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Unintended effects of drugs can be caused by various mechanisms. Conventional analysis of unintended
effects has focused on the target proteins of drugs. However, an interaction with off-target tissues of a
drug might be one of the unintended effect-related mechanisms. We propose two processes to predict a
drug's unintended effects by off-target tissue effects: 1) identification of a drug's off-target tissue and; 2)
tissue protein e symptom relation identification (tissue protein e symptom matrix). Using this method,
we predicted that 1,177 (10.7%) side-effects were related to off-target tissue effects in 11,041 known side-
effects. Off-target tissues and unintended effects of successful repositioning drugs were also predicted.
The effectiveness of relations of the proposed tissue protein e symptom matrix were evaluated by using
the literature mining method. We predicted unintended effects of drugs as well as those effect-related
off-target tissues. By using our prediction, we are able to reduce drug side-effects on off-target tissues
and provide a chance to identify new indications of drugs of interest.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Unintended effects of drugs are related to drug side-effects or
repositioning. Therefore, the mechanisms of drugs' unintended
effects were intensively studied. In this paper [1], the mechanism of
unintended effects were categorized into four kinds: 1) interactions
between drugs andmain target proteins in primary (target) tissues,
2) interactions between drug and target proteins in different (off-
target) tissues, 3) interactions between drugs and off-target pro-
teins in primary or different tissues, and 4) complex interactions
between drug main or off-target proteins within tissues. To inves-
tigate the second item, which is the off-target tissue effect, has been
difficult due to a lack of information between human tissues and
proteins. However, in the Human Protein Atlas (HPA) project [2],
the researchers released their research results about relations be-
tween tissues and proteins on the web. We utilized HPA DB to
investigate the second mechanism of drugs' unintended effects.
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In the case of humans, approximately 20,000 proteins were
produced. However, those all proteins are not uniformly expressed
in all of the tissues of our body. In the Human Protein Atlas (HPA)
project, they investigated which proteins are synthesized in each
tissue/organ of the human body for 90% of proteins that are
currently known. Of course, overlapped proteins in human tissues
existed. Because of this, after drug administration, we expect to see
the medication having an effect on proteins in multiple tissues. In
this case, a drug can have unintended effects on off-target tissues.

Our interest is in the effect of the drug on the target proteins
located in other tissues than the originally targeted tissues. As an
example of this phenomenon, in the case of Fexofenadine
(DB00950), which is an anti-histamine drug class, the target pro-
tein of the drug is the Histamine receptor H1. This drug has been
usually prescribed to allergic rhinitis with hypersecretion of nasal
discharge. Tissues expressing this protein are known to include
nasopharynx, adrenal gland, bronchus, colon, kidney, lung, para-
thyroid gland, stomach, testis, smooth muscle, cerebellum, cerebral
cortex, hippocampus, and so on [2]. This medicine affects naso-
pharynx tissue according to the drug's original intended design [3].
The most well-known side-effect of this drug is sleepiness, and
cerebral tissues, such as the cerebellum, cerebral cortex, and hip-
pocampus, are known to be involved in sleepiness [4]. In summary,
the initial generation of antihistamines was prescribed for treating
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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allergic rhinitis, while this drug's side-effect was drowsiness. The
next generation of antihistamines could reduce drowsiness as a
side-effect by interrupting drug delivery to brain tissues, and this
concept is related to the off-target tissue effect.

In this study, we predicted the unintended effects of the drug by
examining the off-target tissue effects. Thus, we built a matrix that
includes symptoms and target proteins and confirms the phe-
nomenon on currently marketed drugs. We built the matrix by
using the target protein involved with tissue information and
symptoms from drugs' indications. We can suggest novel drug-
induced effects by non-target tissue through the tissue protein e

symptom matrix. This paper firstly introduce our prediction
methods. Next, we explain the tissue proteine symptommatrix (T-
SM). Finally, we show our prediction results and discuss our results
sequentially.
2. Methods

2.1. Prediction method

Our proposed prediction method largely consists of two parts.
The first part is to identify the off-target tissue of the drug of in-
terest. We utilized the ATC code and target proteins of the drugs to
identify the off-target tissue. Firstly, we obtain all tissue informa-
tion including proteins of interest. The first code of ATC was related
to the target tissue of the drug. We defined the off-target tissues as
a set of all other tissues, which produce the target proteins, except
for the target tissues. Tissue protein information related with the
drug are built by combining the off-target tissue and target protein.
Tissue protein is defined as the protein produced in particular tis-
sues. This tissue protein information is utilized to find integrations
in the tissue protein e symptom matrix.

