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a b s t r a c t

In this study, we present a method for improving the accuracy of the multilevel B-spline approximation
(MBA) method. We combine a point projection method with the MBA method for reducing the approx-
imation error by directly adjusting the control points in the local area. An initial surface is generated by
the MBA method, and grid points are produced on the surface. These grid points are projected onto the
scattered point set, and the distances between the grid points and the projected points are computed. The
control points are then modified based on the distances. The proposed method shows better approxima-
tions even with the same number of control points and ensures C2-continuity. The experimental results
with examples verify the validity of the proposed method.
� 2017 Society for Computational Design and Engineering. Publishing Services by Elsevier. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction the approximation error is larger than the user defined tolerance,
ng Ju Institute of Science & Technology user on 06 Septem
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3D scanning is a method for generating scattered data points
that represent the geometric shape of an object. With the improve-
ment in scanning software and hardware technology, 3D scanning
is being used in various fields, such as computer graphics,
computer-aided design, topographic survey, manufacturing, and
medical surgery, for a wide variety of applications. However, there
are certain limitations when scanned data points are used in prac-
tice. For instance, these points are unstructured in most cases;
therefore, it is difficult to derive any useful relations between
them. These relations may be necessary for computation of deriva-
tives, or other intrinsic properties. Moreover, a scanner typically
generates a large number of points, resulting in long processing
times. Thus, new advanced methods are required for analyzing
data, such as reconstructing a surface from a reduced number of
scattered data points and using this surface for extracting various
properties or for data reduction. This approach has been utilized
in various applications (Bertram, Tricoche, & Hagen, 2003;
Carballido-Gamio & Majumdar, 2011; Lee, Chung, Kim, Lee, &
Park, 2005; Seo & Chen, 2009; Wang & Amini, 2011).

Among scattered data fitting methods, the multilevel B-spline
approximation (MBA) method (Lee, Wolberg, & Shin, 1997) is
widely used in practice. This method creates a surface that interpo-
lates the scattered data points using the least squares approach. If
and Engineering. Publishing Servic
icense (http://creativecommons.org
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the method increases the number of control points through refin-
ing a control net in a hierarchical manner and reduces the approx-
imation error iteratively. However, the method may not yield a
satisfactory result at a fixed hierarchy level. This problem is more
clearly noticed when sharp changes occur in the geometric shape
defined by the point set. Moreover, as the control net is refined
to reduce the approximation error, the number of control points
increases. Consequently, computation time increases. A great deal
of research has been conducted to improve the MBA method.
Zhang, Tang, and Li (1998) proposed a method for adaptively find-
ing an area of large error and performing refinement therein. How-
ever, this method increased the number of control points for
maintaining C2-continuity. Bertram et al. (2003) proposed an
approach that combined adaptive clustering with an approxima-
tion by piecewise polynomials. This approach localized the compu-
tation of the multilevel control lattice and improved efficiency in
terms of computation time. Later, Seo and Chen (2010) suggested
an adaptive lattice partitioning method for reducing computation
cost. Bracco, Giannelli, and Sestini (2017) suggested a new method
for scattered data fitting using a local approximation technique.
The hierarchical b-spline can also be implemented based on the
subdivision scheme as proposed in Bornemann and Cirak (2013),
which relates the basis functions and the coefficients on different
levels algebraically.

Minimizing the number of control points is another issue of the
MBA method. The accuracy of approximation can be easily
improved by refinements, which increase the number of control
points by a factor of four. However, it is beneficial to maintain
the number of control points as small as possible while the
es by Elsevier.
/licenses/by-nc-nd/4.0/).
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accuracy requirement is satisfied because this saves memory and
reduces the computation time in the subsequent process.

In this study, a method for improving the accuracy of MBA is
proposed. It combines the MBA method (Lee et al., 1997) with
the point projection approach. Initially, the MBA method is applied
to obtain a surface with control points at one hierarchical level.
Subsequently, the grid points on the surface are projected onto
the input points. The distances between the surface and the pro-
jected points are then computed and applied to the control points.

