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Abstract

MicroRNAs (miRNAs) are responsible for the regulation of target genes involved in various

biological processes, and may play oncogenic or tumor suppressive roles. Many studies

have investigated the relationships between miRNAs and their target genes, using mRNA

and miRNA expression data. However, mRNA expression levels do not necessarily repre-

sent the exact gene expression profiles, since protein translation may be regulated in sev-

eral different ways. Despite this, large-scale protein expression data have been integrated

rarely when predicting gene-miRNA relationships. This study explores two approaches for

the investigation of gene-miRNA relationships by integrating mRNA expression and protein

expression data. First, miRNAs were ranked according to their effects on cancer develop-

ment. We calculated influence scores for each miRNA, based on the number of significant

mRNA-miRNA and protein-miRNA correlations. Furthermore, we constructed modules con-

taining mRNAs, proteins, and miRNAs, in which these three molecular types are highly cor-

related. The regulatory interactions between miRNA and genes in these modules have been

validated based on the direct regulations, indirect regulations, and co-regulations through

transcription factors. We applied our approaches to glioblastomas (GBMs), ranked miRNAs

depending on their effects on GBM, and obtained 52 GBM-related modules. Compared with

the miRNA rankings and modules constructed using only mRNA expression data, the rank-

ings and modules constructed using mRNA and protein expression data were shown to

have better performance. Additionally, we experimentally verified that miR-504, highly

ranked and included in the identified modules, plays a suppressive role in GBM develop-

ment. We demonstrated that the integration of both expression profiles allows a more pre-

cise analysis of gene-miRNA interactions and the identification of a higher number of

cancer-related miRNAs and regulatory mechanisms.
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Introduction

MicroRNAs (miRNAs) are small non-coding RNAs, 20–24 nucleotides long, which can sup-

press target gene expression post-transcriptionally by recognizing the complementary target

sites in the 3’ untranslated region (3’-UTR) of mRNAs [1]. MiRNAs perfectly or partially com-

plement target mRNA sequences, leading to mRNA degradation or the suppression of transla-

tion [2]. Furthermore, the relationships between miRNAs and the target genes are complex,

since multiple miRNAs target multiple mRNAs [3, 4]. MiRNAs regulate mRNAs in diverse

biological pathways, and therefore, miRNA alterations may have consequences on a number

of cellular processes during cancer development and progression: cell apoptosis, proliferation,

cell cycle, migration, and metabolism [5]. The importance of miRNAs for cancer development

and progression has been demonstrated. The elucidation of their oncogenic or tumor suppres-

sive functions and the identification of miRNAs that may represent potential targets for cancer

therapy are, therefore, crucial tasks.

Integrated miRNA and related gene analyses in different types of cancers have been the

focus of many studies [6–12]. To identify potential interactions between miRNAs and genes

and pathways involved in cancer development, many studies used large-scale miRNA and

mRNA expression profile datasets [8–12]. Peng et al. [8] proposed a biclique-based approach

to the construction of miRNA and mRNA modules using their expression profiles. However,

only one or two miRNAs were included in each module, which is not enough to explain com-

plex relationships between miRNAs and genes. Jin and Lee [12] constructed modules demon-

strating the interactions between multiple miRNAs and mRNAs based on bi-clustering

approach and a Gaussian Bayesian network. Although this approach increased our under-

standing of miRNA-gene relationships, mRNA expression profiles alone may not be sufficient

to represent protein translation processes, involving several regulatory steps [13–15]. There-

fore, the determination of relationships between genes and miRNAs using only mRNA expres-

sion data is limited.

Protein expression profiles were investigated in several studies analyzing the interactions

between miRNAs and genes [16–20]. However, most of these studies explored the relation-

ships of only a small number of specific proteins [16–19], and a small number of studies

included large-scale protein expression datasets. Aure et al. [20] used large-scale protein

expression datasets and miRNA expression profiles to demonstrate potential protein-miRNA

interactions in breast cancer. However, protein and miRNA expression levels were separately

clustered, and miRNA and gene expression data were not grouped together, preventing the

identification of complex relationships between these molecules.

In this study, we propose two approaches to the integration of mRNA, miRNA, and pro-

tein expression data, in order to identify cancer-related miRNAs and investigate relation-

ships between miRNAs and the regulatory networks in cancer. We present a new

computational method for the ranking of cancer-related miRNAs based on the number of

identified correlated genes, using both mRNA and protein datasets. Ranking lists con-

structed for each miRNA may advance our understanding of the cancer-related miRNAs.

Additionally, we present a method for the construction of modules containing mRNAs,

miRNAs, and proteins. The modules were constructed based on the SAMBA bi-clustering

algorithm [21] and a Bayesian network model [22]. To construct these modules, we

extended the approach proposed by Jin and Lee [12] by adding a step in which the proteins

are included into mRNA-sample modules prior to the inclusion of miRNAs. The identified

modules represent subgroups of highly correlated mRNAs, miRNAs, and proteins, and may

explain regulatory networks between miRNAs and genes.
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We applied our approaches to the study of glioblastomas (GBMs). We ranked the miRNAs

related to GBM and constructed the modules containing miRNAs, mRNAs, and proteins

involved in GBM-related pathways. We validated the relevance of the ranked miRNAs to

GBM and examined the regulatory relationships in these modules.

Materials and Methods

Materials

GBM datasets. We used mRNA, miRNA, and protein expression datasets of GBM

obtained from The Cancer Genome Atlas (TCGA) [23]. mRNA expression datasets contain-

ing 192 tumor samples and 10 unmatched normal samples, miRNA expression data, con-

taining 192 tumor samples and 10 unmatched normal samples, and protein expression

datasets containing 192 tumor samples were included in this study. Expression profiles were

obtained using Agilent 244K Custom Gene Expression G4502A-07-2, Agilent 8 x 15K

Human miRNA-specific microarray, and M.D. Anderson Reverse Phase Protein Array

Core. From these datasets, the information about 17814 mRNAs, 470 miRNAs, and 203 pro-

teins was collected. Out of 203 proteins, 34% (70/203) represent cancer-related genes,

according to the allOnco database [24–26] and 10% (21/203) represent transcription factors,

according to Transfac Public v7.0 [27] and TransmiR v1.2 [28] databases. We obtained the

information about 92 GBM-related miRNAs from the Human miRNA & Disease Database

v2.0 (HMDD v2.0) [29].

Cell proliferation and miRNA expression profiling. Human GBM cell line T98G was

purchased (Korean Cell Line Bank, South Korea) and maintained in Minimum Essential

Medium (MEM; Lonza, USA) with 10% fetal calf serum (FCS; Gibco, USA) and 1% antibiotic/

antimycotic reagent (Sigma-Aldrich, USA). Cells were incubated in the atmosphere containing

5% CO2 at 37˚C. The cells were detached using trypsin-EDTA (Sigma-Aldrich, USA), centri-

fuged (Vision Scientific, South Korea), and plated in 24-well plates (5×104 cells/well). Using G-

fectin, RNAi transfection reagent (Genolution, South Korea), we transfected the plated cells

with hsa-miR-504-5p mimics or hsa-miR-504-5p inhibitors (Genolution, Korea). The trans-

fected cells were further incubated for 48 or 96 h.