The second part is to find relations in the tissue protein e

symptom matrix. Our T-SM has relations between tissue proteins
and symptoms. We can predict the unintended effects of a drug of
interest by the off-target tissue effect from confirming the tissue
protein on T-SM.

The input data of our prediction method are target proteins of a
drug of interest and the first level of the ATC code of the drug. The
output data of the prediction method are tissue proteins,
Fig. 1. Prediction method for unintended effects by off-target tissue effects. Our prediction
target tissues are defined as tissues producing the target protein P1 of the drug Dr1 as well as
of the drug Dr1 and b) Tissue protein e symptom relation identification using the tissue pr
links between the given drug Dr1 and symptoms (Symptom1 and Symptom2) were suggested
this figure legend, the reader is referred to the web version of this article).
symptoms, and T-SM scores. The output symptoms are interpreted
as the off-target tissue effects of the drug of interest.

Fig. 1 shows an example of our prediction. There is drug Dr1, and
the first level of the ATC code of Dr1 is ATC1. The target protein of
Dr1 is P1. This target protein exists in Tissue1 and Tissue2 according
to the HPA database. The target tissue of Dr1 is Tissue1 included in
the biological system indicated by the ATC code information. Dr1
can affect Tissue2 through the target protein P1 enriched in Tissue2.
Thus, the off-target tissue effects are Symptom1 and Symptom2.
Our prediction is that Symptom1 and Symptom2 were related with
Tissue2 by Dr1's off-target tissue effect.
2.2. Tissue protein e symptom matrix (T-SM)

Our prediction is to assess unintended effects by off-target tis-
sue. If we know the off-target tissue of the drug and the related
symptom of the off-target tissue, we can predict the unintended
effect of drug that occurs due to off-target tissue effects.

The proposed matrix was built from various information of
marketed drugs. This matrix contains relations between tissue
proteins and symptoms. The tissue protein means that the proteins
existed in tissue. The tissue protein is different from tissue-specific
protein. The tissue-specific protein is a protein that only exists in
specific tissue. In conclusion, this relation of T-SM represents a
symptom caused by a target protein on tissue with tissue protein
(Fig. 2).

Tissue protein e symptom matrix was calculated in four steps.
The first step is tissue protein-ATC matrix (TPzATCk) calculation.
One of the data aggregated to develop the protein-tissue matrix
PmTn is the relation information of the spatial distribution of pro-
teins across the human tissues obtained from Human Protein Atlas
(HPA) [2]. The othermatrix (TnATCk) contains the relations between
the first level of ATC codes and associated tissues manually curated
from the physiological literature [5]. The tissue protein index z and
the elements of the matrix TPzATCk were calculated by the formula
in the bracket and the arithmetic multiplication of the elements of
the matrix PmTn and TnATCk, respectively, as follows:

TPzATCk ¼ PmTn � TnATCk ðz ¼ ðn� 1Þmmax þmÞ: (1)

The second step was to derive the tissue protein with an ATC
method consists of the following two processes. a) Off-target tissue identification: off-
tissues excluded from the biological system indicated by the first level of the ATC code

otein e symptom matrix (T-SM): off-target tissue protein (highlighted with red boxes)
as the off-target tissue effects of the Dr1 (For interpretation of the references to color in
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code-drug matrix (TPwAqDrx). The TPzATCk matrix was developed
from the result of the first step and ATCkDrx wasmade from the first
level of the ATC codes of the drugs, which were obtained from
DrugBank [6]. The arithmetic to derive the tissue protein with ATC
code index q and the elements of the TPwAqDrx matrix are shows as
follows:

TPwAqDry ¼ TPzATCk � ATCkDrxðq ¼ ðk� 1Þzmax þ zÞ: (2)

