

tus of gene gl and the expression value of gene gj is defined as

wlj ¼ jqljrðx�;lÞrðy�;jÞj; (2)

where rðx�;lÞ and rðy�;jÞ are standard deviations of the copy num-

bers of gene gl and the expressions of gene gj across all cancer and

normal samples, respectively. Note that the normal samples are used

to measure changes of each gene between normal and cancer condi-

tions (see Supplementary Fig. S1). The partial covariance wlj incorp-

orates three statistical measurements, a directional correlation qlj

from a regulator gl to its target gj, copy number changes of regulator

gl and expression changes of target gj, and it is used as the edge score

in the network.

2.2 A scoring function for cancer-driver genes
The alteration of a gene may change cell physiology by directly or

indirectly activating transcriptional cascades involving transcription

factors, master regulators and signaling proteins. The local invasion

might be spread out to normal tissues surrounding the tumor, result-

ing in cell proliferation, migration and differentiation (Akavia et al.,

2010; Danussi et al., 2013).

In this study, we propose a scoring function to measure the po-

tential effect of driver genes throughout the entire network. By com-

paring the downstream effects of a gene’s activity to the influences

from its upstream regulators, the cancer-driver score of gene gf is

defined as

DriverScoreðgf Þ ¼
DSðgf Þ

1þUSðgf Þ
; Eoutðgf Þ > Mþ Einðgf Þ

0; otherwise;

8><
>: (3)

where Eoutðgf Þ ¼
P

i2Jðgf Þwfi and Einðgf Þ ¼
P

i2Iðgf Þwif denote the

total direct outgoing and incoming edge scores for the gene gf,

respectively, and where Iðgf Þ and Jðgf Þ denote index sets for the

incoming and outgoing neighbors of gf, respectively. M ¼ 1
n

Pn
i¼1

EinðgiÞ denotes the mean value of EinðgiÞ of all n genes. It implies

that gf is more likely a dominator if its outgoing effect is greater

than the sum of its incoming effect and the mean value of the incom-

ing effects of all genes. USðgf Þ describes the effects on gf from

its local upstream regulators and DSðgf Þ describes the effect on

downstream targets driven by the regulator gf. We assume that each

regulator can be activated by the direct neighbors on its upstream

cascades, and then produces carry-over effects on its direct and

indirect targets on the downstream of the regulator. USðgf Þ is

defined as

USðgf Þ ¼ ð1þwff Þ
X

i2Iðgf Þ
wif ;

where wff denotes a partial covariance representing the effect of the

copy number status on its own expression values, and in the net-

work, it is a self-loop that can be either an incoming or an outgoing

edge for gf. Therefore, wff is used to emphasize the effect of the copy

numbers to its own gene expressions in both USðgf Þ and DSðgf Þ
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(for more explanation, see Supplementary Text and Fig. S2). DSðgf Þ
is defined as

DSðgf Þ ¼ ð1þwff Þ
X

i2Jðgf Þ
wfi

þ
XPðgf Þ

m¼2

1

m

X
j2LðmÞ

ð1þ vðf!jÞÞ
IndegðgjÞ

X
i2JðgjÞ

wji

0
@

1
A

0
@

1
A;

where Pðgf Þ is the longest distance from gf to its target genes in the

network, and L(m) is the index set of downstream target genes of gf,

which are located m distance from the gene gf. vðf!jÞ ¼
P

l2IAðgjÞwlj

is the total influence to gene gj from its direct incoming neighbors

and it describes how strong gj is affected by the regulator gf via its

intermediate targets on the paths from gf to gj. If the affection score

is high, the outgoing influences of gj on its downstream targets

would be more valuable, where IAðgjÞ is an index set of direct-active

incoming edges into gene gj, which are on the paths from gf to gj.