MiRNA expression in the transfected cells at 48 and 96 h was investigated using reverse

transcription polymerase chain reaction (RT-PCR). MicroRNA First-Strand Synthesis and

miRNA Quantitation kits (Takara, USA) were used. Total RNA from the transfected cells was

isolated using TRIzol reagent (Gibco-BRL, USA) and the extracted RNAs were quantified

using Biophotometer (Eppendorf, Germany) at 260 nm. MiRNA expression levels were deter-

mined using Gel Documentation System by AlphaEaseFC (Alpha lnnotech, USA). Addition-

ally, miRNA expression levels in the transfected cells were also determined by quantitative

PCR (qPCR) assay using qPCR kits (Geno-qPCR Kit; Genolution, South Korea). The prolifera-

tion rates of the transfected cells at 48 and 96 h were observed by EZ-cytox and methyl thiazo-

lyl tetrazolium (MTT) assays. We performed Ez-cytox assay with 50 μL of Ez-cytox (Dogenbio,

South Korea), measuring cell proliferation rates with microplate reader (Bio-Rad, USA) at 450

nm. To perform MTT assay, we added 50 μL of MTT reagent (Amresco, USA) to the cells for 4

h. We then added 400ul of DMSO (Amresco, USA) and shacked for 10 min. The cell prolifera-

tion rates were measured by microplate reader (Bio-Rad, USA) at 450 nm. The sequence of the

forward primer of hsa-miR-504-5p used in this study was 50-ACCCTGGTCTGCACTCTATC-

30 and that of the reverse primer was the universal mRQ 30 primer (Takara, USA). The small

nuclear RNA (snRNA) U6 was used for a housekeeping gene and the sequences of the forward

primer and the reverse primer were 50-GGGCAGGAAGAGGGCCTAT-30 and 50-AAAAATA

TGGAACGCTTCACGAATTTG-30, respectively.
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Cancer-related miRNA rankings

MiRNAs were ranked according to their relevance to cancer based on three steps: the building

of the correlation matrices, the determination of significantly correlated gene-miRNA pairs,

and the rankings of miRNAs (Fig 1A). First, we normalized the expression values of each

mRNA using the Z-score. mRNAs showing significantly different expression levels between

tumor and normal samples were identified using t-test (Excel; Microsoft, Redmond, Wash)

with Bonferroni corrected p-values less than 0.05. From these differentially expressed mRNAs,

we selected common genes included in both mRNA and protein expression datasets. To select

common genes from two datasets, we mapped protein names into gene symbols. Afterward,

we calculated two correlation matrices using Spearman’s rank correlation coefficients (SCCs):

miRNA-mRNA expression correlation matrix and miRNA-protein expression matrix. SCCs

were calculated using the cor() function found in the stats R package with a spearman option.

In the second step, we selected significantly correlated gene-miRNA pairs in both correlation

Fig 1. Cancer-related miRNA ranking and the construction of miRNA, mRNA, and protein modules. (A) Cancer-related miRNA ranking steps. In

the first step, correlation matrices between mRNA and miRNA and between protein and miRNA expression levels are calculated. In the second step,

the influence score of each miRNA is calculated using the number of genes with significant absolute correlation values with the miRNAs from both

matrices. In the third step, miRNAs are ranked by influence scores. (B) The construction and the validation of three-factor modules containing miRNAs,

mRNAs, and proteins expression profiles. mRNA expression matrix was normalized by Z-scores, and mRNAs shown to be differentially expressed

between tumor and normal samples were selected. Next, mRNAs and samples were clustered. Following this, using protein-protein interaction data,

the modules were expanded. In the fourth step, candidate proteins, showing high correlation with mRNAs in the modules, were added, followed by the

addition of candidate miRNAs that are highly correlated with mRNAs and proteins. Finally, the three-factor modules were validated.

doi:10.1371/journal.pone.0168412.g001
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matrices. To investigate the significantly correlated pairs, top α% absolute correlation values in

both matrices were calculated to determine the thresholds. In the final step, for each miRNA,

the number of genes significantly correlated with the given miRNA in both mRNA and protein

expression level datasets was determined and this number was designated as the influence

score. The miRNAs were ranked in descending order based on these scores.

The construction of mRNA, protein, and miRNA modules

The construction of modules in this study was based in part on a report by Jin and Lee [12],

including four main sequential steps: the normalization of gene expression data, construction

of mRNA-sample modules, the expansion of modules with additional correlated genes, and

the addition of highly correlated miRNAs into modules (Fig 1B). The difference in our model

is the integration of protein information, before the addition of miRNAs, to the modules.

We first normalized the expression levels of each mRNA and selected mRNAs that are dif-

ferentially expressed between tumor and normal samples. Afterward, we constructed mRNA

modules by applying SAMBA bi-clustering algorithm. As Jin and Lee [12] demonstrated, bi-

clustering algorithm permits the duplication of the elements in the clusters and allows clusters

to share genes with multiple functions. We then filtered out modules containing less than 10

mRNAs. The statistical significance of the modules obtained by bi-clustering was confirmed

by comparing them with randomly generated modules. For each observed module, we con-

structed 1,000 random modules by randomly selecting the same numbers of genes and samples

from the normalized gene expression matrix. For a random module i, we calculated Pearson

correlation coefficients (PCC) for all gene pairs in the random module and averaged the PCC

values, generating randomavg(i). Additionally, we calculated the average PCC for the observed

module, observedavg. Afterward, p-value for the observed module was calculated as
P1;000

i¼1
IðrandomavgðiÞ > observedavgÞ=N, where I is an indicator function. Modules having p-

value� 0.05 were selected. PCCs were calculated using the function cor() of the stats R pack-

age with a pearson option.

Following the previous steps, we expanded these modules by adding genes that highly inter-

act with mRNAs in the modules. Candidate genes were selected from the protein-protein

interaction (PPI) data obtained from Human Protein Reference Database (HPRD) [30]. For

each candidate gene, we calculated the average PCC between the expression of the candidate

gene and mRNAs in the module. Starting with the gene with the highest PCC, the candidate

genes were added to the module until the average PCC of the expanded matrix stopped

increasing.

In the fourth step, we added proteins to the modules. In order to select the candidate pro-

teins, we calculated the average of absolute SCCs between the expressions of mRNAs in a mod-

ule and each protein expression level. We selected the proteins with the average SCC values

within the top β%. Bayesian network model was applied, where a joint distribution between

mRNAs and proteins was calculated as the conditional probability of mRNA given its candi-

date parent proteins. We added the candidate proteins into the modules, starting with the pro-

tein with the highest SCC average value, and calculated the Bayesian information criterion

(BIC) score of the modules at each inclusion, until this score stopped increasing. The Bayesian

network and BIC score were determined using the bnlearn R package [31]. For more details

about the Bayesian network model, refer to Eqs (2) and (3) in [12].

Finally, after the construction of the described modules, miRNAs were included using

Bayesian network model as well. We selected candidate miRNAs shown to be significantly cor-

related with mRNAs and proteins in each module. For each miRNA, we calculated the average

SCC value for miRNA-gene (mRNA and protein) expressions. Candidate miRNAs with the
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average SCC value within the top γ% were selected for each module. We added the candidate

miRNAs to the modules, starting with the miRNA with the highest average SCC value, until

the BIC score of the module no longer increased. We designated the final modules as three-fac-

tor modules, since they contain the information about three types of molecules in each mod-

ule: mRNAs, proteins, and miRNAs.