The third step was the process of making the target tissue
protein with an ATC code-drug matrix (TarTPwAqDrx). Information
on the target proteins of drugs, which was collected from Drug-
Bank, was utilized. The target index t and the elements of the
TarTPwAqDrx matrix are determined by

TarTPwAqSymy ¼ TPwAqDrx � TartDrx:�
t ¼ q�

�
q

mmax

�
�mmax

�
$

(
t ¼ mmax; if t ¼ 0

t ¼ t; if ts0
:

(3)

The fourth step as the final is to calculate the target tissue
protein with ATC code-symptom matrix (T-SM). The indication
information of the drugs from PharmGKB [7] was utilized. T-SM
contains the score weighting of the confidence of the relations
between target tissue proteins and symptoms by the number of
target proteins of the drug potentially treating the symptom. The
elements of the T-SM are determined by

TarTPwAqSymy ¼
Xxmax

x¼1

1
CTx

� TarTPwAqDrx � DrxSymy

n

8>>>>>>>>>><
>>>>>>>>>>:

CTx ¼
Xtmax

t¼1

TartDrx

8>>>>><
>>>>>:

n ¼ 1; if
1
CTx

� TarTPwAqDrx � DrxSymy >0

n ¼ 0; if
1
CTx

� TarTPwAqDrx � DrxSymy ¼ 0

(4)

Where CTx is the total number of target proteins of the drug Drx.
The relations of T-SM were scored by CTx in final step. For

instance, if a drug was exclusively engaged to one target protein,
the highest score was assigned to T-SM. In conclusion, the score
range is assigned from 0 to 1.
Fig. 2. Schematic of the tissue protein e symptom matrix (T-SM) construction. The
relations between each pair of five entities are collected from various databases as
illustrated. The five types of relations between each pair of five entities are integral to
assign V into the corresponding entry in T-SM (see detailed scoring method in Equa-
tion (4)). The score of tissue protein e symptom relation is assigned as 0 by only one
missing relation from five types of the relation (Supplementary1).
3. Results and discussions

3.1. Tissue protein e symptom matrix (T-SM)

The tissue protein-symptom matrix had 5,338 relations. Those
tissue proteins were combined from 83 tissues and 242 drug target
proteins. Symptoms, as the other dimension, totaled 58, including
headache, apnea, diarrhea, and seizures. Drug information had key
roles in identifying the relations of the matrix. As explained in
section 2.2, drug information was included into three of the total
five relations to create a relation of T-SM. The drug informationwas
collected from 210 marketed drugs.

We show an example of the relation of our matrix. In the matrix,
one relation was made between heart beta-1 adrenergic receptor
(tissue protein) and angina pectoris (symptom). To create this
relation, we should check the relation between beta-1 adrenergic
receptor (ADRB1) and brain tissue on the HPA database. And
esmolol has an indication for treating angina pectoris as a
symptom. The target protein of this drug is ADRB1. The target tissue
that was obtained from the ATC code of this drug is the heart.
Eventually, heart ADRB1 – angina pectoris relation means that
ADRB1 in the heart may affect angina pectoris.

When the relations were established, we assigned a lower score
if a drug had many proteins. This score represented the relevance
between target proteins and drug-related symptoms. Thus, in the
case of a drug that has 1 target protein, the relation has a score of
1.0. However, in the case of a drug that has 3 target proteins, the
score of the relation is 0.33. Therefore, the matrix's score repre-
sented multiple proteins of one drug. The correctness of the matrix
can slightly be improved by changing the scoring function.
3.2. Side-effect prediction (comparison with SIDER database)

We predicted unintended effects by off-target tissue effects of
drugs of interest by using the Tissue protein e SymptomMatrix (T-
SM). We investigated known drug side-effects. In this investigation,
we confirmed that there were many cases related to off-target
tissue effects in known side-effects. We obtained drug side-effect
information from SIDER [8]. We extracted predictable drugs on T-
SM from all drugs in SIDER. The extracted predictable drugs mean
that the target proteins of the drugs existed in T-SM. As a result, we
analyzed 449 drugs from SIDER (Supplementary data 4). As
explained in a previous section, our predictionmethod needs target
protein information and ATC code on the first level of drugs of in-
terest, which were obtained from DrugBank. According to our
prediction results, there is a 10.7% (N ¼ 1,177) rate of side-effects as
unintended effects by the off-target tissue effect among analyzed
known side-effects (N ¼ 11,041). For instance, we briefly investi-
gated top-scored three drugs as follows.

