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Abstract.
We study the anti-ferromagnetic (AF) Ising model and the AF Blume-Capel (BC) model

on the kagomé lattice. Using the Wang-Landau sampling method, we estimate the joint density
functions for both models on the lattice, and we obtain the exact critical magnetic fields at zero
temperature by using the micro-canonical analysis. We also show the patterns of critical lines
for the models from micro-canonical analysis.

1. Introduction
Monte Carlo simulations currently play a major role in statistical physics to study phase
transitions and critical properties. They are well-known in the case of anti-ferromagnetic
(AF) Ising on square lattice. However, the studies of frustrated systems such as triangular
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] and kagomé lattices [19, 20] are also
highlighted by the difficult task to understand the various phenomena. It has been reported that
AF Ising models have three types of conjectured patterns of critical lines [21]. The Blume-Capel
(BC) model [22, 23, 24, 25, 26, 27] has been studied to understand systems such as metamagents,
ternary alloys, and multicomponent fluids. This spin-1 Ising model shows first-order transitions
and second-order transition. In this paper, we study the critical lines and properties of the AF
BC model as well as those of the AF Ising model on the kagomé lattice using the Wang-Landau
sampling method [28, 29, 30, 31] and microcanonical analysis [1].

2. Model and Simulation
The Hamiltonian of the AF Ising model defined on L × L square lattice in two dimensions is
given by

H = −JE − hM, (1)

where E =
∑

〈i,j〉 σiσj and M =
∑

i σi, and σi = ±1. J < 0, and h is an external magnetic field.
The Hamiltonian of the AF BC model is as follows:

H = −JE − hM +DM2, (2)

where D is the crystal field (also called the single-spin anisotropy parameter or the spin impurity
chemical potential), M2 =

∑
i σi

2, and σi = −1, 0, or 1. Here, a negative coupling constant
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(J < 0) defines the AF BC model. The physical origin of the crystal field D arises from the
non-central potentials for the metal atoms coordinated with various ligands in the crystal.

Using the WL algorithm, the 3d random walks are performed in the joint space [32, 33]
A = (E,M) for the AF Ising model and A =

(
E,M,M2

)
for the AF BC model by randomly

changing the states of spins A, where the order parameter M is
∑

i Si and the square of order
parameter M2 is

∑
i Si

2, but the state A associated with each spin configuration is only accepted
with a probability proportional to the reciprocal of the joint density of states g (A) [32, 33, 34, 35].

Therefore, the transition probability from state A to A′ is

p
(
A→ A′) = min

(
g(A)

g(A′)
, 1

)
, (3)

which indicates that if g (A′) ≤ g (A), a state with spin configuration A′ is always accepted, and
that if g (A′) > g (A), it is accepted with the probability g (A) /g (A′).

Figure 1. Magnetization m of (a) AF Ising model with L = 12 and (b) AF BC model with
L = 6 as a function of energy, temperature, and h field on kagomé lattice.

Figure 2. Microcanonical entropy of (a) AF Ising model with L = 12 and (b) AF BC model
with L = 6 as a function of energy and magnetization on kagomé lattice.
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Figure 3. Schematic plot of three types of critical lines of a) AF Ising model with L = 12 and
(b) AF BC model with L = 6 on kagomé lattice.

3. Results and Discussion
The canonical distributions of magnetization m = M/L2 for AF Ising model with linear
dimension L = 12 and AF BC model with L = 6 on on kagomé lattice are shown in figure
1. The line of m as a function of h in the vicinity of T ∼ 0 shows discontinuity for AF BC
model, but it does not show for AF Ising. Figure 2 shows microcanonical entropy S(E,M) of
(a) AF Ising model with L = 12 and (b) AF BC model with L = 6 as a function of energy
and magnetization on kagomé lattice. In Figure 2, the contour plot of the ME diagram has
four vertices. The top-left vertices corresponds to the state of all spins up. The locations of
top-right vertices are as follows: E = 216 and M = 108 for AF Ising model, and E = 54 and
M = 27 for AF BC model. In the contour plot of the ME diagram in Figure 2, the bottom
line corresponds to the frustrated AF ground state without h. The locations of bottom-right
vertices are E = −72 and M = 36 for AF Ising model, and E = −18 and M = 9 for AF BC
model.

We can observe that at zero temperature the term with the minimum Et is dominant, where
Et = (E − hM) is the total energy. The total energy Et can be interpreted as the intersection
on the E axis of the linear line E = hM +Et in the ME diagram. Note that the slope of the line
connecting the top right vertex and the bottom right vertex is six which is the critical magnetic
field hc, where hc = 4 for AF Ising and AF BC models on kagomé lattice.

Figure 3 shows the estimated critical lines of the AF Ising and AF BC models on kagomé
lattice. Although the patterns of critical lines for both models are the same, the transitions in
the vicinity of T ∼ 0 are different from each other. As shown in Figure 3, the critical line of
AF BC model at T ∼ 0 and h = 4 indicates the first order phase transition, whereas that of AF
Ising at T ∼ 0 and h = 4 indicates the second order phase transition.

4. Conclusions
In this preliminary study by using the small kagomé lattices, we study the AF BC and the AF
Ising model on kagomé lattices using the Wang-Landau sampling method and micro-canonical
anaysis. We find critical lines of both models and find the critical magnetic field hc = 4 at
zero temperature. We also find that the critical line of AF BC model at T ∼ 0 indicates the
first order phase transition and that of AF Ising indicates the second order phase transition.
Thus, our future intention is to extend the present investigations to the critical properties and
phenomena of the AF BC model on the kagomé lattice with nonzero D and non-zero h field.
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