IndegðgjÞ is the number of all incoming edges into gene gj. Note that

if an intermediate target gene gj is located m distance from its focus-

ing regulator gf, then outgoing effect of gj should be scaled with 1
m,

which means that target genes longer distances from gf have less

contributions to the accumulation of DSðgf Þ.
To select candidate-driver genes, we estimate a threshold value

of DriverScoreðgf Þ based on a P-value obtained by comparing the

observed network with random networks. A random network is

generated from a random copy number matrix and gene expression

matrix, where the copy number or expression values are randomly

permuted in each matrix. The null hypothesis is that gene expression

values are independent of copy numbers and mutations. By taking

the ratio of random networks (Nmax>obs), in which the maximum

driver score from the random network is larger than the observed

driver score, to the total number of random networks (Nall), P-value

is calculated as (Nmax>obs=Nall).

3 Results

3.1 Simulation study
Suppose that we have an n-dimensional multivariate normal

distributed random variable Y ¼ ðy1; y2; . . . ; ynÞT � Nðl;RÞ.
Consider partitioning Y ¼ x1

x2

� �
into x1 ¼ ðy1; y2; . . . ; ypÞT and

x2 ¼ ðypþ1; ypþ2; . . . ; ynÞT with a similar partition of a mean vector

and a covariance matrix l ¼ l1
l2

� �
and R ¼ R11 R12

R21 R22

� �
. Then,

ðx1jx2 ¼ sÞ, the conditional distribution of the first partition given

the second, is also multivariate normalNðl;RÞ, with mean

l ¼ l1 þ R12R
�1
22 ðs� l2Þ

and covariance matrix

R ¼ R11 � R12R
�1
22 R21:

For a comprehensive review of the conditional distribution, see

Johnson and Wichern (2007). Assuming the conditional distribution

of the partitioned multivariate normal random variables, we con-

structed six simulation datasets: five case datasets (cancer samples)

with different covariance matrices and one reference dataset

(healthy samples). Each dataset represents matched samples of copy

numbers with mutation effects and gene expressions. Each dataset

consists of 500 genes (variables) with 100 samples. For each gene i,

we draw the mean li and the standard deviation ri from the uniform

distributions on the observed range of normal data ½�0:5;0:5�, and

then calculate the correlation coefficient qij for each pair of genes

(i, j). Let l ¼ ðl1; l2; . . . ;l500ÞT denote the mean vector, and

R ¼ frijgi;j¼1; ... ;500 denote the covariance matrix, where rij ¼ qijrirj

is the covariance between genes i and j. The reference data were

simulated from joint normal distribution Nðl;RÞ. For each of the

case datasets, 10 of 500 genes were selected as driver genes and 200

of the remaining 490 genes were selected as target genes. For each of

the 10 drivers, 20–35 targets were randomly selected from the 200

target genes. For the selected 210 (drivers and targets) genes, mean

values were shifted. For correlations, significantly higher correl-

ations between each driver and its own targets were assigned to rep-

resent interactions between the driver gene and its targets, and

slightly higher correlations were assigned among the 10 driver genes

and among the 200 target genes to represent alternations on the part

of the entire network. In the covariance matrix of the illustration ex-

ample in Figure 2A and B, correlations between each driver and its

own targets are colored in blue, and correlations among drivers and

among targets are colored in red and magenta, respectively. Let Id
and It denote sets of indexes for the driver genes and the target

genes, respectively.

l̂i ¼
li þ a; i 2 Id [ It

li; i 62 Id [ It;

8<
:

q̂ ij ¼

qij þ b; i; j 2 Id or i; j 2 It

qij þ c; ði 2 Id and j 2 ItÞ or ðj 2 Id and i 2 ItÞ

qij; otherwise:

8>>>><
>>>>:

When we generate samples for the five case datasets, a¼0.3, b¼0.3

and c¼0.4, 0.5, 0.6, 0.7 and 0.8 were used to obtain the mean vec-

tor l̂ and the correlation matrix q̂. In this process, we attempted to

restrict the effects from targets to drivers. Hence, we first simulate

samples for 10 driver genes y491; . . . ; y500 from the multivariate nor-

mal distribution, and then simulate samples of other genes from the

Fig. 2. Simulation of the DEOD method. (A) Relationships among driver genes

and target genes are represented in a network. Squares in red represent

driver genes, while circles in gray represent target genes or free genes. Blue,

red-dotted and magenta-dotted edges, respectively, represent the directed

relationships from drivers to their own targets, correlation between drivers

and correlation between targets. (B) A correlation matrix for the network in

(A) is shown. The highlighted colors in the covariance matrix are matched

with the edge colors in (A). (C) Performances of the DEOD method from the

five simulated datasets with different covariance matrices are shown
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conditional multivariate normal distribution depending on the given

drivers.