Nicotine is a nicotinic acetylcholine receptor (nAChR) agonist.
The nAChR is located in the central nervous system (CNS) and pe-
ripheral nervous systems (PNS). According to [9], nicotine in
various compounds in cigarette smoke is a frequent cause of
coughing by humans and animals in experiments. Pulmonary
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irritant receptors as cough receptor were produced in the lung and
airway. Thus, nicotine could be bonded to these cough receptors.
The bindings eventually cause a cough by transmitted signaling in a
cough center on the medulla through the branches of the vagus
nerves [10]. In conclusion, coughs caused by nicotine could be an
off-target tissue effect.

Galantamine is a ligand that acts as a nicotinic acetylcholine
receptor (nAChR) binder. This compound is indicated to treat
memory impairment through Alzheimer's disease, which affects
the CNS. The researchers report that the side-effect of galantamine
is respiratory myoclonus [11]. In their study, galantamine causes
muscular hyper contractibility and muscle cramps. In this process,
galantamine is the cause of respiratory myoclonus. We expect
cramping of airway muscles caused coughing from galantamine.
The binding of the drug to nAChR in CNS causes an original ther-
apeutic effect, whereas binding to nAChR in the respiratory system
causes off-target tissue effects.

3.3. Drug repositioning (comparison with successful drug
repositioning)

We checked for the existence of off-target tissue effects related
to drug repositioning on successful drug repositioning. We ob-
tained a list of 89 successfully repositioned drugs from a study done
by Liu and coworkers [12]. In examining Liu's study, we investi-
gated 11 drugs of 89 that were filtered by analyzing off-target tis-
sues and filtering drugs in DrugBank. Analyzing those drugs' off-
target tissues confirmed difference between tissues related with
the original drug indications and tissues related with drug reposi-
tioning indications.

The first drug is sildenafil, which is one of the most famous drug
repositioning cases. The originally designed indication of this drug
is hypertension. After drug repositioning, this drug was prescribed
for erectile dysfunction. In the result of an analysis by using our
proposed T-SM, this drug was related with apnea as symptom.
Several tissues that are related with this symptom are brain tissues
including the cerebral cortex, lateral ventricle, and hippocampus
and respiratory system-related tissue including the bronchus and
nasopharynx. Other research groups showed that sildenafil aggra-
vates apnea [13], [14]. One study [14] reported that the mechanism
of aggravation is to affect the autonomic nervous system by sil-
denafil. Therefore, we confirmed that apnea could be affected by
sildenafil.

The second drug is mifepristone, which was generally pre-
scribed for terminating pregnancy as original indication. We pre-
dicted edema as an unintended effect with several tissues such as
skin and lung on T-SM. The drug's repositioning in Liu's list and the
treatment of this drug is Cushing syndrome [15]. Interestingly,
edema, which is related to the drug on T-SM, is the main symptom
of Cushing syndrome [16]. We confirmed that our prediction result
corresponds with previous research.

The third drug is sibutramine. The original indication of this
drug is obesity, and the repositioning indication of this drug is
depression. In our T-SM, brain tissue including soft tissue in pe-
ripheral nerves, cerebral cortex, and cerebellum was related to
psychophysiological disorders. The target protein of this drug is
SLC6A3, which is related to emotion such as depression since
SLC6A3 plays the role of a dopamine transporter [17], [18].

3.4. Tissue protein e symptom matrix (T-SM) assessment by
literature mining

We evaluated the tissue proteine symptom relations of T-SM by
confirming the relations through literature mining. A tissue protein
e symptom relation on T-SM contains two pieces of linkage
information. One of the linkages is tissue-symptom relation, and
the other is protein e symptom relation. We confirmed a conven-
tional co-occurrence of two entities from each relation in one
sentence in the abstracts of published papers [19]. We utilized
107,307,095 sentences from abstracts in PubMed published from
1950 to 2013. We performed this analysis by using Hadoop, which
is a distributed processing system-based framework, to count the
co-occurrences of keywords of interest in approx. 100 million
sentences.