Validation of highly ranked miRNAs

Three approaches were used in order to validate whether highly ranked miRNAs in our

model are related to the GBM development and progression. We obtained the information

about miRNAs that are known to be related to GBM from HMDD, and compared these miR-

NAs with the miRNAs identified using our approach. The proportion of the previously

known miRNAs was calculated for each ranking. Additionally, for a given ranking used as

the threshold, we defined miRNAs that are ranked higher than the threshold ranking and are

known to be related to GBM in HMDD as true positives. MiRNAs ranked higher than the

threshold, but not known to be related to GBM were defined as false positives, while the ones

ranked lower than the threshold and not known to be related to GBM were defined as false

negatives. We constructed receiver operating characteristic (ROC) curves of true positive

and false positive rates, and then calculated the area under ROC curve (AUC). Furthermore,

a survival analysis was performed to validate whether the expression levels of highly ranked

miRNAs significantly affect the survival time of GBM patients. Clinical data, including sur-

vival information, were obtained from TCGA. Patients were divided into two subgroups

based on the expression levels of the miRNAs: a subgroup containing patients with miRNA

expression levels in the top X%, and another subgroup containing patients with miRNA

expression levels in the bottom X%. The mean survival times were compared using Kaplan-

Maier survival analysis.

Validation of three-factor modules

We performed an enrichment test to validate the functional relevance of mRNAs and proteins

in the modules. A pathway enrichment test was performed using gene ontology (GO) [32],

Kyoto Encyclopedia of Genes and Genomes (KEGG) [33], and BioCarta biological process

database (http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways). Hypergeometric test was

applied to each module and q-values were computed from p-values using Benjamini & Hoch-

berg correction.

To confirm the associations between mRNAs, proteins, and miRNAs in our modules, three

validation steps were performed (Fig 1B). Initially, we investigated whether miRNAs in the

modules directly target the genes included in the same modules. We obtained the experimen-

tally validated target genes for each miRNA from miRTarbase [34], which contains the infor-

mation about positive or negative regulatory effects of miRNAs. Even though it has been

demonstrated that miRNAs generally repress genes, several recent studies revealed that the tar-

get gene expression can be upregulated by miRNAs associated with protein complexes [35–

38]. For each miRNA included in the module, we applied hypergeometric test to determine

common genes between the target genes obtained from miRTarbase and genes included in the

same module with the given miRNA. Additionally, we investigated whether miRNAs indi-

rectly regulate the genes in the same modules via transcription factors (TFs). For each miRNA

in the modules, we constructed a list of experimentally validated target TFs using miRTarbase,

and obtained the information about the experimentally validated target genes of these TFs

from Transfac. For each miRNA in the modules, we compared the genes identified as indi-

rectly regulated by the miRNAs via TFs and the genes included in the same module. By
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applying hypergeometric tests for significance of overlaps, q-values were obtained. Further-

more, we validated whether miRNAs and genes in the same module are co-regulated by TFs.

For each miRNA, we obtained experimentally validated TF data, targeting the miRNA, from

TransmiR. We identified the genes regulated by these TFs using Transfac. For each miRNA,

we identified common genes found in these datasets and in our modules. We applied hyper-

geometric tests to determine the significance of overlaps, and q-values were obtained. Source

codes for implementing our proposed methods are available at http://gcancer.org/IMMP/.

Results

Comparison of mRNA and protein expression levels

We compared mRNA and protein expression levels by determining the correlations between

them. We calculated SCCs of mRNA and protein expressions of 146 common genes. Interest-

ingly, the average SCC of these genes was determined to be 0.243, which suggests differential

mRNA and protein expression levels, although they are positively correlated. In Fig 2A, a his-

togram of SCCs calculated for the common genes is presented, and most SCCs were deter-

mined to be below 0.5. The genes were classified into four groups using the thresholds at 25th,

50th, and 75th percentiles of SCCs, corresponding to 0.090, 0.230, and 0.348, respectively. SCCs

of the first group (G1) were lower than the 25th percentile, of the second group (G2) between

25th and 50th percentile, while SCCs of the third group (G3) were between 50th and 75th, and

the fourth group (G4) over 75th percentile.

Fig 2. Comparison of mRNA and protein expression levels. (A) Correlations between mRNA-protein expression levels are presented. On the x-

axis, correlation coefficients for 146 common genes are shown, while the y-axis presents the frequency of SCCs. Vertical lines present 25th, 50th, and

75th percentiles of the SCCs. (B) On the x-axis, correlation coefficients between mRNAs and miRNAs are presented, and on the y-axis correlation

coefficients between mRNAs and proteins are presented. Each dot represents one gene, and light pink, pink, light blue, and blue colored dots

represent genes in G1, G2, G3, and G4 groups, respectively. Regression lines show relationships between mRNA-miRNA correlations and protein-

miRNA correlations.

doi:10.1371/journal.pone.0168412.g002
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We then compared the correlations between these four gene groups and miRNAs. For each

gene, the average SCCs of mRNA-miRNA and protein-miRNA expression levels are presented

in Fig 2B. Regression lines showing the relationships between mRNA-miRNA and protein-

miRNA correlations demonstrated that gene groups with higher mRNA-protein expression

SCC values show more similar correlation with miRNAs, which can be observed for group G4.

In contrast to this, genes belonging to G1 group, with the largest differences in mRNA and

protein expression levels, have less similar SCCs between mRNA-miRNA and protein-miRNA

expression levels.

Ranking of GBM-related miRNAs

Ranking of miRNAs significantly associated with GBM. We collected the information

about 5890 mRNAs differentially expressed in GBM patients in comparison with the normal

samples, and selected 146 genes for which the protein data can be found. For every gene-

miRNA expression pair, absolute PCCs (APCCs) were obtained from mRNA-miRNA and

protein-miRNA expression correlation matrices, and an influence score for each miRNA

was calculated based on the number of significantly correlated genes in top 1% or 5% APCCs

from the two matrices. Four hundred and seventy miRNAs were ranked by their influence

scores, and two ranking lists, for genes with 1% APCCs (designated as 1% GBA) or 5%

APCCs (5% GBA), were constructed. Table 1 shows top 10% (47/470) of miRNAs from the

two rankings, sorted by the influence scores. In S1 Table, the rankings of all miRNAs are

presented.

miR-21, miR-34a, miR-22, miR-155, and miR-210 were shown to represent the top five sig-

nificantly ranked miRNAs in 5% GBA ranking list. Top five significant miRNAs in the 1%

GBA ranking list were miR-21, miR-223, miR-222, miR-34a, and miR-130b. miR-21 was com-

monly ranked as a miRNA with the most significant association with GBM, and it is generally

overexpressed in these tumors [39, 40]. MiR-155, ranked fourth and eighth in 1% GBA and 5%

GBA ranking lists, respectively, was previously reported to be associated with GBM [41, 42].

Other highly ranked miRNAs, miR-34a and miR-22, were reported as tumor suppressors, with

the decreased expression levels in GBMs [43, 44].