Let R̂ ¼ fr̂ ijgi;j¼1; ... ;500 denote the covariance matrix, where

r̂ij ¼ q̂ ijrirj is the covariance between genes i and j, and S is a

100�500 matrix whose entry slj represents the value of the lth sam-

ple of gene j. Then, the samples of the 10 driver genes y491; . . . ; y500

were first simulated as

sð1 ... 100Þ;ð491 ... 500Þ ( SimulateðN ðl̂ð10Þ; R̂ð10�10ÞÞÞ:

Assuming the conditional multivariate normal distribution of the

490 genes given the 10 drivers, we simulated the samples for the 490

genes from multivariate normal distributionNðl;RÞ with mean

lð490Þ ¼ l̂ð490Þ þ R̂ð490�10ÞR̂
�1

ð10�10Þðs� l̂ð10ÞÞ

and covariance matrix

Rð490�490Þ ¼ R̂ð490�490Þ � R̂ð490�10ÞR̂
�1

ð10�10ÞR̂ð10�490Þ;

where l is a 490-dimensional vector and R is a 490�490 matrix.

For each sample l, we finally simulated cancer data for the 490 genes

y1; y2; . . . ; y490 as

sðlÞ;ð1 ... 490Þ ( SimulateðN ðlðsðlÞ;ð490 ... 500ÞÞ;RÞÞ:

Figure 2A shows an example for simulating nine genes. Let

Y ¼ ðy1; y2; . . . ; y9ÞT be a multivariate normal random variable

with a mean vector l̂ and a covariance matrix R̂, where the vari-

ances are fixed at 1. The covariance matrix is then the same as the

correlation matrix given in Figure 2B, and the conditional distribu-

tion of x1 ¼ ðy1; y2; . . . ; y6ÞT given x2 ¼ ðy7 ¼ sl7; y8 ¼ sl8; . . . ;

y9 ¼ sl9ÞT is also multivariate normal with mean

l ¼ l̂ð1 ... 6Þ þ R̂ð1 ... 6Þ;ð7 ... 9ÞR̂
�1

ð7 ... 9Þ;ð7 ... 9Þðs� l̂ð7 ... 9ÞÞ

and covariance matrix

R ¼ R̂ð1 ... 6Þ;ð1 ... 6Þ � R̂ð1 ... 6Þ;ð7 ... 9ÞR̂
�1

ð7 ... 9Þ;ð7 ... 9ÞR̂ð7 ... 9Þ;ð1 ... 6Þ

where l is a 6-dimensional vector and R is a 6�6 matrix.

In Figure 2A, if the highlighted part of the entire network repre-

sents a complete graph and the correlation coefficients for all pairs

in that part are similar enough, then the covariance matrix tends to

be symmetric positive semi-definite and the simulation process can

be easily constructed without any theoretical complications.

Unfortunately, the significant part forms an incomplete graph struc-

ture and correlations between the drivers and their own targets are

sufficiently higher than the correlations either between targets or be-

tween drivers. In addition, drivers may share only some of their tar-

gets (in Fig. 2A, driver y8 is connected to its targets y2, y3 and y6

while it is not connected to y1, y4 and y5). Due to this kind of ran-

domness, the covariance matrix itself is neither positive definite nor

positive semi-definite. Hence, we need to find the nearest positive

definite matrix of the covariance matrix.

The problem of finding the nearest positive definite matrix can

be formulated as the following optimization problem

eðR̂Þ ¼ minimize
X�XT�0

jjR̂ �Xjj:

In other words, any positive definite X satisfying jjR̂ �Xjj ¼ eðR̂Þ
can be a positive approximation of R̂ in the given norm. We applied

the following analytic result from Higham (1988) that gives the so-

lution to the problem of positive approximation in the Frobenius

norm. Let R̂ 2 Rn�n be an arbitrary matrix, its symmetric and

skew-symmetric parts be A ¼ ðR̂ þ R̂
TÞ=2 and B ¼ ðR̂ � R̂

TÞ=2,

respectively, and A¼UP be a polar decomposition. Then, according

to the theorem in Higham (1988), X�F ¼ ðAþ PÞ=2 is the unique

positive approximation of R̂ in the Frobenius norm, and the ap-

proximation error is estimated as

eFðR̂Þ2 ¼
X

kiðAÞ<0

kiðAÞ2 þ jjBjj2F;

where A ¼ YKYT is a spectral decomposition of A,

K ¼ diagðk1; k2; . . . ; knÞ and YTY ¼ I. The performances of the

DEOD method on the simulated datasets with 500 genes are sum-

marized in Figure 2C. When five different covariance matrices were

used, the prediction accuracies varied. An area under the curve

(AUC) value of the true positives and false positive rates was highest

when c¼0.8. Although the accuracy decreases when the covariance

decreases, DEOD still gives a high AUC value for even c¼0.4, dem-

onstrating that DEOD can successfully uncover a large fraction of

driver genes.

3.2 Analysis on breast cancer data
3.2.1 Datasets

The matched copy number, gene expression and mutation datasets

of the breast cancer samples were downloaded from the TCGA data

portal (http://cancergenome.nih.gov/). We used 506 cancer samples

without missing values in both copy numbers and gene expressions,

and 58 normal samples. We collected 11 852 genes in the union of

the following three datasets.

• A total of 2592 genes located in copy number aberrant regions

were obtained by the GISTIC method (Beroukhim et al., 2007).

The copy number value of a gene in a sample was determined

using the hg19 build of the genome (Kent et al., 2002).
• Differentially expressed 649 genes forming the condition-specific

subnetwork were obtained by applying our previously developed

method, WMAXC (Amgalan and Lee, 2014).
• A total of 10 895 genes containing somatic mutations in at least

one of the 506 cancer samples were selected. In 506 samples, a

total of 40 978 mutations occurred.

In terms of PPI data, we downloaded the Human Protein Reference

Database released in 2010 (Prasad et al., 2009), which contains

39 240 PPI from 9617 genes. We used 21 350 interactions among

the above 11 852 genes.

3.2.2 Driver genes of breast cancer

When we applied the DEOD method to the breast cancer data, 186

genes with a P-value<0.05 (the driver score>18.09) were selected

as candidate-driver genes. The P-value was obtained by comparing

with 30 random networks. A list of the 186 genes is shown in

Supplementary Table S1. The 10 highest scoring drivers are shown

in Table 1, and all 10 genes are previously known oncogenes in

breast cancer or in other cancer types, or their cellular changes are

related to cancer. MYC, MDM4, TRPS1, ZNF217, PAX5 and

BANP are known to contribute to breast cancer progression, and

ADAMTSL4, ORAOV1 and AVPR1B have functional roles in other

cancers or cancer-related biological processes. Also, F-box only pro-

tein 31 (FBXO31) is suggested as a candidate tumor suppressor gene

(Kumar et al., 2005).

For each of the 186 candidate cancer-driver genes, gene gj is se-

lected as its target gene if the partial covariance wlj between the

driver gene gl and the gene gj is>0.05 in Equation (2). The numbers

of target genes for 186 candidate-driver genes are shown in
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Supplementary Table S1, which varies from 11 to 4529 with the

mean number¼242. To check whether the target genes of a driver

gene are collaboratively working for particular biological functions

or pathways, we performed a functional enrichment test for the tar-

get genes of each drivers. We applied a hypergeometric test followed

by a Benjamin–Hochberg test for multiple comparison corrections

using KEGG pathways (Kanehisa et al., 2000) and Gene Ontology

(GO) terms (Carbon et al., 2009). Target genes of 184 out of 186

genes (98.9%) were enriched with at least one KEGG pathway or

one GO term. The average number of enriched terms was 24. The

numbers of enriched terms are shown in Supplementary Figure S3,

and the list of enriched KEGG pathways for the ten highest scoring

drivers is shown in Supplementary Table S2. The enriched terms in-

clude cancer-related pathways such as ECM–receptor interaction,

P53 signaling pathway and TGF-b signaling pathway. This result

implies that the target genes of the candidate-driver genes consist of

functionally related genes, and the identified driver genes might play

significant roles in the dysregulation of cancer-related pathways.

