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Abstract

Background: Plants are natural products that humans consume in various ways including food and medicine. They
have a long empirical history of treating diseases with relatively few side effects. Based on these strengths, many
studies have been performed to verify the effectiveness of plants in treating diseases. It is crucial to understand the
chemicals contained in plants because these chemicals can regulate activities of proteins that are key factors in causing
diseases. With the accumulation of a large volume of biomedical literature in various databases such as PubMed, it is
possible to automatically extract relationships between plants and chemicals in a large-scale way if we apply a text
mining approach. A cornerstone of achieving this task is a corpus of relationships between plants and chemicals.

Results: In this study, we first constructed a corpus for plant and chemical entities and for the relationships between
them. The corpus contains 267 plant entities, 475 chemical entities, and 1,007 plant–chemical relationships (550 and
457 positive and negative relationships, respectively), which are drawn from 377 sentences in 245 PubMed abstracts.
Inter-annotator agreement scores for the corpus among three annotators were measured. The simple percent
agreement scores for entities and trigger words for the relationships were 99.6 and 94.8 %, respectively, and the overall
kappa score for the classification of positive and negative relationships was 79.8 %. We also developed a rule-based
model to automatically extract such plant–chemical relationships. When we evaluated the rule-based model using
the corpus and randomly selected biomedical articles, overall F-scores of 68.0 and 61.8 % were achieved, respectively.

Conclusion: We expect that the corpus for plant–chemical relationships will be a useful resource for enhancing plant
research. The corpus is available at http://combio.gist.ac.kr/plantchemicalcorpus.

Keywords: Data mining, Text mining, Natural product, Plant, Chemical, Corpus, Natural language processing,
Medicine

Background
Plants are a type of natural product that includes trees,
herbs, edible foods, among others [1]. They are known
to be abundant sources of chemicals with potential thera-
peutic effects [2]. Furthermore, since natural compounds
have been empirically proven to have relatively fewer side
effects and unwanted reactions, plants have been widely
used for thousands of years for the treatment of diverse
diseases and their symptoms [3]. Because of these advan-
tages of plants, many studies have been carried out assess-
ing the effectiveness of plants against diseases [4–6], and
the number of patents related to pharmaceutical natural
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products including plants has continuously increased [7].
To further enhance such efforts, identification of active
substances or chemical compounds in plants is important
becausemany diseases can be relieved or treated by chem-
icals in plants that control the activities of proteins related
to diseases [8, 9].
In this respect, many researchers have tried to construct

public databases containing plant-related information,
especially plant–chemical relationships that represent
which compounds are included in which plants. In gen-
eral, such data were manually collected from books, pub-
lished results, and empirically widely known facts. One
of the most representative databases containing plant–
chemical relationships is the traditional Chinese medicine
(TCM) database@Taiwan [10], which is a 3D small molec-
ular structure database of TCM for virtual screening or
molecular simulation. Although this database currently
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contains 32,364 compounds from 352 different herbs,
animal products, and minerals, which were manually col-
lected from medical texts and scientific publications, only
a small fraction of plants used for medicinal purposes are
included in the database. TCMID [11] is one of the largest
TCM databases providing TCM-related data, including
prescriptions, herbs, herbal ingredients, targets, drugs,
diseases, and relationships between these entities. This
database was assembled by applying text mining meth-
ods to biomedical articles and by integrating other public
databases such as TCM-ID [12], TCM database@Taiwan
[10], HIT [13], STITCH [14], OMIM [15], and DrugBank
[16]. However, even in TCMID, only 8159 plants (referred
to as “herb” in TCMID) are currently provided, which is
relatively small compared to the more than 150,000 plants
defined in the NCBI Taxonomy database [17].
With the continuous accumulation of biomedical arti-

cles, it is possible to extract such plant–chemical rela-
tionships from the literature if proper corpora and text
mining (TM)models are available. Until now, few TM sys-
tems that extract information about chemicals contained
in plants from biomedical articles have been developed
[18]. Jensen et al. [18] proposed an integrated text mining
system based onmanually constructed corpora for analyz-
ing associations between plants and health effects. They
extracted plant–chemical and plant–disease relationships
from biomedical articles using text mining models and
then integrated these two relationships to infer chemical–
disease relationships. Although Jensen et al. [18] has pre-
sented a text mining model to extract plant–chemical
relationship, a corpus used to text-mine the relationship is
not available for public use. Generally, developing a cor-
pus requires significant efforts because several annotators
need tomanually identify entity names, trigger words, and
positive or negative relationships in the articles. Because
most text mining methods require an annotated corpus
to learn models for detecting entity mentions and for
extracting relationships between entities, providing a cor-
pus specific for each domain is important [19]. Therefore,
a plant–chemical corpus with a proper format such as the
BioC XML format [20], which is a common interchange
format widely used in the BioNLP community, is impor-
tant for constructing and evaluating future text mining
systems that extract plant–chemical relationships from
texts.
Our study aims to develop a corpus for plant–chemical

relationships. Here we describe processes for construct-
ing the corpus for two entities of plants and chemicals and
their plant–chemical relationship. In addition, we con-
struct and evaluate a rule-based model, which automati-
cally extracts plant–chemical relationships from articles.
In this work, “plant–chemical relationships” are classified
into two types: (i) a positive relationship means that a
plant contains a chemical, i.e., a chemical is derived from

a plant or a chemical is a part of the molecular struc-
ture of a plant (e.g., actinidin has previously been reported
as the major allergen in kiwifruit); (ii) a negative rela-
tionship means that there is no information specifying
that a plant contains a chemical (e.g., both partheno-
lide and Feverfew extract showed a time-dependency in
their action). The corpus currently consists of 267 plant
entities, 475 chemical entities, and 1,007 plant–chemical
relationships (550 and 457 positive and negative relation-
ships, respectively), which are drawn from 377 sentences
in 245 PubMed abstracts. Our corpus will be useful for
developing new natural language processing (NLP) tools
related to plant–chemical relationships.