Validation of the miRNA rankings. Out of all 470 ranked miRNAs, 92 were previously

reported to be associated with GBM. We showed that 30.4% (28/92) and 31.5% (29/92) of the

previously known miRNAs are included in top 10% of miRNAs in 1% GBA and 5% GBA rank-

ing lists, respectively (Fig 3A). Moreover, we compared the performance of our approach with

the ranking lists constructed without protein expression data. These ranking lists included a

smaller number of previously known miRNAs in their top 10% rankings, with 21.7% (20/92)

and 22.8% (21/92) of miRNAs included in 1% GBA and 5% GBA ranking lists, respectively (S2

Table). To further validate miRNA rankings, we assessed AUC values of ROC curves from 1%

GBA or 5% GBA rankings. As shown in Fig 3B, our ranking lists, constructed using both pro-

tein and mRNA expression data, are more accurate, with the AUC values of 0.810 and 0.805,

respectively, compared with the lists constructed without protein expression data (AUC values

of 0.769 and 0.792 for 1% GBA and 5% GBA rankings, respectively).

In addition, we investigated whether the top 10% miRNAs are associated with the survival

time of GBM patients. For each miRNA, 209 patients were divided into two groups, with high

or low miRNA expression levels, and their effects on the survival time of the patients were

assessed. We demonstrated that for 38.3% (18/47) and 36.2% (17/47) of miRNAs included in

1% GBA and 5% GBA ranking lists constructed with both mRNA and protein expression data,

a significant association (p< 0.05) with the survival time was found. However, using the 5%

GBA and 1% GBA rankings constructed with mRNA expression data only, 29.8% (14/47) and

Integrating MicroRNA, mRNA, and Protein Expression Data for Identifying Cancer-Related MicroRNAs

PLOS ONE | DOI:10.1371/journal.pone.0168412 January 5, 2017 8 / 22



Table 1. miRNA ranking. Rankings of miRNAs according to 5% ACC and 1% ACC values are shown. MiRNAs are marked with O (not included in HMDD) or

X (included in HMDD) in the third and fifth columns.

Ranking 5% ACC 1% ACC

miRNA HMDD included miRNA HMDD included

1 hsa-miR-21 O hsa-miR-21 O

2 hsa-miR-223 X hsa-miR-34a O

3 hsa-miR-222 O hsa-miR-22 O

4 hsa-miR-34a O hsa-miR-155 O

5 hsa-miR-130b X hsa-miR-210 O

6 hsa-miR-22 O hsa-miR-29c O

7 hsa-miR-128a X hsa-miR-130b X

8 hsa-miR-155 O hsa-miR-106b X

9 hsa-miR-214 X hsa-miR-199a* X

10 hsa-miR-128b X hsa-miR-204 X

11 hsa-miR-210 O hsa-miR-222 O

12 hsa-miR-221 O hsa-miR-223 X

13 hsa-miR-29b X hsa-miR-34b X

14 hsa-miR-34b X hsa-miR-128b X

15 hsa-miR-9* O hsa-miR-137 O

16 hsa-miR-92 X hsa-miR-142-5p O

17 hsa-miR-17-5p O hsa-miR-17-3p O

18 hsa-miR-29a O hsa-miR-18a O

19 hsa-miR-199a X hsa-miR-19b O

20 hsa-miR-199a* X hsa-miR-214 X

21 hsa-miR-19a O hsa-miR-29a O

22 hsa-miR-204 X hsa-miR-29b X

23 hsa-miR-27a X hsa-miR-92 X

24 hsa-miR-29c O hsa-miR-504 O

25 hsa-miR-146b O hsa-miR-128a X

26 hsa-miR-181d O hsa-miR-129 X

27 hsa-miR-18a O hsa-miR-15b X

28 hsa-miR-19b O hsa-miR-17-5p O

29 hsa-miR-23a X hsa-miR-181d O

30 hsa-miR-30a-5p O hsa-miR-193a O

31 hsa-miR-338 X hsa-miR-199a X

32 hsa-miR-93 X hsa-miR-19a O

33 hsa-miR-106b X hsa-miR-25 O

34 hsa-miR-142-3p O hsa-miR-27a X

35 hsa-miR-142-5p O hsa-miR-30c O

36 hsa-miR-17-3p O hsa-miR-33 X

37 hsa-miR-181a* O hsa-miR-124a X

38 hsa-miR-181c O hsa-miR-93 X

39 hsa-miR-30a-3p O hsa-miR-101 O

40 hsa-miR-33 X hsa-miR-106a O

41 hsa-miR-488 X hsa-miR-221 O

42 hsa-miR-99a O hsa-miR-139 O

43 hsa-miR-504 O hsa-miR-30a-5p O

44 hsa-miR-139 O hsa-miR-181c O

45 hsa-miR-25 O hsa-miR-195 O

46 hsa-miR-342 O hsa-miR-9* O

47 hsa-miR-20a O hsa-miR-200c X

doi:10.1371/journal.pone.0168412.t001
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27.7% (13/47) of the top 10% miRNAs were shown to be related to the survival time, respec-

tively (Fig 3C).

In Fig 3D–3F, the survival curves of two groups of patients with high or low expression lev-

els of specific miRNAs are presented. It was shown that the mean survival time of the patients

with high miR-21 expression is shorter than that of the patients with low miR-21 expression,

indicating its oncogenic role (Fig 3D), which was previously reported [39, 40]. This was shown

for miR-155 as well (Fig 3F) [41, 42]. However, the survival of the patients with low miR-34a

was shown to be shorter compared with high-miR-34 expression group (Fig 3E), suggesting a

tumor suppressive role of miR-34a, which is consistent with an earlier study [44]. The p-values

of the comparisons between high- and low-expression patient groups, were 0.025, 0.021, and

0.018 for miR-21, miR-34a, and miR-155, respectively.

Construction and validation of modules

Construction of modules using mRNA, protein, and miRNA data. To construct

mRNA-sample modules, we first selected 5890 mRNAs with significantly different expression

Fig 3. miRNA ranking list validation. (A-C): Comparison between miRNA rankings constructed using mRNA expression data (gray), and those

constructed using both mRNA and protein expression data (blue). (A) The percentage of miRNAs known to be associated with GBM within the top 10%

of the 470 ranked miRNAs. (B) AUC values of the ROC curves of ranking lists. (C) For miRNAs ranked in the top 10%, the percentages of miRNAs

significantly associated with the changes in the survival time of GBM patients (p-value < 0.05) are shown. (D-F) Survival time analysis of GBM patients

with high (pink dotted line) or low (blue solid line) expression levels of miR-21, miR-34a, and miR-155.

doi:10.1371/journal.pone.0168412.g003
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in normal and tumor samples. The SAMBA bi-clustering algorithm was used for the analysis

of mRNAs and samples, allowing the duplication of mRNA and sample information in the

constructed modules with an overlap factor of 0.1, where 0 indicates full duplication while 1

indicates no duplication. Based on this algorithm, 221 modules, in which mRNAs have similar

expression patterns in the samples included in the module, were obtained. Afterward, we fil-

tered out 82 modules with less than 10 mRNAs. The correlation permutation test and a Bon-

ferroni correction were performed 1000 times on 139 modules, and 119 modules with q-values

less than 0.05 were selected. The modules selected from the permutation test demonstrate that

mRNA expression levels are significantly correlated, in contrast with the randomly con-

structed modules. We expanded the modules by adding the PPI information, and 30 genes

were added to each module on average.