In addition, we checked the pathways in which 186 drivers

were enriched. As shown in Supplementary Table S3, 15 KEGG

pathways and four GO terms were enriched, including the ERBB

signaling pathway, a well-known breast cancer-related pathway.

Interestingly, enriched pathways include pathways of other cancer

types such as non-small cell lung cancer, glioma, melanoma, bladder

cancer, pathways in cancer, small cell lung cancer and prostate

cancer.

3.3 MYC deregulation in breast cancer
DEOD identified MYC, a potent activator of tumorigenesis, as the

highest-scoring driver gene. The driver score of MYC was signifi-

cantly higher compared with the second ranked gene. MYC is a

transcription factor and a key regulator of cell growth, proliferation,

metabolism, differentiation and apoptosis (Xu et al., 2010). Its de-

regulation has been found in many cancer types including breast

cancer (Liu et al., 2012; Xu et al., 2010). Both genomic and func-

tional analyses of MYC responsive genes suggest that MYC regu-

lates up to 15% of all humans genes (Chen and Olopade, 2008).

Our analysis showed that the chromosomal region of MYC was

significantly amplified and that the number of MYC downstream

targets is relatively large. 1098 targets are directly affected by MYC.

Figure 3 shows the relationships between the copy number status

of MYC and the expressions of its direct targets. The MYC target

network is enriched with several GO terms such as cell differen-

tiation (P-value¼4.427E�21), regulation of cell proliferation

(P-value¼4.976E�22), cell migration (P-value¼4.986E�13) and

cell adhesion (P-value¼3.910E�19). In addition, 44 KEGG path-

ways were enriched, including well-known breast cancer-related

pathways such as complement and coagulation cascades

(q-value<1.0E�31), focal adhesion (q-value¼3.76E�05) (Zhang

and Chen, 2010), cytokine–receptor interaction (q-value¼
1.14E�05) (Huan et al., 2013), ECM–receptor interaction

(q-value¼4.64E�05) (Krupp et al., 2011) and TGF-b signaling

pathway (q-value¼1.51E�04) (Scollen et al., 2011). A complete

list of enriched pathways from the KEGG pathways is shown in

Supplementary Table S2.

We further analyzed the relationship between the copy number

changes of MYC and the survival time. Clinical information on

1040 breast cancer patients was downloaded from the TCGA data

portal on October 20, 2014. We first estimated the most aberrant

1% of all copy number values in cancer samples (0.840 for amplifi-

cation and�0.707 for deletion), and used them as threshold values

to decide samples with copy number aberrations. Then, for each

candidate-driver gene, the survival time of a group of patients whose

copy number status passes the threshold was compared with that of

a group of the same number of patients whose copy number status

was on the opposite of the aberrant group. Survival curves were esti-

mated by a Kaplan–Meier analysis at a series of time points of days,

and the difference between two survival plots was evaluated by a log

rank test. The mean survival time of the high amplified group (158

patients) is shorter (3350 days) than that of the low amplified group

(4354 days) with P-value¼0.00246, which implies that amplifica-

tion of MYC copy number is significantly related to the survival

time. When we performed the survival time analysis for the other

nine candidate-driver genes in Table 1, a similar relationship was

Table 1. The 10 highest scoring driver genes identified by DEOD

Gene symbol Score Aberration Location References

MYC 1516.9 Amplified 8q24.21 Xu et al. (2010)

MDM4 344.08 Amplified 1q32.1 Duffy et al. (2014)

TRPS1 106.13 Amplified 8q23.3 Wu et al. (2014)

ADAMTSL4 80.459 Amplified 1q21.3 Le Goff et al. (2011)

FBXO31 63.289 Deleted 16q24.2 Kumar et al. (2005)

ORAOV1 47.893 Deleted 11q13.3 Katoh et al. (2005)

ZNF217 40.840 Amplified 20q13.2 Nguyen et al. (2014)

PAX5 39.904 Deleted 9q13.2 Moelans et al. (2011)

BANP 39.515 Deleted 16q24.2 Malonia et al. (2011)

AVPR1B 39.144 Amplified 1q32.1 Savas et al. (2012)

Top 10 genes are listed with scores by DEOD, copy number status and

cytobands. They are previously known to be related to breast cancer or other

cancer types, and supporting literatures are shown in the last column.

