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Abstract

Summary: Whole-exome sequencing (WES) data have been used for identifying copy number

aberrations in cancer cells. Nonetheless, the use of WES is still challenging for identification of

focal aberrant regions in multiple samples that may contain cancer driver genes. In this study, we

developed a wavelet-based method for identifying focal genomic aberrant regions in the WES data

from cancer cells (WIFA-X). When we applied WIFA-X to glioblastoma multiforme and lung adeno-

carcinoma datasets, WIFA-X outperformed other approaches on identifying cancer driver genes.

Availability and implementation: R source code is available at http://gcancer.org/wifax.

Contact: hyunjulee@gist.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the availability of high-throughput sequencing data, we can

detect copy number aberrations (CNAs) in cancers more precisely.

Because it is important to identify focal aberrant regions that occur

repeatedly across multiple patients with cancer and may contain

cancer driver genes, several tools have been developed for single-

nucleotide polymorphism (SNP) array data and whole-genome

sequencing (WGS) data including GISTIC and our methods WIFA

and WIFA-Seq (Beroukhim et al., 2007; Hur and Lee, 2011; Jang

et al., 2016). Nevertheless, there are few computational tools that

can be applied to whole-exome sequencing (WES) data although

WES is more frequently used than WGS because it is less expensive

than WGS and many studies usually focus on protein-coding re-

gions. Thus, in the present study, we developed a wavelet-based

method for identifying focal genomic aberrant regions in the WES

data from cancer cells (WIFA-X) and applied our method to the

WES data on glioblastoma multiforme (GBM) and lung adenocar-

cinomas (LUAD) from The Cancer Genome Atlas (https://tcga-data.

nci.nih.gov) [Authorization was obtained from the database of

Genotypes and Phenotypes (accession No. phs000178.v8.p7)]. We

found many GBM and LUAD driver genes. Our method can be

widely used for identifying cancer driver genes in WES datasets.

2 Materials and methods

Figure 1a shows an outline of the WIFA-X method. First, for a pair

of tumorous and normal WES data, somatic copy number changes

across genomic regions are quantified. Although many investigators

(Amarasinghe et al., 2013) consider only exon regions for quantify-

ing copy numbers, a recent study (D’Aurizio et al., 2016) took into

account both exon regions and off-target regions as the markers to

increase the detection power of CNAs. WIFA-X can take as input ei-

ther BAM files or log2 ratios of copy numbers for both exon and

off-target regions (Supplementary Figs S1–S2).

Next, focal aberrations in a single cancer sample are detected

using Haar translation invariant discrete wavelet transform that is

the same as in our existing methods WIFA and WIFA-Seq (Hur and

Lee, 2011; Jang et al., 2016). At this step, noise is removed from the

raw data using hard thresholding of wavelet coefficients, and focal

aberrations are calculated by reconstructing signals without scaling
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coefficients. The size of aberration is controlled by wavelet trans-

form levels for wavelet coefficients. Because aberrant regions whose

lengths are less than 25% of the chromosome arm are usually con-

sidered focal aberrations (Koboldt et al., 2012), we assign the wave-

let transform levels to ensure that the length of identified aberrant

regions are less than 25% of the chromosome arm. In the case of

WES data, some locations may have abnormally high or low copy

number values owing to the sequencing or mappability bias. Thus,

we control these abnormalities by repetitively applying wavelet

transform to log2 ratio copy number, which generates yHIGH that is

used for locating abnormalities and correcting abnormal values by

considering their neighbouring markers. The final focal aberration

signal is named y�HIGH. Signal y�HIGH is produced for every single

WES cancer sample (Supplementary Figs S3–S4).