Proteins with the average protein-mRNA SCCs in the top 3% in the modules were selected

and a subset of proteins was included in each module after the application of the Bayesian net-

work model. Following this, 71 modules containing mRNAs and proteins were constructed.

We selected miRNAs with average miRNA-mRNA and miRNA-protein SCC values in top 3%

in the modules, and added a miRNA subset into the modules based on the BIC score. Conse-

quently, 52 modules with three types of molecules, mRNAs, proteins, and miRNAs, were con-

structed (S3 Table). On average, each module contained 69 mRNAs, 10 proteins, and six

miRNAs.

Validations of three-factor modules. To confirm the functional relevance of the mRNAs

and proteins in the constructed modules, we performed the pathway enrichment test using

GO, KEGG, and BioCarta data. We showed that at least one pathway is enriched in 84.6% (44/

52) of the constructed modules (S4A–S4C Table). To compare the performance of our mod-

ules, we constructed two-factor modules without proteins (S5 Table) and at least one pathway

was enriched in only 78.7% (59/75) of those modules (S6A–S6C Table).

We validated miRNA-gene relationships, including both mRNA and protein data (Fig 4).

We investigated whether the included miRNAs directly target genes in the same module (S7

Table), and showed (Fig 4A) that at least one miRNA, experimentally shown to target at least

three genes in the corresponding module (q-value< 0.05), was enriched in 11.5% (6/52) of

modules. In contrast to this, in 75 two-factor modules without proteins, at least one miRNA

was enriched in only 6.7% (5/75) of modules (S8 Table).

Furthermore, we validated the indirect, TF-mediated, gene regulation by miRNA. We

obtained the experimentally validated data about TFs regulated by each miRNA, and their tar-

get genes. At least one miRNA that indirectly regulates genes through TFs was found in 65.4%

(34/52) of modules (Fig 4B; S9 Table). In the case of two-factor modules without proteins,

44.0% (33/75) of modules were shown to contain at least one miRNA indirectly regulating

genes included in the same module (S10 Table).

TF-mediated co-regulation of miRNAs and genes in the same module was validated as well.

For each miRNA, we obtained the experimentally validated data about TFs regulating miRNAs

and genes. At least one miRNA co-regulated by TFs together with the genes was found in

21.2% (11/52) of modules (Fig 4C; S11 Table). Only 8.0% (6/75) of two-factor modules without

proteins were shown to contain miRNAs and mRNAs co-regulated by TFs (S12 Table).

A network, included in module 22, containing miRNA, mRNA, and protein interactions

and showing some of the enriched pathways is presented in Fig 5. Eleven genes (FBXO5,

CDK2, TTK, CDC25C, NUSAP1, BUB1, MAD2L1, NEK2, CCNA2, BUB1B, and BIRC5) were

shown to be enriched in mitosis regulation pathway, and three of them (CHEK1, CDC25C,

and CDK2) were enriched in RB pathway as well, which plays a central role in the regulation

of cancer cell proliferation [45]. Eight genes (CCNB2, CHEK1, RRM2, PPM1D, CCNE2,

CDK2, CCNE1, and E2F1) were enriched in p53 signaling pathway, very important for cancer
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development and progression as well [46]. In this module, E2F1-mediated indirect regulations

and two feedback loops between miR-106b and E2F1 and between miR-93 and E2F1 can be

observed. Interestingly, these two feedback loops were previously identified as well [47].

A network of miRNAs, mRNAs, and proteins in module 50, together with the enriched

pathways is presented in Fig 6. Nine genes (SYT1, SYT5, KIF5A, HTR2A, CPLX1, DRD1,

GRM7, SYN2, and GAD2) were enriched in synaptic transmission pathway and transmission

pathway of nerve impulse. Three genes (SYT1, CPLX2, and CPLX1) were enriched in exocyto-

sis and five genes (CCKBR, GABRA1, MCHR2, GRIN3A, and GABRA4) in neuroactive ligand

receptor interaction pathway, sharing two common genes with GABA pathway (DNM1,

GABRA1, and GABRA4), which plays a significant role in glioma cell growth and proliferation

in GBM [48, 49]. Furthermore, four genes (MAP2K1, EIF4EBP1, MAPK8, and RPS6KB1)

were enriched in ERBB signaling pathway, required for GBM stem cell proliferation [50, 51],

and three genes (MAP2K1, MAPK8, and RPS6KB1) were enriched in NFAT pathway, promot-

ing tumor angiogenesis [52, 53]. Module 50 contains directly and indirectly miRNA-targeted

genes, and genes and miRNAs co-regulated by TFs. The indirect regulation and co-regulation

patterns in module 22 are presented in Fig 7A and 7B, while these regulation patterns in mod-

ule 50 are presented in Fig 7C.

Prediction of miR-504 as a tumor suppressor

We further aimed to experimentally demonstrate the role of highly ranked miRNAs in our

GBM-related ranking list. Among the highly ranked miRNAs, we selected miRNAs whose role

in GBM has not been elucidated yet. Afterward, we examined whether the expression levels of

Fig 4. Comparison between three-factor and two-factor modules. (A-C) The percentage of modules containing the information about regulatory

relationships. (A) Direct miRNA-gene regulations were analyzed using experimentally obtained data. (B) Indirect regulation was analyzed using

experimentally validated miRNA-targeted TFs and genes. (C) Co-regulation was analyzed using the experimentally obtained data, showing TFs

targeting miRNAs and genes included in the modules.

doi:10.1371/journal.pone.0168412.g004
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these miRNAs are related to the survival of the patients. MiR-504 was ranked 43rd and 24th of

470 miRNAs included in the 5% GBA and 1% GBA ranking lists, respectively, and in our sur-

vival analysis it was predicted as a tumor suppressor. However, the role of miR-504 in tumor

development and progression has been controversial and it remains unclear [54–57]. In order

to elucidate the role of this miRNA further, we experimentally demonstrated that miR-504 acts

as a tumor suppressor in GBM.

We transfected GBM cells with miR-504 and the inhibitor of miR-504, and measured the

proliferation rates and viability of the transfected cells in two independent experiments. First,

we confirmed that miR-504 is highly expressed in the transfected cells while miR-504 inhibitor

transfection represses the miR-504 expression in comparison with the control cells, using

RT-PCR (Fig 8A) at 48 and 96 h after the transfection. Following this, miR-504 expression in

GBM cells transfected with miR-504 inhibitor was shown to decrease 56.93% on average in

comparison with that in the control cells when measured using qPCR (Fig 8B). The prolifera-

tion rates and viability of the transfected cells are presented in Fig 8C and 8D, and the obtained

results show that the viability and the proliferation rate of GBM cells transfected with miR-504

are significantly decreased compared with those of the cells treated with the miR-504 inhibitor.

Furthermore, we confirmed the effects of increased miR-504 expression levels on the survival

of GBM patients (p=0.002; Fig 8E).