Fig. 3. MYC and its target genes. 1098 direct target genes are ordered accord-

ing to partial covariances (�2:283�signðqfi Þwfi�2:324, where f and i denote

the indexes of the driver and its targets) between the copy numbers and mu-

tation effects of MYC and expression levels of its targets, whereas the sam-

ples are ordered according to the copy numbers of MYC
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found in the amplifications of TRPS1 (P-value¼0.00092), which is

the third highest scoring dominator in our result and a well-known

oncogene playing an important role in the control of cell cycle and

proliferation during breast cancer development (Wu et al., 2014).

The Kaplan–Meier curves for these two genes are shown in Figure 4.

The survival analysis of all the 186 candidate-driver genes was

shown in Supplementary Table S4. Out of 186 genes, the copy num-

bers of 26 genes (16%) were related to the survival time with signifi-

cant P-values. When the threshold for copy number aberration was

estimated based on 5% and 3%, 37 genes (19.8%) and 20 genes

(10.7%) were related to the survival time, respectively

(Supplementary Table S5).

3.4 FBXO31 is a candidate tumor suppressor gene
In addition to the well-known oncogenes, FBXO31 was identified as

a high-scoring dominator. A previous study hypothesized that

FBXO31 is a candidate tumor suppressor in breast cancer, which in-

duces cellular senescence and has consistent properties of tumor sup-

pressors by generating Skp Cullin F-box containing complex (SCF

complex) (Kumar et al., 2005). To support the above hypothesis, we

further investigated FBXO31.

Our analysis shows that in many cancer samples, the chromo-

somal regions of FBXO31 were significantly deleted and FBXO31

was down-regulated, and copy numbers were related with expres-

sion levels (wff¼0.1231). A target network of FBXO31 includes 740

positively related genes and 788 negatively related genes. Figure 5

displays the relationships between the copy number status of

FBXO31 and the expressions of its direct targets. Target genes of

FBXO31 were significantly enriched with cancer-related GO terms

such as cell differentiation (P¼1.04E�16), cell development

(P¼6.60E�09), cell adhesion (P¼2.77E�05), cell migration

(P¼8.77E�05) and regulation of cell proliferation

(P¼1.084E�12). Also, 13 KEGG pathways were enriched, includ-

ing breast cancer-related pathways such as p52 signaling and pri-

mary immunodeficiency. A complete list of the pathways is given in

Supplementary Table S2. In conclusion, our findings support the no-

tion that FBXO31 is a candidate tumor suppressor gene in breast

cancer.

3.5 Analysis on brain cancer
We compared DEOD with a Multi-Reg (Danussi et al., 2013)

method, which is a modified version of CONEXIC (Akavia et al.,

2010) and was developed by the same research group. We down-

loaded the 242 matched copy number (HG-CGH-244A CN Array),

gene expression (HT HG-U133A or Agilent G4502A-07) and muta-

tion datasets of glioblastoma multiforme (GBM) samples from the

TCGA data portal, which were previously used in Multi-Reg. In

Danussi et al. (2013), using Multi-Reg, 83 genes were recommended

as GBM-driver genes. We used 191 cancer samples without missing

values in both copy numbers and gene expressions. Chromosomal

locations of genes were determined using the hg18 build of the gen-

ome. For the analysis, we used 8362 genes included in the PPI net-

work with 31 485 interactions. When we applied DEOD to GBM

data, 48 genes were selected as candidate GBM cancer-driver genes

(driver scores>49.01 and P-value<0.05). A complete list of the 48

genes is given in Supplementary Table S6. The top 10 ranked genes

include well-known oncogenes and tumor suppressors of GBM such

as EGFR, CDKN2A, PTEN, PDGFRA and CDKN2B. For compari-

son with Multi-Reg, we applied the functional enrichment test of

GO terms and KEGG pathways to 48 genes identified by DEOD

and 83 genes identified by Multi-Reg. As a result, 107 and 87 path-

ways were enriched for DEOD and Multi-Reg, respectively. The en-

riched terms include many cancer-related terms such as glioma and

p53 signaling pathways (Supplementary Tables S7 and S8), showing

that both methods recommend GBM-related genes.