Related works
Automatic extraction of semantic relationships between
domain-specific entities from articles requires recogni-
tion of the entity names and syntactic analysis of texts.
For this task, an annotated corpus is necessary. Thus, we
review several corpora and text mining systems related to
chemicals and plants.
The Linnaeus corpus [21] annotates entities related to

species and organisms, including plants, from 100 full-text
articles in the PMC Open Access document data set. It
was built for tools to recognize and to normalize species
names and uses a dictionary-based approach with the
NCBI taxonomy data. The Species corpus [22] remedies
the shortcomings of the Linnaeus corpus, which anno-
tates entities at the full-text level, by annotating entities at
the abstract level to increase variability of species names.
They selected 100 abstracts from journals in the follow-
ing eight categories: bacteriology, botany, entomology,
medicine, mycology, protistology, virology, and zoology.
The corpus currently contains a total of 800 abstracts
with annotated information of species mentions. The cor-
pus was used for the development and evaluation of their
NER tool based on the dictionary provided by the NCBI
taxonomy database [17] for detecting species names.
The CHEMDNER corpus [23] is the most comprehen-

sive data for the development of named entity recogni-
tion (NER) systems in the chemical domain. It contains
a total of 84,355 chemical entity names from 10,000
PubMed abstracts, which were manually annotated by
expert chemistry curators. Each abstract was carefully
selected based on document selection criteria to be rep-
resentative of a wide range of chemistry-related fields.
Each chemical entity names was assigned to one of the
following seven different subtypes: abbreviation, family,
formula, identifier, multiple, systematic, and trivial. The
authors of the corpus also provided detailed guidelines
for identifying entity names with a proper entity class.
The CHEMDNER corpus and the proposed annotation
guidelines, which can be expanded by users, are pub-
licly available so that they can be used for researchers
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developing TM systems in the area of chemicals. How-
ever, the corpus does not contain any relationship
information.
Li et al. [24] performed manual annotation of chemical

and disease entities and relationships between them for
the BioCreative V challenge of recognizing disease name
entities and extracting chemical-induced disease relation-
ship. The corpus in the BioC XML format currently
contains 1,500 PubMed articles with 4,409 chemicals,
5,818 diseases, and 3,116 chemical–disease interactions,
all manually annotated. They used some annotation tools
including PubTator [25] and NER tools such as DNorm
[26] and tmChem [27] to accelerate manual annotation.
The strength of this corpus is that chemical–disease rela-
tionships were extracted from both within a sentence and
across sentence boundaries. Along with [23, 24], there
are several chemical- or drug-related corpora such as
Comparative Toxicogenomics Database corpus [28] and
a corpus contained in the Pharmspresso database [29].
However, there are so far no publicly available corpora for
plant–chemical relationships.
Jensen et al. [18] proposed an integrated text min-

ing approach and chemoinformatics analysis to enhance
understanding of how plant-based diets (fruits, vegeta-
bles, and plant-based beverages) affect human health and
disease prevention. They accumulated 369,549 plant–
phytochemical edges from 23,137 compounds and 15,722
plants and 38,090 plant–disease associations from 7,178
plants and 1,613 human disease phenotypes using a
Naive Bayes classifier. These relationships were extracted
from 21 million PubMed abstracts. Using chemical–
disease relationships inferred from text-mined relation-
ships, they applied chemoinformatics methods to analyze
the molecular-level association of a plant-based diet to
diseases. For the development and evaluation of the text
mining model, an in-house corpus for each relationship
type was also constructed. However, the corpus is not
publicly available.

Methods
Sentence collection and preprocessing
This section describes selection of candidate sentences
before constructing the corpus as shown in Fig. 1. For
this task, we automatically extracted 13,408,621 PubMed
abstracts using PubTator [25], which provides functions
for users to download all PubMed abstracts. Then, the
following preprocessing steps were performed on the col-
lected PubMed abstracts.

1. For pre-annotating plant names in abstracts, a plant
name dictionary was first constructed using public
data from TCMID [11] and NCBI Taxonomy [17].
The dictionary contains 333,686 plant names in
English, Chinese, and Latin and it is available to

download at our corpus web site. After constructing
the dictionary, LingPipe [30], a dictionary-based
exact-matching NER tool, was applied to all collected
abstracts to locate plant names. Chemical names
were annotated using ChemSpot [31], which is a
specialized tool for locating chemical names that
covers trivial names, drugs, abbreviations, and
molecular formulas in texts. For the annotation of
chemical identifiers (IDs), three types of IDs were
used: MeSH, CHEMBL, and CAS Registry Number.

2. Using pre-annotated abstracts from step one, we
collected 540,384 co-occurrence sentences in which
at least one plant name and at least one chemical
name co-occur. The rest of the sentences that do not
contain either a plant name or a chemical name were
excluded.

3. In this step, the main annotator selected, from
540,384 co-occurrence sentences, candidate
sentences to be manually annotated by annotators in
the “Annotating the corpus” step. Of the
co-occurrence sentences, the number showing a
negative relationship was larger than the number
showing a positive relationship. Because positive
relationships are more informative than negative
relationships for showing that a plant contains a
chemical, we constructed balanced numbers of
positive and negative relationships. Hence, the main
annotator randomly selected candidate sentences
from the co-occurrence sentences and manually
classified each sentence into positive or negative
classes, where the numbers of positive and negative
sentences were set to be approximately the same. In
addition, the main annotator validated whether all
the entity mentions and their IDs in sentences were
correctly annotated by NER tools. If contents such as
mentions and IDs were incorrectly annotated, then
the main annotator manually corrected them. When
multiple pairs of plant and chemical names were
found in a candidate sentence, each plant–chemical
pair was classified into a positive or negative
relationship; we call each pair “a corpus unit,”
because more than one relationship can be found in a
candidate sentence. For example, in the third line in
Fig. 2, the candidate sentence has one chemical name
and two plant names, which can produce two
plant–chemical pairs (nitrogen–masson pine and
nitrogen–Pinus massoniana). In this case, two
different candidate corpus units were created from a
single sentence (e.g., the third and fourth line in
Fig. 2). Likewise, we split all candidate sentences into
candidate corpus units.

In contrast with other existing corpora [23, 24], which
annotate relationships at the abstract level, we collected
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PubMed abstracts

(1) Collect PubMed abstracts 
using the PubTator database

(2) Pre-annotate plant and 
chemical names using NER 

tools

Annotated 
PubMed abstracts

- LingPipe
- ChemSpot

(3) Extract co-occurrence 
sentences from annotated 

PubMed abstracts

(4) Select candidate 
sentences and split them 

into corpus units.