Fig 5. Module 22 network of miRNA, mRNA, and protein interactions. Pink triangles represent miRNAs previously shown to be associated with

GBM (HMDD data), while yellow triangles represent the remaining miRNAs that are not included in HMDD or included in HMDD but not shown to be

related to GBM. Gray squares represent mRNAs, while blue squares represent TFs. Green circles represent proteins. Pink or blue solid lines represent

the negative or positive correlations between miRNAs and mRNAs or proteins, within top or bottom 20%, respectively, of all correlations determined for

each miRNA. Dashed lines represent indirect miRNA–TF and TF-mRNA or protein regulations. Lines with contiguous arrows represent the co-

regulatory relationships between TFs-mRNAs or proteins and TFs-miRNAs. Green lines indicate that these mRNAs or proteins are related to the same

pathways.

doi:10.1371/journal.pone.0168412.g005
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Discussion

Most studies attempting to predict potential miRNA-gene interactions have used mRNA

expression profiles [8–12]. However, mRNA and protein expression profiles of the same genes

can differ, as a consequence of different regulatory processes, such as RNA secondary struc-

ture, the effects of the regulatory proteins, and codon bias [13–15], which can affect the levels

of translation. Therefore, the analyses performed using only mRNA expression data have cer-

tain limitations. We confirmed that genes can have different mRNA and protein expression

levels, which showed low correlation, with the average SCC of about 0.2. Furthermore, we con-

firmed that miRNA-gene correlation analyses can be affected by the differences between these

two types of data. These results demonstrate the relevance of using protein expression data for

gene analyses. We observed that gene expression is regulated at translational level, which is

obvious when mRNA-miRNA and protein-miRNA correlations are determined. The results of

our study suggest that the rankings generated using both protein and mRNA expression data

show better performance in the identification of survival-related miRNAs than the ones gener-

ated without protein data. Our results further demonstrated that the three-factor modules

Fig 6. miRNA, mRNA, and protein network in module 50. Pink triangles represent miRNAs previously shown to be associated with GBM (HMDD

data), while yellow triangles represent the remaining miRNAs that are not included in HMDD or included in HMDD but not shown to be related to GBM.

Gray squares represent mRNAs, while blue squares represent TFs. Green circles represent proteins. Pink or blue solid lines represent the negative or

positive correlations between miRNAs and mRNAs or proteins, within top or bottom 20%, respectively, of all correlations determined for each miRNA.

Dashed lines represent indirect miRNA–TF and TF-mRNA or protein regulations. Green lines indicate that these mRNAs or proteins are related to the

same pathways.

doi:10.1371/journal.pone.0168412.g006
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including proteins present the direct miRNA regulation of genes better, in comparison with

the two-factor modules, which was also observed when TF-mediated indirect regulation and

co-regulated processes were examined. This indicates the importance of using both mRNA

and protein expression profiles for the identification of cancer-related miRNAs.

Among the miRNAs experimentally shown to be involved in indirect regulations and co-

regulations in the modules, miR-106b was the most frequently identified miRNA. Addition-

ally, miR-106b was shown to be highly ranked (33th and 8th, respectively) in 5% GBA and 1%

GBA ranking lists. miR-106b was shown to be significantly related to lower survival rates of

GBM patients (p = 0.010; Fig 9A). In the modules containing miR-106b, we found that miR-

106b and E2F1 are mutually regulated, suggesting a feedback loop between miR-106b and

E2F1, which was reported in a previous study as well [47]. Among genes predicted to be indi-

rectly targeted by miR-106b via E2F1, FOXM1 and MELK were the most frequently identified

genes in several modules. Several previous studies showed that E2F1 promotes the expression

of FOXM1 [58], while FOXM1 and MELK form a protein complex, and FOXM1 is activated

by phosphorylation [47]. The relationships between miR-106b and MELK or FOXM1 have

not been investigated previously, and therefore we hypothesized that this interaction is based

on the predicted indirect regulation through E2F1, as shown in Fig 9B. To support the hypoth-

esis, we examined their expression levels, and demonstrated a positive correlation between

miR-106b, E2F1, FOXM1, and MELK expression levels (Fig 9C). Since MELK-dependent

Fig 7. Heatmaps showing the regulation patterns of TF, miRNA, and selected gene and expression levels of the molecules included in

modules 22 and 50. (A-C) Red and green boxes show relatively high or low expression levels, respectively, of miRNAs, TFs, mRNAs, and proteins

included in these modules, in each sample. The proteins are marked with dots on the left. (A-B) Heatmaps showing indirect TF-mediated regulation of

genes, and co-regulation of miRNAs and genes by TFs, in module 22. (C) Heatmaps showing indirect TF-mediated gene regulation in module 50.

doi:10.1371/journal.pone.0168412.g007
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FOXM1 phosphorylation is necessary for GBM cell proliferation [59], these results may sug-

gest potential therapeutic approaches targeting miR-106b.

In this study, we experimentally confirmed that miR-504 plays a role of a tumor suppressor

in GBM. To elucidate the mechanisms underlying miR-504 effects, we identified genes with

the expression levels highly related to miR-504 levels. From 146 genes obtained using mRNA

and protein expression datasets, we showed that the expression levels of EGFR and TFRC were

Fig 8. Effects of miR-504 on GBM cell viability and proliferation. (A) Expression levels of miR-504 in non-transfected and transfected cells by miR-

504 or miR-504 inhibitor, determined 48 and 96 h after the transfection by RT-PCR. NC, negative control cells not transfected with miR-504; NC-i,

negative control cells transfected with miR-504 but without miR-504 inhibitor transfection. The averages of three indented experiments performed in

triplicates are presented, with the error bars representing standard errors. Images showing the expression of miR-504 are presented under the plots. p-

values were calculated using a two-tailed t-test. (B) MiR-504 expression levels following the transfection of cells with miR-504 or miR-504 inhibitor

determined by q-PCR. The averages of three indented experiments performed in triplicates are presented, with the error bars representing standard

errors. The graphs on the left side show the results from one of the experiments. The number of relative fluorescence units (RFU) according to the

number of amplification cycles is presented with the thresholds. Red line shows the results of miR-504 transfected cells while the blue line shows the

results of miR-504 inhibitor transfected cells. Negative controls are presented with black lines. The number of cycles that meets the amplification

threshold for each case is presented. Bar graphs on the right side shows a relative expression level of miR-504 in the cells that are transfected with

miR-504 or miR-504 inhibitor compared with that in the negative control cells without transfection. P-values were calculated using a two-tailed t-test.

(C-D) Viability and proliferation rates of GBM cells transfected with miR-504 or miR-504 inhibitor were determined at 48 and 96 h after the transfection.