In Danussi et al. (2013), the target genes of the identified drivers

were compared against the gene expression signatures of GBM sub-

types in order to show functional properties of candidate-driver

genes. We performed the same analysis with 48 candidate-driver

genes identified by DEOD. For this task, we obtained three groups

of genes whose expression signatures were associated with mesen-

chymal, proneural and proliferative GBM subtypes (Carro et al.,

2010). Among the 140 mesenchymal, 242 proneural and 181 prolif-

erative genes obtained, 92, 137 and 103 genes were included in the

set of 8362 genes. The candidate drivers selected by Multi-Reg and

DEOD were, respectively, classified into the three molecular signa-

ture groups based on the enrichment of their target genes in the sub-

type-related genes using a hypergeometric test (q-value<0.05).

When the driver gene was related with multiple subtypes, the

Fig. 4. Survival time analysis depending on the copy number changes of MYC

and TRPS1. ‘HR’ represents a hazard ratio measuring the survival time differ-

ence between low- and high-amplified groups and ‘p’ represents a P-value of

the statistical significance of the survival time difference. ‘MS’ denotes the

mean survival in days

Fig. 5. FBXO31 and its target genes. 1528 direct target genes are ordered ac-

cording to partial covariances (�0:437�signðqfj Þwfj�0:561, where f and j de-

note the indexes of the driver and its targets) between the copy numbers and

mutation effects of FBXO31 and expression levels of its targets, whereas the

samples are ordered according to the copy numbers of FBXO31
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subtype with the minimal q-value was selected. Table 2 shows the

numbers of candidate drivers associated with the subtypes; 77 and

58% of candidate-driver genes of DEOD and Multi-Reg, respect-

ively, were related to subtypes.

In addition, we analyzed the relationships between the survival

time and the copy number changes of candidate-driver genes identi-

fied by DEOD and MultiReg. Copy number data (Genome-Wide

Human SNP Array 6.0) and clinical information of 523 GBM pa-

tients were downloaded from the TCGA data portal on March 12,

2015. Similar to the survival time analysis on breast cancer data, the

most aberrant 1% copy numbers of all copy number values in the

GBM data were selected as the threshold values (0.5093 for amplifi-

cation and � 0.8576 for deletion). We found that the copy number

changes of 13 out of 48 driver genes (27.1%) selected by DEOD and

14 out of 83 driver genes (16.8%) selected by Multi-Reg were

related to the survival time with significant P-values. (See

Supplementary Table S9 for a list of genes, P-values, and the number

of samples with copy number aberrations.) Also, fractions of candi-

date-driver genes related to the survival time were shown in

Supplementary Table S10 for the different thresholds of 5%, 3%

and 1%. Across the three thresholds, higher fractions of candidate-

driver genes identified by DEOD were related to the survival time

than those by MultiReg.

4 Discussion

The main advantages of DEOD are as follows: Based on an optimal

combination of copy number deletions and amplifications with mu-

tation effects, DEOD estimates a large-scale graph by integrating

different data types. Different from other methods, DEOD measures

genetic alterations and directional relationships between genes

across different data types (copy number aberration with mutation

effects of regulators to expression change of their targets). A convex

minimization method with a strong theoretical validation of opti-

mality, projected gradient, was implemented to select incoming

edges of each gene as a partial correlation effect from the other genes

in the entire network. A partial covariance is then taken into ac-

count as a combination of three statistical measurements, the partial

correlation from a regulator to its target, copy number changes of

the regulator, and differential expressions of the target to represent

edge scores in the network. For each gene, the scoring function

measures all effects of the candidate-driver gene on the entire net-

work by comparing the accumulation of contributions in down-

stream cascades to the total direct incoming effect from its

upstream.