<540,384 co-occurrence sentences>

<1043 candidate corpus units from 382 
candidate sentences>

(5) Manually annotate corpus 
units with our guidelines and 

conduct the later annotation to 
harmonize disagreements

Annotators

Guidelines

(6) Convert the corpus to 
the BioC XML format.

1007 gold standard sentences

Fig. 1 The workflow of corpus construction. The corpus was constructed as follows: (i) we collected PubMed abstracts from the PubTator database;
(ii) we applied NER tools, including LingPipe and ChemSpot, to pre-annotate plant and chemical names; (iii) we extracted co-occurrence sentences
that contain at least one plant and chemical name; (iv) we randomly selected candidate sentences, where the numbers of positive and negative
sentences were set to be approximately the same, and also split them into corpus units; (v) we manually annotated candidate corpus units with our
guidelines and also conducted later annotation to harmonize disagreements after annotators finished their annotation tasks; and (vi) we converted
annotated corpus units to the BioC XML format

the relationships at the sentence level using the above
steps because we aimed to expand the diversity of plant
names. In many plant-related abstracts or documents, the
same plant terms appear multiple times, which may affect
the quality of the corpus.
The candidate corpus units from candidate sentences

selected in the sentence collection and preprocessing
step were exported to an Excel format as described
in Fig. 2 and then annotated by annotators accord-
ing to the annotation guidelines described in the next
subsection.

Annotation guidelines
Annotation guidelines are defined to support validating
NER results extracted by NER tools for entity names
and to determine class labels of plant–chemical rela-
tionships during the annotation process. The guidelines

were continuously updated by the main annotator during
the sentence collection and preprocessing step. Because
annotators need to check both NER results and rela-
tionships between two entities, the guidelines were cat-
egorized for the entity annotation and the relationship
annotation.

Guidelines for entity annotation
Entity names in the corpus were first annotated by NER
tools. However, due to inaccuracy of the NER tools,
a fraction of annotated names might not be plants or
chemicals, while actual plants or chemicals might be
missed. Although these mistakes were initially checked
by the main annotator, the other annotators also exam-
ined entities of plants and chemicals based on the
guidelines.
The general guidelines for both entities are as follows:
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Fig. 2 Annotation example in Excel file. The candidate corpus units were exported in Excel format so that annotators could easily annotate the
corpus. The first and second columns represent annotated plant names and IDs contained in each sentence shown in the eleventh column. The
sixth and seventh columns show annotated chemical names and IDs. Annotators should check whether plant and chemical names and their IDs are
correctly annotated. If they are incorrectly annotated, then annotators should write the letter “X” in the fifth, tenth, or both columns. Also, they
should leave comments in the fourth, ninth, or both columns. For the thirteenth column, annotators should determine whether the relationship in
the sentence is positive or negative. If the sentence contains a positive relationship, the weak and strong triggers should be written in the last two
columns

• Annotators only examine a plant and a chemical for
each corpus unit, colored in green and red,
respectively (Fig. 2).

• Because entity names were pre-annotated using NER
tools, annotators should check whether there are
missed or incorrectly annotated names and IDs. IDs
are annotated as “NA” when there are no proper IDs.

• Acronyms should be annotated. When it is not clear
whether an acronym indicates a plant or chemical
name, an annotator annotates an acronym if original
long words are found in the corresponding PubMed
abstract.

For plant names, the guidelines are as follows:

• Taxonomy and TCMID IDs are allowed.
• Plant names whose actual contextual meaning do not

represent plants should not be annotated (e.g.,
cinnamon rat).

• Plant names include specific plants and a family of
plants.

• Unnecessary adjectives and nouns next to plant
names should not be annotated unless they are
included in the plant dictionary (e.g.,mashed potato,
tobacco yield).

For chemical names, the guideline is as follows:

• MeSH, CHEMBL, and CAS IDs are allowed.
• If multiple chemicals are linked together, annotators

should consider them as a single name (e.g., linoleic
and linolenic acids).

• Receptors, transporters, genes, and proteins should
not be annotated as a chemical name (e.g.,
chlorophyll-protein, tricarboxylate transporter,
acetylcholine receptor).

Guidelines for relationship annotation
Annotators need to annotate positive and negative rela-
tionships between plants and chemicals, which are
defined as follows:

• Positive relationship: indicates that a plant contains a
chemical; a chemical is derived from a plant, or the
chemical is part of the molecular structure of the
plant (e.g., Bilobalide (BB) is a sesquiterpenoid
extracted from Ginkgo biloba leaves). In the
example, we find a positive relationship between
Ginkgo biloba (plant) and Bilobalide (chemical).

• Negative relationship: indicates that a corpus unit
does not specify that a plant contains a chemical (e.g.,
The fenamiphos treatment outperformed all
fosthiazate treatments in tobacco yield and root gall
reduction).

The guidelines for the relationship annotation are as
follows:

• Annotators classify a sentence containing a plant and
a chemical into a positive or negative relationship.

• When a chemical name contextually indicates one of
the extraction solvents for plant extracts, annotators
should classify this case as “negative relationship.”

– “[methanol/ethanol/petroleum/chloroform/
isopropanol]chemical extracts of [ginger]plant”

• Metabolism is a process in a set of chemical reactions
that modifies a chemical molecule into another
molecule for storage or for immediate use in another
reaction. According to the definition of metabolism,
if a sentence represents that more than one chemical
is involved in the metabolism process of a plant,
annotators should regard all of them as ingredients of
the plant.

– “[26-Norbrassinolide]chemical, identified as a
metabolite of brassinolide in cultured cells of
the [liverwort, Marchantia
polymorpha]plant, as well as
26-norcastasterone and
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26-nor-6-deoxocastasterone were
synthesized”

• Synthesis is a process that produces an organic
compound in living things. By the definition of
synthesis, if a sentence indicates a synthesis
phenomenon between a plant and a chemical,
annotators should regard this case as an ingredient of
a plant.

– “Synthesis of [O-acylhomoserine
esters]chemical was detected only in [Pisum
sativum L]plant”

• If a sentence explains the positive relationship
between a derived plant from an original plant and a
chemical, annotators should consider that both the
derived plant and the original plant contain the
chemical.