(C) The results of three independent EZ-cytox assays performed in triplicate were averaged, and error bars representing standard error are shown. P-

values were calculated by using two-tailed t-tests. (D) The results of three independent MTT assays performed in triplicate were averaged, and error

bars representing standard error are shown. P-values were calculated by using two-tailed t-tests. (E) The analysis of miR-504 effects on the survival

time of GBM patients. Red dotted lines and blue solid lines show overall survival time of GBM patients with high and low miR-504 expression levels,

respectively.

doi:10.1371/journal.pone.0168412.g008
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Fig 9. miR-106b-regulated genes in GBM. (A) Survival time of GBM patients depending on miR-106b expression. Red dotted and blue solid lines

represent GBM patients with high and low miR-106b expression levels, respectively. (B) The hypothesized model of miR-106b-induced cell cycle

progression, through the regulation of E2F1, MELK, and FOXM1. Arrows indicate experimentally validated direct or indirect regulations. (C) Heatmap

of miR-106b, E2F1, FOXM1, and MELK expression levels. Red and green indicate high and low expression levels, respectively.

doi:10.1371/journal.pone.0168412.g009

Fig 10. Prediction of miR-504 as a tumor suppressor. (A) The model hypothesizing the mechanisms underlying miR-504 effect on GBM cell

proliferation. (B) Heatmap showing the expression levels of miR-504, MYCBP, MYC, and TFRC. Red and green indicate high and low expression,

respectively.

doi:10.1371/journal.pone.0168412.g010
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the ones that showed the highest negative correlations with miR-504 expression levels, and

they were included in the same module. However, the relationship between miR-504 and

TFRC has not been reported previously. Therefore, we further investigated TFRC, a transferrin

receptor controlling the iron uptake in cells, which is required for the proliferation of GBM

cells [60, 61]. It was experimentally demonstrated that miR-504 targets MYCBP [62], stimulat-

ing c-MYC transcription activity on E-box [63, 64], and TFRC is regulated by c-MYC [65].

This indicates that a potential indirect miR-504 regulation of TFRC, which is mediated by

MYCBP and c-MYC, and the expression of these genes is significantly correlated with miR-

504 expression. Additionally, they were ranked in top 5% (7th/146) and 14% (21th/146), respec-

tively. The hypothesized interactions between these molecules are presented in Fig 10A. We

examined the expression changes of these molecules, and heatmap presented in Fig 10B dem-

onstrates negative correlation between miR-504 expression and the expression of these genes.

In future, our approach can be expanded to other cancer types in order to identify cancer-

related miRNAs or genes. These analyses can be used for the determination of candidate mark-

ers for cancer therapy, following the additional validation by other methods.
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27. Matys V, Fricke E, Geffers R, Gößling E, Haubrock M, Hehl R, et al. TRANSFAC®: transcriptional regu-

lation, from patterns to profiles. Nucleic Acids Res. 2003 31(1):374–8. doi: 10.1093/nar/gkg108 PMID:

12520026

28. Wang J, Lu M, Qiu C, Cui Q. TransmiR: a transcription factor-microRNA regulation database. Nucleic

Acids Res. 2010 38(Database issue):D119–22. doi: 10.1093/nar/gkp803 PMID: 19786497

29. Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, et al. An analysis of human microrna and disease

associations. PLoS One. 2008 3(10):e3420. doi: 10.1371/journal.pone.0003420 PMID: 18923704

30. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, et al. Human

protein reference database–2009 update. Nucleic Acids Res. 2009 37(Database issue):D767–72. doi:

10.1093/nar/gkn892 PMID: 18988627

31. Scutari M. Learning Bayesian networks with the bnlearn R package. J Stat Softw. 2010 35(3):1–22.

doi: 10.18637/jss.v035.i03

32. Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unifica-

tion of biology. Nat Genet. 2000 25(1):25–9. doi: 10.1038/75556 PMID: 10802651

33. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. Kegg for integration and interpretation of large-

scale molecular data sets. Nucleic Acids Res. 2012 40(Database issue):D109–14. doi: 10.1093/nar/

gkr988 PMID: 22080510

34. Hsu SD, Tseng YT, Shrestha S, Lin YL, Khaleel A, Chou CH, et al. Mirtarbase update 2014: an informa-

tion resource for experimentally validated mirna-target interactions. Nucleic Acids Res. 2014 42(Data-

base issue):D78–85. doi: 10.1093/nar/gkt1266 PMID: 24304892

35. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate

translation. Science. 2007 318(5858):1931–4. doi: 10.1126/science.1149460 PMID: 18048652

36. Vasudevan S. Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Rev RNA. 2012 3

(3):311–30. doi: 10.1002/wrna.121 PMID: 22072587

37. Da Sacco L, Masotti A. Recent insights and novel bioinformatics tools to understand the role of micro-

RNAs binding to 5’ untranslated region. Int J Mol Sci. 2013 14(1):480–95. doi: 10.3390/ijms14010480

38. Rusk N. When microRNAs activate translation. Nature Methods. 2008 5(2):122–3. doi: 10.1038/

nmeth0208-122a

39. Yang CH, Yue J, Pfeffer SR, Fan M, Paulus E, Hosni-Ahmed A, et al. MicroRNA-21 promotes glioblas-

toma tumorigenesis by down-regulating insulin-like growth factor-binding protein-3 (IGFBP3). J Biol

Chem. 2014 289(36):25079–87. doi: 10.1074/jbc.M114.593863 PMID: 25059666

40. Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, et al. MicroRNA 21 promotes gli-

oma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol. 2008 28(17):5369–80.

doi: 10.1128/MCB.00479-08 PMID: 18591254

41. D’Urso PI, D’Urso OF, Storelli C, Mallardo M, Gianfreda CD, Montinaro A, et al. miR-155 is up-regulated

in primary and secondary glioblastoma and promotes tumour growth by inhibiting GABA receptors. Int J

Oncol. 2012 41(1):228–34. PMID: 22470130

42. Zhou J, Wang W, Gao Z, Peng X, Chen X, Chen W, et al. MicroRNA-155 promotes glioma cell prolifera-

tion via the regulation of MXI1. PLoS One. 2013 8(12):e83055. doi: 10.1371/journal.pone.0083055

PMID: 24376632

43. Chen H, Lu Q, Fei X, Shen L, Jiang D, Dai D. miR-22 inhibits the proliferation, motility, and invasion of

human glioblastoma cells by directly targeting SIRT1. Tumour Biol. 2016 37(5):6761–8. doi: 10.1007/

s13277-015-4575-8 PMID: 26662303

44. Yin D, Ogawa S, Kawamata N, Leiter A, Ham M, Li D, et al. miR-34a functions as a tumor suppressor

modulating EGFR in glioblastoma multiforme. Oncogene. 2013 32(9):1155–63. doi: 10.1038/onc.2012.

132 PMID: 22580610

45. Mao H, Lebrun DG, Yang J, Zhu VF, Li M. Deregulated signaling pathways in glioblastoma multiforme:

molecular mechanisms and therapeutic targets. Cancer Invest. 2012 30(1): 48–56. doi: 10.3109/

07357907.2011.630050 PMID: 22236189

Integrating MicroRNA, mRNA, and Protein Expression Data for Identifying Cancer-Related MicroRNAs