We further investigated the effect of mutations on gene expres-

sions. For this task, we ran the complete procedure on the breast

cancer data after removing the damaging coefficients of mutations,

aij, in Equation (1). In this modified experiment, 216 genes were se-

lected as candidate-driver genes with the threshold score of 10.8609,

and the driver scores of several genes with mutations in the multiple

samples were significantly decreased. For example, the driver score

of USH2A decreased from 24.2752 to 1.107 because 27 samples

were mutated in this gene with a high probability of damaging ef-

fects. The numbers of samples with mutations in the driver genes are

shown in Supplementary Table S1. Also, 47 genes were removed

from the original list of drivers and are listed in Supplementary

Table S11. When we manually checked the 10 genes in the list from

literature in PubMed, they were previously known to be related to

breast cancer, showing that mutation information is another import-

ant source in finding driver genes.

Similarly, we investigated the effect of the PPI network. The bin-

ary interactions in the PPI network were used to describe the ex-

pected total incoming effect of each gene in the network. In

Equation (1), genes that have high degrees in the PPI network would

be expected to have more total incoming effects due to the inequality

constraint. We ran the DEOD method on breast cancer without PPI.

After excluding the PPI information, 32 candidate drivers whose

driver scores were less than the threshold score of 10.2955 were

removed from the original list of drivers and are listed in

Supplementary Table S12. A comparison statistic for the incom-

ing effects of genes is given in Supplementary Table S13. The

incoming effects and degrees of the genes were higher when the PPI

information was included than when the PPI information was

excluded. This result shows that integration of the PPI information

in DEOD successfully incorporated the observation that

cancer genes have a higher degree in the PPI network (Jonsson and

Bates, 2006).

Our results showed that only some of candidate-driver genes

were related to the survival time in both breast cancer and GBM.

For example, although PTEN is a well-known GBM-driver gene and

the deletion of PTEN is one of the hallmarks in GBM development,

the relationship between the copy numbers and the survival time

was not significant in our study (P-value¼0.0596) and its prognos-

tic significance still remains controversial (Carico et al., 2012; Xu et

al., 2014). Also, the statistical significance of the survival analysis

depends on the thresholds for copy number aberrations, as shown in

Supplementary Tables S5 and S10. For example, in breast cancer,

the copy numbers of FBXO31 were related to the survival time

when the threshold was chosen based on 5% of all the copy numbers

(P-value¼0.04375, the number of samples with aberrations¼262),

while its P-value was not significant when 1% was used

(P-value¼0.22730, the number of samples with aberrations¼61).

There might be several complex relationships between genes and the

survival time. One possible explanation might be the combined ef-

fects of a gene and other molecules (Gross et al., 2014) and another

reason might be the chromosomal positions of aberrations or the

role of aberrant domains within the gene (Minaguchi et al., 2001).

More analyses are required to reveal the complex relationships be-

tween genes and the survival time.

In this study, we explained the activities of genes based on copy

number changes and mutations, although other molecules or genetic

changes such as microRNAs, transcription factors and methylations

also play significant roles in cancer development. Hence, the identi-

fied driver genes in this analysis may represent a partial list of those

genes that drive changes of cellular activities in cancer. Indeed, the

PCS method can be used to measure relationships between any ex-

planatory factors and response variables. Hence, it is possible to ex-

tend the DEOD method so that driver genes can be identified from

several different types of molecular changes. The extension of the

DEOD method will be our future work to enhance the understand-

ing of cancer development.

Table 2. Comparison on the performances of the two methods on

GBM

Methods Candidate

genes

Mesenchymal Proneural Proliferation Overall

Multi-Reg 83 23 11 14 48 (58%)

DEOD 48 24 5 8 37 (77%)

The candidate drivers identified by Multi-Reg and DEOD were classified

into the three molecular signature GBM subtypes: mesenchymal, proneural

and proliferation.

Dominant effects of cancer-driver genes 2459

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/15/2452/188317 by G
w

ang Ju Institute of Science & Technology user on 14 M
ay 2025

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv175/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv175/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv175/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv175/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv175/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv175/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv175/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv175/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv175/-/DC1


In addition to the DEOD method, we designed a novel data

simulation scheme based on conditional multivariate normal ran-

dom variables given a group of specific variables. Compared with a

simulation scheme used in our previous work (Amgalan and Lee,

2014), the novel scheme has the advantages of simulating incom-

plete-directed subgraphs in an entire background graph.
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