– “[Snapdragon]plant in tomato contains
[anthocyanin]chemical”

– “Snapdragon in [tomato]plant contains
[anthocyanin]chemical”

• Annotators should consider grammatical structures
for deciding relationship types. In the example
sentence below, there are two chemical names
(anthocyanin) and three plant names (tomato,
blackberries, and blueberries). As positive
relationships, the former anthocyanin belongs to
tomato and the latter anthocyanin belongs to
blackberries and blueberries.

– “[Anthocyanin]chemical accumulation in
[tomato]plant and at concentrations
comparable to the anthocyanin levels found in
blackberries and blueberries”

– “Anthocyanin accumulation in tomato and at
concentrations comparable to the
[anthocyanin]chemical levels found in
[blackberries]plant and blueberries”

– “Anthocyanin accumulation in tomato and at
concentrations comparable to the
[anthocyanin]chemical levels found in
blackberries and [blueberries]plant”

• Annotators should annotate both a weak trigger term
and a strong trigger term when a corpus unit has a
positive relationship. The weak trigger can be more
than one term representing a plant–chemical
relationship. On the other hand, the strong trigger
should be a single word that is thought to be the most
representative word explaining a plant–chemical
relationship. In the example of the sentence “The

[calcium]chemical contents were highest in the
[papaya]plant,” “were highest in” and “in” are the weak
trigger term and the strong trigger term, respectively.

Annotating the corpus
This subsection describes the annotation process for
plants, chemicals, and their relationships in all the can-
didate corpus units as shown in Fig. 1. The annotation
task for the corpus was performed by three annotators
with a basic knowledge of biology and traditional Chinese
medicine. The main annotator performed sentence col-
lection and preprocessing, built the annotation guidelines,
and carried out the first annotation of the corpus. Two
assistant annotators participated in the corpus annotation.
The corpus annotation work went through two phases

(phases 1 and 2) because we divided the three annota-
tors into two groups (Group 1: main annotator-assistant
annotator 1, Group 2: main annotator-assistant annota-
tor 2). Based on the guidelines, annotators in Group 1 and
Group 2 manually annotated the different sets of candi-
date corpus units. A corpus constructed through the two
phases is the main corpus in our work and is called “the
primary corpus” hereafter to distinguish it from an addi-
tional corpus developed as described in the next section,
Constructing a rule development corpus and a rule-based
model. The annotation task was conducted by manually
filling in fields of the Excel file as shown in Fig. 2, where
“PlantName,” “P.ID,” and “P.Off” represent plant name, its
identifier, and offset of the plant name in the text, respec-
tively, and “ChemName,” “C.ID,” and “C.Off” represent
chemical name, its identifier, and offset of the chemi-
cal name in the text. Details about other fields are also
explained as follows:

• P.Check: Write the letter “O” when all of the contents
in “PlantName,” “P.ID,” and “P.Off” shown in Fig. 2
are correctly annotated and write the letter “X” when
any of them are incorrectly annotated.

• P.Note: Leave comments about incorrectly annotated
contents in “PlantName,” “P.ID,” and “P.Off.” This
field is optional.

• C.Check: Write the letter “O” when all of the
contents in “ChemName,” “C.ID,” and “C.Off” shown
in Fig. 2 are correctly annotated and write the letter
“X” when any of them are incorrectly annotated.

• C.Note: Leave comments about incorrectly annotated
contents in “ChemName,” “C.ID,” and “C.Off.” This
field is optional.

• Label: Write “POS” or “NEG” according to the
relationship type between a plant, colored in red, and
a chemical, colored in green, in the “Sentence”
column. “POS” indicates that a plant includes a
chemical while “NEG” means that there is no positive
relationship between them.
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• Weak Trigger: Write trigger terms, which represent
the positive relationship between a plant and a
chemical, in as broad a range as possible. For
example, the weak trigger in the first corpus unit in
Fig. 2 can be “were the highest in,” whereas
annotators write “NA” when the “Label” column is
denoted as “NEG.” This field is required only when
the sentence contains a positive relationship between
plant and chemical. Leave this field empty when the
“Label” is annotated as “NEG.”

• Strong Trigger: Unlike the weak trigger, the strong
trigger should be the single word regarding by the
annotators as the most meaningful word that
represents the positive relationship between a plant
and a chemical. For example, the strong trigger in the
first corpus unit in Fig. 2 can be “in,” whereas
annotators write “NA” when the “Label” column is
denoted as “NEG.” This field is required only when
the sentence contains a positive relationship between
plant and chemical. Leave this field empty when the
“Label” is annotated as “NEG.”

After all annotators completed the annotation task, the
main annotator collected annotation results to classify
agreements or disagreements.

Constructing a rule development corpus and a rule-based
model
We developed a rule-based model to extract plant–
chemical relationships from articles. For this task, the
main annotator additionally constructed “a rule develop-
ment corpus,” which is not a duplicate of the primary
corpus described in the Annotating the corpus subsection.
Then, the performance of the rule-basedmodel was tested
against the primary corpus.
To build the rule development corpus, the main anno-

tator performed the same procedures described in the
Sentence collection and preprocessing section and fol-
lowed the annotation guidelines. The rule development
corpus was then used to generate key rules for the model.
To infer general grammar rules, we analyzed dependency
parse trees (Figs. 3), which were obtained by applying the
Stanford Dependency Parser to corpus units in the rule
development corpus.
For example, the tree in Fig. 3 shows the dependency

structure of a passive sentence, “About 450 mg of FB1
was obtained from 800 g cultured corn.” The noun phrase,
“About 450mg of FB1,” is connected with “nsubjpass” type,
which is a passive nominal subject of a passive clause.
The noun phrase, “800 g cultured corn,” is connected with
“pobj” type, which is an object of a preposition. Then, we
can observe that there is a positive relationship between
the noun phrase containing a plant name (“corn”) and the
noun phrase containing a chemical name (“FB1”) through

the trigger, “were obtained from.” Based on such obser-
vations, we define a verbal trigger rule when the trigger
type is a transitive form, which is defined below. For
new inputs that may have a similar dependency structure
with Fig. 3, the rule-based model compares the depen-
dency tree of the new inputs with the verbal trigger rule
by checking the following: (i) if there is a noun phrase
containing a chemical name, which is connected with
“nsubjpass” type; (ii) if there is a noun phrase contain-
ing a plant name, which is connected with “pobj” type
that is an object of a preposition; and (iii) if the root term
“obtained,” which is linked with “nsubjpass” and “prep,”
belongs to one of trigger words defined in our trigger
dictionary.
Based on observing dependency parse trees of the rule

development corpus like the example above, our rule-
based model contains six types of rules: (i) a verbal trigger
rule; (ii) a prepositional trigger rule; (iii) a relative trig-
ger rule; (iv) an apposition trigger rule; (v) a copula trigger
rule; and (vi) a compound noun trigger rule. To clarify the
rules, we constructed rule specifications that explain the
rules in detail (Table 1). Here, we review each of the rule
specifications. Note that NP0 means a noun phrase con-
taining a plant name and NP1 specifies a noun phrase in
which a chemical name appears.