Finally, WIFA-X identifies recurrent aberrations in multiple sam-

ples. Recurrently amplified regions and recurrently deleted regions

are separately identified. For identifying recurrently amplified re-

gions, an aggregated profile �h
amp

j ¼
PM

i¼1 hamp
ij is calculated, where

hamp
ij ¼ hij � I hij > 0

� �
, hij is y�HIGH value of marker j for a patient i,

and M is the number of patients. Figure 1b (middle) shows an

example of aggregated profile �h
amp

j . Then, WIFA-X conducts a

statistical test based on a cyclic permutation test. The P-value

of each location marker j in the aggregated profile �h
amp

j is calculated

as p�valuej ¼
PN

k¼1
I quantile k;0:99ð Þ>�h

amp

jð Þ
N ; where quantile k; 0:99ð Þ is

0.99-quantile of the kth randomly aggregated profile, and N denotes

the total number of cyclic permutations. The randomly aggregated

profiles are calculated by cyclically shifting markers in hamp
ij for each

individual patient i independently and aggregating them into a sin-

gle profile. In the �h
amp

j signal, we select consecutively significant

markers with P-value<P-valuethres and regard these regions as the

recurrent aberrations. To identify further recurrent focal aberra-

tions, we adapted the peel-off step used in other methods

(Beroukhim et al., 2007; Walter et al., 2011). WIFA-X removes

focal aberrations overlapping with the identified recurrent aberra-

tion, re-estimates the null distribution based on the remaining focal

aberrations, and finds a new recurrent region based on the new null

distribution. This procedure continues until WIFA-X cannot identify

any further significantly recurrent regions. Figure 1b (middle) shows

identification of EGFR regions and Figure 1b (bottom) shows iden-

tification of CDK6 after the peel-off step for chromosome 7 from 35

GBM samples. For comparison, we used a simple approach [Figure

1b (top)], where each single sample in the same GBM samples is seg-

mented using EXCAVATOR2 (D’Aurizio et al., 2016), and segmen-

tation data from the 35 samples are summated. The comparison

between Figure 1b (top) and (middle) shows that the recurrent

aberrations are better distinguished by WIFA-X than by the simple

approach. For identifying recurrently deleted regions, hdel
ij ¼ �hij

� I hij < 0
� �

and �h
del

j ¼
PM

i¼1 hdel
ij are calculated, and �h

del

j is used in-

stead of �h
amp

j . See Supplementary Material and Supplementary

Figures S1–S6 for more details about WIFA-X.

3 Results

We applied WIFA-X to 35 pairs of tumorous and normal WES data

for GBM, 27 pairs of WES data for LUAD, and another 293 pairs of

WES data for GBM, where the 35 GBM and 27 LUAD datasets

have matching WGS data. An exome capture kit, Agilent SureSelect

V2 (931070), was used to produce BAM files from these datasets.

The total number of exons provided by this kit for 22 chromosomes

is 182 568. For evaluating the performance of WIFA-X [Fig. 1c], we

used normalized log2 ratios for exon and off-target regions obtained

by the EXCAVATOR2 method. Because EXCAVATOR2 exploits

CNAs by considering off-target regions together, we can use

additional 33 663 markers. In WIFA-X, copy number differences be-

tween neighboring genomic regions up to 3 megabases were con-

sidered for identifying focal aberrations (Supplementary Material;

Supplementary Tables S1 and S2).

We identified recurrently amplified or deleted aberrations in 22

autosomes and compared the performance among GISTIC 2.0, the

manual inspection of segments detected by EXCAVATOR2 and

WIFA-X. Although GISTIC 2.0 was originally developed for SNP

array data, it can be used for WES data as well if markers having

copy numbers across genomic regions are provided as input. Here,

segmented log2 ratios from EXCAVATOR2 were used as input data

Fig. 1. (a) The procedure for the WIFA-X method. (b) (top) The aggregated profile of chromosome 7 from 35 WES GBM samples using EXCAVATOR2 segments is

shown. (middle) �h
amp
j signals from the same dataset are shown. (b) (bottom) �h

amp
j signals after the peel-off step are shown. Green horizontal lines indicate zero

log2 ratio values. Red horizontal lines indicate thresholds for identifying recurrent regions. (c) Performance comparison among the manual inspection of

EXCAVATOR2 segments, GISTIC 2.0 and WIFA-X is presented. The y-axis represents the length of exon regions necessary to identify cancer driver genes on the

x-axis
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for GISTIC 2.0. For the manual inspection, segments containing

CNAs were detected by EXCAVATOR2 for each sample, and if

these segments were detected in more than one sample, we con-

sidered them recurrent regions. For performance evaluation, we

used 13 previously known cancer driver genes as silver standard

genes, which were collected from the GBM WGS data from our pre-

vious study (Jang et al., 2016). We compared genomic lengths

required to identify the silver standard genes by sorting aberrant re-

gions in descending order of absolute scores of recurrent regions for

WIFA-X, in ascending order of q-values of the peaks for GISTIC

2.0, and in descending order of absolute log2 values of copy number

segments in EXCAVATOR2.

Figure 1c shows that WIFA-X can identify more known GBM

genes at lesser inspection length than GISTIC 2.0 can in the

35 GBM WES dataset, suggesting a higher coverage of WIFA-X

with a lower false positive rate than GISTIC 2.0. Both methods iden-

tified seven driver genes including EGFR, CDK4, MDM4, MDM2,

PDGFRA, CCND2 and CDK6 in the recurrently amplified regions

and four driver genes including CDKN2A/B, QKI and PTEN in the

recurrently deleted regions, while WIFA-X identified one more gene

FGFR3 in the amplified region (Supplementary Tables S3–S6;

Supplementary Figs S7 and S8).

WIFA-X consistently identified more cancer genes at lesser in-

spection lengths than GISTIC 2.0 did for the 27 WES LUAD dataset

and the 293 WES GBM dataset (Supplementary Tables S7–S14 and

Supplementary Figs S9–S12). In the case of identifying either ampli-

fied regions or deleted regions only, the identification performance

of WIFA-X is better than the performance of GISTIC 2.0 for all the

datasets (Supplementary Tables S15–S17; Supplementary Figs S13

and S14). In addition, when we compared performance between the

use of both exon and off-target regions and the use of only exon

regions, we found that by means of both exon and off-target regions,

we can identify more silver standard genes (Supplementary Tables

S18–S20; Supplementary Figs S15 and S16).
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