Firstly, we compared our results to random sets to assess
probable relations in T-SM. We generated 10 random sets to secure
statistical significance and utilized average values from the random
sets.

The count of significant tissue-symptom relations in T-SM is 1.66
times larger than the averaged count of the relations of 10 random
sets. In the case of protein-symptom relation, our result was 3.6
times larger than the random sets. Fig.3a) shows the number of
significant relations (p < 0.05), which is calculated by a hypergeo-
metric test [20].

Fig. 3b) shows a comparison of the average values of the Jaccard
index from all relations of our result and 10 random sets. The value
of the Jaccard index means the co-occurrence possibility of two
entities in one sentence [21]. So, we counted the occurrences of
each single entity in our relation from 100 million sentences and
the co-occurrence of two entities in sentences. If a relation has a
higher index than others, then the relation is a biologically mean-
ingful one.

We performed difference analysis between the relations of a
random set and the relations of our matrix. On tissue-symptom
relations, the index of our result was 1.69 times higher than that
of the random set. On protein-symptom relations, our result was
2.04 times higher than for a random set. From the result of this
analysis, we confirmed that our result had meaningful relations.

Next, we compared the number of significant relations and the
average of the Jaccard index between high- and low-scored groups
to assess our score. The first analysis was a comparison of the count
of significant relations. We counted the significant relations with a
p-value that was less than 0.05. Fig. 3c, d) shows the count of sig-
nificant relations in the high-scored 3e30% group and low-scored
3e30% group. The high-scored groups were a minimum of 2
times and a maximum of 10 times larger than the low-scored
groups on all tissue-symptom relations and protein-symptom
relations.

In the second analysis, we assessed our score effectiveness by
comparing the Jaccard index after classifying our relation's top
group and bottom group. Fig. 3e, f) shows the result of the Jaccard
index comparison between top group, which was classified by a T-
SM score 1, and the bottom group, which had the same number of
relations as the top group. In the case of tissue-symptom relations,
the number of relations in the top group, which had a T-SM score 1,
was 126. The number of relations in the bottom groupwas the same
as that of the top group. The Jaccard index of the top group was
5.081 � 10�4. This index was approximately 4 times higher than
that of the bottom group. In the case of protein-symptom relations,
the number of relations in top groupwas 30. The bottom group also
had 30 relations. As a result, the top group's Jaccard index was 22
times larger than that of bottom group. In conclusion, we confirmed
T-SM score effectiveness.

4. Conclusion

In this study, we proposed a prediction method for unintended
effects of the drug by off-target tissue effect. In most cases, a drug's
target proteins were not produced in only one tissue; thus, target
proteins could be located in multiple tissues. It means that the drug
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can affect multiple tissues. The off-target tissue effect occurs when
a drug affects multiple tissues that are not the drug's target tissues,
and these are called off-target tissues. Therefore, our strategy for
predicting these kinds of unintended effects was to find off-target
tissues of drugs of interest and to identify relations between
target proteins in off-target tissues and symptoms.

We used ATC code's first level to find off-target tissues of a drug
of interest. This information represents the drug of interest's target
system. Thus, all tissues in other systems except the target system
can be candidates of the off-target tissue of the drug of interest.
Those candidates are filtered out by protein information in the
tissue. All proteins are not located in all tissues. Therefore, if we
filter out filtered candidates by using target proteins of the drug of
interest, we can obtain off-target tissue that can be affected by the
drug of interest. Tissue protein information can be produced from
off-target tissue and the drug's target protein. In this process, we
produce tissue proteins of the drug of interest.

In this research, we have established a Tissue protein e
Symptom Matrix (T-SM) having relations between tissue proteins
and symptoms. This matrix was calculated from drug - target
protein, drug - target system, drug e indication (symptom), tissue
- protein, and tissue - system. These relations of the matrix were
statistically evaluated by 100 million sentences from abstracts of
previous studies. By using T-SM, we analyzed side-effects from
SIDER [8] and successful drug repositioning from Liu's study [12].
In this study, we predicted unintended effects by off-target tissue
effects. In drug development, if off-target tissue effects are pre-
dicted, this prediction can reduce side-effects. This prediction also
provides a chance to identify new indications of a drug of
interest.
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