• A verbal trigger rule: As shown in Table 1, the
specification for the verbal trigger has three types
according to the trigger type. The first rule structure
is defined as NP0 Vtr NP1, where the trigger type of
Vtr is a transitive active form such as “contain” and
“include.” The second rule structure consists of NP1
Vtr PP NP0. In this case, the trigger type is a
transitive passive form such as “be contained” and “be
extracted.” Thus, a preposition denoted as “PP” is
required to be located between Vtr and NP0, which is
the constraint. In the third rule structure, Vtr should
be an intransitive verb such as “consist.” Therefore,
any preposition such as “of” should be placed next to
Vtr in the rule structure, NP0 Vtr PP NP1.

• A prepositional trigger rule: The rule structure has
the following two cases: NP0 PPtr NP1 and NP1 PPtr
NP0. Both NP0 and NP1 are allowed to be located on
the left and right side of the trigger. Any preposition
can be placed in PPtr .

• A relative trigger rule: This consists of two types of
specifications according to the trigger type. The first
rule structure is defined as NP1 Rtr PP NP0, where
Rtr is the past participle form such as “isolated” and
“extracted,” and any preposition must be located
between Rtr and NP0. The second rule structure is
described as NP0 Rtr (PP) NP1, where the trigger type
Rtr is a gerund form such as “containing” and
“having.” Note that, in this case, the preposition such
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[root]

obtained – (7)

[nsubjpass] [auxpass] [prep]

[num] [prep]

[quantmod]

mg – (3)

450 – (2) of – (4)

were – (6) from – (8)

About – (1)

[pobj]

FB1 – (5)

[pobj]

corn – (11)

[amod] [amod]

800g – (9) cultured – (10)
Fig. 3 An example of the result of the Stanford Dependency Parser. A tree represents dependency types of each token when applying the Stanford
Dependency Parser to the following sentence: “About 450 mg of FB1 were obtained from 800 g cultured corn.” In the dependency parse tree, words
in square brackets express dependency types of the linked tokens below. For instance, [nsubjpass] means a passive nominal subject, and it is a noun
phrase that is the syntactic subject of a passive clause, “about 450 mg of FB1”. Detailed descriptions of the various dependency types are available in
the Stanford Typed Dependencies manual provided by the Stanford NLP

as “of” should be located between Rtr and NP1 when
the trigger word is the gerund form of the intransitive
verb such as “consisting.”

• An apposition trigger rule: The rule structure has the
following two cases: NP0 APtr NP1 and NP1 APtr
NP0. In this specification, triggers can be any token
whose dependency type is apposition. For example, a
comma between NP0 and NP1 can indicate that NP0
is in apposition with NP1 or vice versa. Furthermore,
we simply set a constraint that a token distance
between NP0 and NP1 is less than ten to avoid the
case that does not represent a relationship between
them.

• A copula trigger rule: The rule structure has the
following two cases: NP0 Ctr NP1 and NP1 Ctr NP0.
In this specification, a trigger “Ctr” can be any verb
regardless of tense if its dependency type is copula.
To reduce false positives, we also set a simple
constraint that there must be a token distance
between NP0 and NP1 of less than ten.

• A compound noun trigger rule: The rule structure is
NP0 CNtr NP1, where the trigger CNtr is a single
white space between NP0 and NP1. For example,
“Aloe emodin” indicates that emodin is one of the
ingredients in aloe.

We manually created a list of trigger words for each
of the six types of rules that express a relationship
between plant and chemical (Table 2). The list of trig-
ger words is also available to download at the corpus web
site.

Overall process for extracting plant–chemical relationships
In Fig. 4, we describe the overall process of the rule-
based model when new texts are given to the system.
When biomedical abstracts are input to the model, for
example, NER tools including ChemSpot [31] and the
LingPipe [30] dictionary chunker are applied to annotate
plant and chemical names in the new texts, respectively.
Then, annotated abstracts are split into sentences using
the LingPipe sentence splitter. Next, the Stanford Depen-
dency Parser is applied to each split sentence to obtain
dependency parse trees (Fig. 3). The dependency parse
trees are then used to check whether the structure of each
of the dependency parse trees matches one of the rules
defined in our model (Table 1) and also whether there is
a trigger word that belongs to our list (Table 2). Finally,
our system predicts a class label that represents the rela-
tionship type (positive or negative) between the identified
plants and chemicals.

Results
By applying the steps in the “Sentence collection and pre
processing” subsection, we accumulated a total of 1,043
candidate corpus units from 382 candidate sentences,
which were obtained from 262 abstracts. The candidate
corpus units were divided into phase 1, containing 642
corpus units, and phase 2, containing 401 corpus units,
and then annotators in Group 1 and Group 2 annotated
the phase 1 units and phase 2 units, respectively. As a
result, 939 corpus units out of 1,043 candidate corpus
units were agreed upon by the annotators. The remaining
104 corpus units were disagreed upon. The annotators
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Table 1 The rule specifications

Rule specification
type

# Rule structure Trigger
word form

Constraint Example (PMID)

Verbal trigger rule 1 NP0 Vtr NP1 Transitive verb
(active from)

NA [Pomegranate derived from the tree Punica granatum]
[contains] [anthocyanins]. (PMID: 15493960)

2 NP1 Vtr PP NP0 Transitive verb
(passive from)

Any preposition between
Vtr and NP0

[About 450mg of FB1] [were obtained] [from] [800g
cultured corn]. (PMID: 23605447)

3 NP0 Vtr PP NP1 Intransitive
verb

Any preposition between
Vtr and NP1

[The volatile oil (2-3 %) of ginger] [consists] [of] mainly
[mono and sesquiterpenes]. (PMID: 17637489)

Preposition
trigger rule

1 NP0 PPtr NP1 Preposition NA [switchgrass] [as] [a sole carbon (C) source]. (PMID:
22354956)

2 NP1 PPtr NP0 Preposition NA [Saponins] [from] [the flowers of Panax notoginseng].
(PMID: 20518315)

Relative
trigger rule

1 NP1 Rtr PP NP0 Past participle
form

Any preposition between
Rtr and NP0

[Anthocyanins] [isolated] [from] [black soybean seed
coat]. (PMID: 16457818)

2 NP0 Rtr (PP)
NP1

Gerund form When the trigger word (Rtr )
is “consisting,” preposition
(PP), “of,” should be followed
by Rtr .