PLOS ONE | DOI:10.1371/journal.pone.0168412 January 5, 2017 21 / 22

http://dx.doi.org/10.1093/nar/28.1.349
http://dx.doi.org/10.1093/nar/28.1.349
http://www.ncbi.nlm.nih.gov/pubmed/10592271
http://dx.doi.org/10.1126/science.1133427
http://dx.doi.org/10.1126/science.1133427
http://www.ncbi.nlm.nih.gov/pubmed/16959974
http://dx.doi.org/10.1126/science.1235122
http://www.ncbi.nlm.nih.gov/pubmed/23539594
http://dx.doi.org/10.1093/nar/gkg108
http://www.ncbi.nlm.nih.gov/pubmed/12520026
http://dx.doi.org/10.1093/nar/gkp803
http://www.ncbi.nlm.nih.gov/pubmed/19786497
http://dx.doi.org/10.1371/journal.pone.0003420
http://www.ncbi.nlm.nih.gov/pubmed/18923704
http://dx.doi.org/10.1093/nar/gkn892
http://www.ncbi.nlm.nih.gov/pubmed/18988627
http://dx.doi.org/10.18637/jss.v035.i03
http://dx.doi.org/10.1038/75556
http://www.ncbi.nlm.nih.gov/pubmed/10802651
http://dx.doi.org/10.1093/nar/gkr988
http://dx.doi.org/10.1093/nar/gkr988
http://www.ncbi.nlm.nih.gov/pubmed/22080510
http://dx.doi.org/10.1093/nar/gkt1266
http://www.ncbi.nlm.nih.gov/pubmed/24304892
http://dx.doi.org/10.1126/science.1149460
http://www.ncbi.nlm.nih.gov/pubmed/18048652
http://dx.doi.org/10.1002/wrna.121
http://www.ncbi.nlm.nih.gov/pubmed/22072587
http://dx.doi.org/10.3390/ijms14010480
http://dx.doi.org/10.1038/nmeth0208-122a
http://dx.doi.org/10.1038/nmeth0208-122a
http://dx.doi.org/10.1074/jbc.M114.593863
http://www.ncbi.nlm.nih.gov/pubmed/25059666
http://dx.doi.org/10.1128/MCB.00479-08
http://www.ncbi.nlm.nih.gov/pubmed/18591254
http://www.ncbi.nlm.nih.gov/pubmed/22470130
http://dx.doi.org/10.1371/journal.pone.0083055
http://www.ncbi.nlm.nih.gov/pubmed/24376632
http://dx.doi.org/10.1007/s13277-015-4575-8
http://dx.doi.org/10.1007/s13277-015-4575-8
http://www.ncbi.nlm.nih.gov/pubmed/26662303
http://dx.doi.org/10.1038/onc.2012.132
http://dx.doi.org/10.1038/onc.2012.132
http://www.ncbi.nlm.nih.gov/pubmed/22580610
http://dx.doi.org/10.3109/07357907.2011.630050
http://dx.doi.org/10.3109/07357907.2011.630050
http://www.ncbi.nlm.nih.gov/pubmed/22236189


46. Suh SS, Yoo JY, Nuovo GJ, Jeon YJ, Kim S, Lee TJ, et al. MicroRNAs/TP53 feedback circuitry in glio-

blastoma multiforme. Proc Natl Acad Sci U S A. 2012 109(14):5316–21. doi: 10.1073/pnas.

1202465109 PMID: 22431589

47. Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, et al. E2F1-regulated micro-

RNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell. 2008

13(3):272–86. doi: 10.1016/j.ccr.2008.02.013 PMID: 18328430

48. Young SZ, Bordey A. GABA’s control of stem and cancer cell proliferation in adult neural and peripheral

niches. Physiology (Bethesda). 2009 24: 171–85. doi: 10.1152/physiol.00002.2009

49. Labrakakis C, Patt S, Hartmann J, Kettenmann H. Functional GABA(A) receptors on human glioma

cells. Eur J Neurosci. 1998 10(1):231–8. doi: 10.1046/j.1460-9568.1998.00036.x PMID: 9753131

50. Berezowska S, Schlegel J. Targeting ErbB receptors in high-grade glioma. Curr Pharm Des. 2011 17

(23):2468–87. doi: 10.2174/138161211797249233 PMID: 21827413

51. Clark PA, Iida M, Treisman DM, Kalluri H, Ezhilan S, Zorniak M, et al. Activation of multiple ERBB family

receptors mediates glioblastoma cancer stem-like cell resistance to EGFR-targeted inhibition. Neopla-

sia. 2012 14(5):420–8. doi: 10.1596/neo.12432 PMID: 22745588

52. Tie X, Han S, Meng L, Wang Y, Wu A. NFAT1 is highly expressed in, and regulates the invasion of, glio-

blastoma multiforme cells. PLoS One. 2013 8(6):e66008. doi: 10.1371/journal.pone.0066008 PMID:

23762456

53. Wu A, Ericson K, Chao W, Low WC. NFAT and AP1 are essential for the expression of a glioblastoma

multiforme related IL-13Ra2 transcript. Cell Oncol. 2010 32(5–6):313–29. doi: 10.3233/CLO-2010-

0524 PMID: 20448330

54. Feng Z, Zhang C, Wu R, Hu W. Tumor suppressor p53 meets microRNAs. J Mol Cell Biol. 2011 3(1):

44–50. doi: 10.1093/jmcb/mjq040 PMID: 21278451

55. Hu W, Chan CS, Wu R, Zhang C, Sun Y, Song JS, et al. Negative regulation of tumor suppressor p53

by microRNA miR-504. Mol Cell. 2012 10(9):1189–202.

56. Cui R, Guan Y, Sun C, Chen L, Bao Y, Li G, et al. A tumor-suppressive microRNA, miR-504, inhibits cell

proliferation and promotes apoptosis bytargeting FOXP1 in human glioma. Cancer Lett. 2016 374

(1):1–11. doi: 10.1016/j.canlet.2016.01.051 PMID: 26854715

57. Guan Y, Chen L, Bao Y, Pang C, Cui R, Li G, et al. Downregulation of microRNA-504 is associated with

poor prognosis in high-grade glioma. Int J Clin Exp Pathol. 2015 8(1): 727–34. PMID: 25755767

58. de Olano N, Koo CY, Monteiro LJ, Pinto PH, Gomes AR, Aligue R, et al. The p38 MAPK-MK2 axis regu-

lates E2F1 and FOXM1 expression after epirubicin treatment. Mol Cancer Res. 2012 10(9):1189–202.

doi: 10.1158/1541-7786.MCR-11-0559 PMID: 22802261

59. Ganguly R, Mohyeldin A, Thiel J, Kornblum HI, Beullens M, Nakano I. MELK-a conserved kinase: func-

tions, signaling, cancer, and controversy. Clin Transl Med. 2015 4:11. doi: 10.1186/s40169-014-0045-y

PMID: 25852826

60. Schonberg DL, Miller TE, Wu Q, Flavahan WA, Das NK, Hale JS, et al. Preferential iron trafficking char-

acterizes glioblastoma stem-like cells. Cancer Cell. 2015 28(4):441–55. doi: 10.1016/j.ccell.2015.09.

002 PMID: 26461092

61. Voth B, Nagasawa DT, Pelargos PE, Chung LK, Ung N, Gopen Q, et al. Transferrin receptors and glio-

blastoma multiforme: Current findings and potential for treatment. J Clin Neurosci. 2015 22(7):1071–6.

doi: 10.1016/j.jocn.2015.02.002 PMID: 25891893

62. Karginov FV, Hannon GJ. Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA

complementarity and correlates with altered translation rates. Genes Dev. 2013 27(14):1624–32. doi:

10.1101/gad.215939.113 PMID: 23824327

63. Walhout AJ, Gubbels JM, Bernards R, van der Vliet PC, Timmers HT. c-Myc/Max heterodimers bind

cooperatively to the E-box sequences located in the first intron of the rat ornithine decarboxylase (ODC)

gene. Nucleic Acids Res. 1997 25(8):1493–501. doi: 10.1093/nar/25.8.1493 PMID: 9162900
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