With [thermally degraded Feverfw powder] [containing]
[less contents of parthenolide] no built-up antiserotonergic
responses were observed after onemonth. (PMID: 11603284)

Apposition
trigger rule

1 NP0 APtr NP1 Apposition
form (e.g.
comma)

The token distance between
NP0 and NP1 should be
within ten.

Whereas that in PD is [soybean oil][,] [a source of
unsaturated fatty acids]. (PMID: 19932903

2 NP1 APtr NP0 Apposition
form (e.g.
comma)

The token distance between
NP0 and NP1 should be
within ten.

[Delta9-tetrahydrocannabinol (THC)][,] [themajor active
component ofmarijuana]. (PMID: 9129126)

Copula
trigger rule

1 NP0 Ctr NP1 Be verb form The token distance between
NP0 and NP1 should be
within ten.

[Haematococcus pluvialis] [is] [one of the potent
organisms for production of astaxanthin]. (PMID:
23605447)

2 NP1 Ctr NP0 Be verb form The token distance between
NP0 and NP1 should be
within ten.

[The calcium contents] [were] the highest in [the papaya].
(PMID: 21695915)

Compound noun
trigger rule

1 NP0 CNtr NP1 White space NA To study the protective effect of [panax notoginseng]
[saponins (PNS)]. (PMID: 19317166)

The rule-based model consists of six types of rules. The first column shows the specification name. Each specification has more than one rule structure shown in the third
column. In the rule structure, NP0 means the noun phrase containing a plant name, and NP1 represents the noun phrase in which a chemical name appears. The component
marked with “tr” represents a trigger word described in the fourth column. We also defined several constraints if necessary

discussed these disagreement units in order to reach con-
sensus about the annotation of entities, relations, and
triggers. After the discussion, 1,007 corpus units con-
sisting of 550 positive relationships and 457 negative
relationships were finally obtained. The corpus includes
267 plant names and 475 chemical names. For easy access
and use, we converted the corpus into BioC XML for-
mat (Fig. 5). The corpus provides information about the
gold-standard sentences with annotated plant and chemi-
cal names along with their IDs, locations of entity names,
weak/strong triggers only for positive relationships, and
class labels indicating whether the sentence includes a
positive or negative relationship.

Inter-annotator agreement (IAA)
To assess the accuracy of the corpus, we calculated
the IAA scores using simple percent agreement and

Cohen’s kappa statistic. The simple percent agreement
is calculated as follows: [ agreements/(agreements +
disagreements)]×100 %. Cohen’s kappa is the most fre-
quently used method for measuring the overall agreement
between two annotators, and it is generally regarded as a
more robust measurement than the simple agreement cal-
culation. According to [32], kappa values within the range
61 to 80 % are considered as “substantial” agreement, and
values between 81 and 99 % constitute “almost perfect”
agreement.
Tables 3 and 4 show overall IAA scores for annotations.

In Table 3, using the simple percent agreement, the overall
agreement scores were 99.6 and 94.8 % for the anno-
tated entities and triggers, respectively. Although entity
names for plants and chemicals were pre-annotated using
NER tools and checked by the main annotator, annota-
tors additionally checked whether pre-annotated entity
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Table 2 Trigger words used in the rule-based model. The table shows trigger words selected for the six predefined rules in the model

Trigger type Trigger word form Trigger words

Verbal trigger (Vtr ) Active form contain, contains, contained

have, has, had

involve, involves, involved

incorporate, incorporates, incorporated

possess, possesses, possessed

encompass, encompasses, encompassed

subsume, subsumes, subsumed

comprise, comprises, comprised

embody, embodies, embodied

embrace, embraces, embraced

include, includes, included

cover, covers, covered

compose, composes, composed

originate, originates, originated

produce, produces, produced

derive, derives, derived

accumulate, accumulates, accumulated

release, releases, released

Passive form contained, involved, incorporated, possessed,

encompassed, subsumed, comprised, embodied,

embraced, included, covered, composed, produced,

originated, derived, accumulated, released, isolated,

extracted, separated, detached, split, segregated,

obtained, found, gained, discovered, uncovered, identified

Intransitive form consist, consists

Prepositional trigger (PPtr ) Preposition any token whose dependency type is “prep”

Relative trigger (Rtr ) Past participle form see trigger words in the passive form section above (same as passive form)

Gerund form containing, involving, incorporating, possessing,

encompassing, subsuming, comprising,

embracing, including, covering, composing,

embodying, producing, originating, deriving,

accumulating, releasing, having, consisting

Apposition trigger (APtr ) Apposition form any token whose dependency type is “appos”

Copula trigger (Ctr ) Copula form any token whose dependency type is “cop”

Compound noun trigger (Ctr ) Compound noun form strings that are made up of plant and chemical names together (e.g.
panax ginseng saponin)

names, their IDs, and locations of entity names were cor-
rect in case of any remaining NER errors. When the
annotators agreed on entity names, their IDs, and loca-
tions of entity names, it is considered as an agreement
between annotators. We also checked whether annota-
tors selected the same weak and strong triggers explain-
ing the positive relationship for a given plant–chemical

pair. In addition, we measured the degree of agreements
for annotations of the relationship between plant and
chemical that are positive or negative. When the 1,043
candidate corpus units from 382 candidate sentences
were given to annotators, 939 out of 1043 annotated
relationship labels were agreed upon by the annota-
tors. Using the Cohen’s kappa statistic, the overall IAA
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The extraction for plant-chemical  relationships from abstracts

Specification for rules

Biomedical
abstracts

Verbal trigger rule

Prepositional trigger rule

Relative trigger rule

Apposition trigger rule

Copula trigger rule

Annotated 
abstractsNER tools

(ChemSpot, LingPipe)

Split 
sentencesSentence splitter

(LingPipe)

Dependency 
parse trees

Stanford dependency parser

Selected trigger words

Contains, include, accumulate… 

In, with, from…

Contained, containing…

Dependency type : “appos”

Dependency type : “cop”

Plant-chemical 
relationshipsCheck rules

Compound noun trigger rule Single white space

Rule-based model

Fig. 4 The overall method for extracting plant–chemical relationships from abstracts. To extract plant–chemical relationships from biomedical
articles, our model annotates plant and chemical names in the articles using LingPipe and ChemSpot, respectively. Then, the system splits
annotated abstracts into sentences using the LingPipe sentence splitter to apply the Stanford Dependency Parser, which provides dependency
parse trees for each sentence. Finally, the rule-based model checks the grammar structure of the dependency parse trees and the trigger words in
sentences to extract relationships

score was 79.8 % for the annotated relationship labels,
which can be considered “substantial” agreement accord-
ing to [32]. Table 4 shows the IAA scores for the
case where the same annotation indicates that annota-
tors are in agreement on both entities and relationship
labels for each corpus unit. The overall IAA agreement
score for this case was 78.9 % using the Cohen’s kappa
statistic.

Disagreements
After the annotation tasks, 104 out of 1,043 candidate
corpus units were disagreed upon among the annota-
tors due to the following reasons: subjective interpre-
tation of sentences, misunderstanding of the origin of
ingredients, and disregarding guidelines. To harmonize
opinions among annotators, annotators performed an
additional annotation phase for the disagreed-upon cor-
pus units and specified reasons for their decision. Then,
the main annotator collected only the discrepancies that
were still in disagreement even after the additional anno-
tation phase, and annotators again discussed the dis-
crepancies to reach consensus on the annotation. As a

result, we reached agreement on 68 corpus units from
104 disagreements, and they were added to our plant–
chemical corpus dataset. Three types of major disagree-
ment cases are introduced in the following.

• Example 1. [Allyl isothiocyanate]chemical (AITC) is
[a constituent of]trigger several plants of the family
[Cruciferae]plant that are commonly used as food.

– For the corpus unit in Example 1, one
annotator assigned a negative relationship due
to misinterpreting the meaning of the
sentence. Actually, the sentence includes a
positive relationship between the plant
“Cruciferae” and the chemical “Allyl
isothiocyanate” because they are closely linked
with the trigger “a constituent of.”

• Example 2. 1,3-dichloropropene (1,3-D) was
evaluated as a potential alternative for the widely
used soil fumigant [methyl bromide]chemical (MeBr)
[in]trigger [cucumber (Cucumis sativus Linn.)]plant
crops in China.
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Fig. 5 Example of our corpus units in BioC XML format. The corpus contains information about gold-standard sentences with annotated plant and
chemical names along with their IDs, locations of entity names, trigger terms only for positive relationships, and class labels (positives or negatives).
The corpus data we provide in our web site are currently divided into three types: (i) 939 primary corpus units from annotation phases 1 and 2; (ii) 68
later-annotation corpus units after harmonizing disagreements; and (iii) 102 rule development corpus units

Table 3 Statistics and IAA scores for entities, relation labels, and triggers. The IAA scores for entities and relation labels were calculated
using a simple percent agreement. The IAA score for relation labels was calculated using Cohen’s kappa statistic
Phases Entity # of entities # of agreements

for entities (IAA,
Simple)

Relation # of class
labels

# of agreements
for relation labels
(IAA, Kappa)

Trigger # of
triggers

# of agreements
for triggers (IAA,
Simple)

Phase 1 Plants 642 640 (99.7 %) Plant–chemical 642 570 (77.6 %) Weak 284 275 (96.8 %)

Chemicals 642 636 (99.1 %) Strong 284 271 (95.4 %)

Total 1,284 1276 (99.4 %) Total 568 546 (96.1 %)

Phase 2 Plants 401 401 (100.0 %) Plant–chemical 401 369 (82.8 %) Weak 245 234 (95.5 %)

Chemicals 401 400 (99.8 %) Strong 245 223 (91.0 %)

Total 802 801 (99.9 %) Total 490 457 (93.3 %)

Overall 2,086 2,077 (99.6 %) 1,043 939 (79.8 %) 1,058 1,003 (94.8 %)
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Table 4 Statistics and IAA scores of annotated corpus units. The
number of agreements was counted when annotators agree on
both entities and relation labels. The IAA score in this case was
calculated using the Cohen’s kappa statistic

Phases # of corpus units # of agreements
for both entities
and relations

IAA score, Kappa

Phase 1 642 566 76.5 %

Phase 2 401 368 82.0 %

Overall 1043 934 78.9 %

– For the corpus unit in Example 2, one
annotator interpreted the chemical “methyl
bromide” as one of the ingredients originating
from the plant “cucumber.” However, the
chemical “methyl bromide” is a powerful
pesticide for cultivating cucumber crops, not
an original component of the plant. As such,
misunderstanding of the origin of ingredients
can induce disagreement cases.

• Example 3. The authors studied the changes in
subjective symptoms of menopause in 2016
Hungarian women who had been treated with an
[isopropanol]chemical extract [of]trigger [Cimicifuga
racemosa]plant (black cohosh).

– For the corpus unit in Example 3, one
annotator annotated it as a positive
relationship between the plant “Cimicifuga
racemosa” and the chemical “isopropanol.” In
fact, as described in the guidelines, the
chemical “isopropanol” is used in a common
extraction method for deriving active
ingredients from plants. In this case,
annotations between annotators were
different due to disregarding the guidelines.

Evaluating the rule-basedmodel
We constructed the rule development corpus consisting of
102 corpus units (50 positives and 52 negatives) from 50
sentences, and this corpus is also provided at corpus web-
site. The rule-based model was developed based on the
rule development corpus. We measured the performance
of the rule-based model using 939 corpus units in the pri-
mary corpus. The 939 corpus units that are inputted to the
rule-based model already contain annotation information
for entity names, triggers, and their locations in the texts.
Then, the model performs the following steps for a given
input corpus: (i) apply the Stanford Dependency Parser
to the corpus units to obtain dependency parse trees; (ii)
check whether there are dependency parse trees that are

structurally matched to one of rules defined in the model;
(iii) seek trigger words from the sentence only if depen-
dency parse trees of corpus units are matched to one of
the rules in the previous step; and (iv) if the trigger word
is detected, the system recognizes that there is a positive
relationship between plant and chemical for the corpus.
Finally, we obtained predicted class labels (positive or neg-
ative) of 939 corpus units and compared them with the
originally annotated class labels.
As a result, as shown in Table 5, the rule-based model

achieved an overall F-measure of 68 %. The F-score for
phase 1 was relatively lower than that for phase 2 because
corpus units in phase 1 included more diverse varia-
tions of grammar structures that were not defined in the
rule-based model. Of 939 corpus units, we found that
there were 117 false positives and 188 false negatives.
False negative errors were mostly due to two reasons: (i)
the absence of rules in the model and (ii) the absence
of trigger words in the model. For instance, consider
“tobacco-specific nitrosamines.” In this case, the rule-
based model could not identify it as positive because
our model did not contain a grammar structure that can
represent “plant-specific chemical,” and also, the trigger
word (“-specific”) was not defined. In another exam-
ple, “3-(methylthio)propanal (cooked potato),” a gram-
mar structure that allows a plant–chemical relationship
through brackets was not defined in our model. False
positive errors were mainly attributed to misunderstand-
ing of semantic meaning in the rule-based model. For
example, consider the following phrase: “dichloromethane
extract of Feverfew.” In this case, the model predicted
it as positive by the prepositional trigger rule. However,
dichloromethane is one of the methods for extracting
active components from plants but not an ingredient of
feverfew. For the next example: “ammonia treatment of
rice straw,” the model syntactically predicted it as positive
although the semantic meaning is that ammonia was used
to store rice straw at high moisture content and to kill
weed seeds, indicating that ammonia was not contained
in rice straw.
We performed an additional evaluation of the rule-

based model by applying it to 43 randomly selected
PubMed abstracts. The abstracts contain a total of 59 co-
occurrence sentences containing both plant and chemical
names. Two annotators manually annotated 113 corpus

Table 5 Evaluation of a rule-based text mining model to extract
plant–chemical relationships using the corpus data

Phase Positives Negatives P (%) R (%) F (%)

Phase 1 273 297 66.5 56.0 60.8

Phase 2 239 130 81.0 71.6 76.0

Overall 512 427 73.5 63.3 68.0
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units from 59 co-occurrence sentences. When we applied
the rule-based model to the 113 newly annotated cor-
pus units, it achieved an F-score of 61.81 % (precision =
62.96 %, recall = 60.71 %). This new corpus contains 28
positive and 85 negative relationships. Because the new
corpus was constructed at the abstract level, the ratio of
positive and negative sentences is different from the pri-
mary corpus in our work, where the numbers of positive
and negative relationships are similar. Although it con-
tains more negative relationships, the performance of the
rule-based model is similar to that of phase 1 in the pri-
mary corpus, showing the rule-based model can be used
for a corpus at the abstract level as well as a corpus at the
sentence level.

Discussion
In this study, we constructed a plant–chemical corpus that
can facilitate the development of a relationship extrac-
tion system for collecting plant–chemical relationships
from texts. Thus, we have introduced guidelines for
annotating sentences that represent relationships between
plants and chemicals and also described how we con-
structed the corpus. As a result, we have identified a
total of 1,007 plant–chemical corpus units from 377 gold-
standard sentences that were selected from 245 PubMed
abstracts.
In recent NLP studies, machine learning approaches are

more dominantly employed and frequently perform bet-
ter than rule-based approaches for many NLP tasks [33].
However, the rule-based approach has some advantages;
for instance, it is easy to incorporate domain knowledge
and to fix the cause of errors although it requires extensive
manual labor [34]. In addition, in the process of con-
structing general rules by analyzing sentences, domain
knowledge can be accumulated while machine learning
approaches usually work as a black box. In our work,
with a relatively small number of 102 corpus units in the
rule development corpus, we developed the rule-based
model for extracting plant–chemical relationships. Its per-
formance achieved an F-measure of 68 % on 939 corpus
units. For comparison, we employed the Turku Event
Extraction System (TEES) [35], which is a support vector
machine based text mining system. Although TEES was
originally developed for extracting relationships between
genes and biological events, it can be modified for extract-
ing any binary relationship. We trained TEES with the
same 102 corpus units included in the rule development
corpus. Because TEES requires a development set, the
68 corpus units that are agreed upon among annotators
after resolving the disagreements, was used for the
development set. We applied 939 corpus units in the pri-
mary corpus to the model. This resulted in an F-measure
of 25.7 % on the corpus units, which is poor compared to
the rule-based model. This is because the training set was

small. Hence, we again trained and evaluated the TEES
model using a ten-fold cross validation on a larger set of
1,109 corpus units, including the following: (i) 939 cor-
pus units from the primary corpus; (ii) 68 corpus units
that are agreed upon among annotators after harmonizing
the disagreements; and (iii) 102 rule development corpus
units. Note that 798, 200, and 111 corpus units were used
as training, development, and test sets, respectively, for
the performance measurement in the ten-fold cross val-
idation. As a result, it achieved an F-measure of 77.7 %.
In this respect, it is possible to apply our corpus data
to various machine learning methods to achieve better
performance.

Conclusions
Our future work is to develop and apply a text mining
model to the prediction of plant–chemical relationship in
all the abstracts in PubMed based on the corpus devel-
oped in this work. This is challenging work because we
need to improve NER models and the relationship pre-
diction model by combining the rule-based model and a
machine learning approach. It also requires validating the
final accuracy of plant–chemical relationships predicted
from all abstracts. When this future work is successful,
we expect that we can obtain a large number of plant–
chemical relationships. With the increasing importance
of natural products, knowledge about active compounds
in herbs has become significant. Numerous diseases can
be treated by herb compounds, and various medicines,
cosmetics, and other products have widely used herbal
compounds as their main components. Thus, we believe
that our research provides an important step related to
herbs or natural products in text-mining studies.
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