The paper is structured as follows. The overall process and the
detailed steps of the proposed method are presented in Section 2.
Results and discussion are presented in Section 3. Section 4 con-
cludes the paper with recommended future work.
ps://academ
ic.oup.com

/jcde/article/5/2/173/
2. Overall procedure

The overall process of the proposed method is shown in Fig. 1.
2.5D scattered data points are assumed to be given. MBA is first
utilized to form an initial surface for approximating the scattered
data. Points are then generated on the surface by creating a grid
in the parametric domain and mapping the grid points on the sur-
face. The points on the surface are projected onto the scattered
data using a point projection approach. Finally, a B-spline surface
is reconstructed by adjusting the control points, considering the
distances between the points on the surface and the projected
points on the scattered data. A detailed explanation is presented
in the following sections.
5728985 by G
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2.1. Generation of an initial surface

The initial surface for approximating the 2.5D scattered data
points is generated using the MBA method. This method is well
suited for approximating 2.5D data points by B-splines. The num-
ber of control points on the surface is determined by the approxi-
mation error. The level of refinement, which determines the
number of control points for approximation, is organized in a hier-
archical manner. For completeness, a summary of the method is
presented in the subsequent sections (Lee et al., 1997).
Fig. 1. Flowchart of the proposed method.

 Science & Tec
2.1.1. B-spline approximation in MBA
We assume that there is a rectangular domain X in the xy-plane

(X = {(x, y) j 0 6 x 6 m; 0 6 y 6 n}) and a control lattice U with
ðmþ 3Þ � ðnþ 3Þ control points located at (i; j) for i = �1, 0, 1, . . .,
m + 1 and j = �1, 0, . . ., n + 1. The control lattice U is defined large
enough to cover the domain X as shown in Fig. 2. Then, the approx-
imation function f is defined as

f ðx; yÞ ¼
X3
k¼0

X3
l¼0

BkðsÞBlðtÞ/ðiþkÞðjþlÞ; ð1Þ

where i ¼ bxc � 1; j ¼ byc � 1; s ¼ x� bxc and t ¼ y� byc. Bk and Bl

are the uniform cubic B-spline basis functions.
When there is a point p ¼ ðxc; yc; zcÞ, the control points /kl can

be determined in the least squares sense to generate a surface
interpolating the point as follows (Lee et al., 1997):

/kl ¼
BkðsÞBlðtÞzcP3

a¼0

P3
b¼0ðBaðsÞBbðtÞÞ2

: ð2Þ

If more than two points pq ¼ ðxqc ; yqc ; zqc Þ; q ¼ 1;2;3; � � � ;nq are
near each other, Eq. (2) yields a different control point value /q

c

for each point pq (Lee et al., 1997).

/q
c ¼

BkðsÞBlðtÞzqcP3
a¼0

P3
b¼0ðBaðsÞBbðtÞÞ2

: ð3Þ

Here, k ¼ ðiþ 1Þ � bxcc; l ¼ ðjþ 1Þ � bxcc; s ¼ xc � bxcc, and
t ¼ yc � bycc. This implies that there are multiple candidate control
points /q

c for determining /ij.
The optimal control point /ij that minimizes the approximation

error is determined by (Lee et al., 1997)

/ij ¼
Pnq

q¼1

P3
k¼0

P3
l¼0ðBkðsÞBlðtÞÞ2/q

c

h i
Pnq

q¼1

P3
k¼0

P3
l¼0ðBkðsÞBlðtÞÞ2

h i ; ð4Þ

where i ¼ bxcc � 1; j ¼ bycc � 1; s ¼ xc � bxcc and t ¼ yc � bycc.
When there is no point p ¼ ðxc; yc; zcÞ, a zero value is assigned to

/ij.

2.1.2. Multilevel B-spline approximation
The computation process in the previous section is applied to

the multilevel B-spline approximation scheme. We consider a con-
trol lattice /0 of size ðmþ 3Þ � ðnþ 3Þ. Then, the control lattice /1

after the refinement is of size ð2mþ 3Þ � ð2nþ 3Þ. The space of the
Fig. 2. Rectangular domain X (thick blue lines) and control lattice U (thin black
lines).
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control lattice is thereby halved, and the control lattice becomes
finer.

Fig. 3 shows the diagram of the multilevel B-splines approxima-
tion. f 0; f 1 and f 2 refer to the surface functions. /0;/1 and /h refer
to the control lattices. Three levels of control lattices are consid-
ered: /0 with a set of 8� 8 control points, /1 with a set of
13� 13 control points, and /2 with a set of 18� 18 control points.
/0 is calculated and then the surface function f 0 is generated using
/0. The error between the real and the estimated values is calcu-
lated and used for generating the next control lattice. Likewise,
f 1 is generated again using the /1 control lattice, and an error is
incurred by f 1. This error is used for the determination of /2. This
process of refinement and computation of control points is
repeated until the approximation error becomes less than a user
defined tolerance.
Fig. 4. Discretized points in the domain X and the control lattice U laid over the
domain.

adem
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/jcde/article/5/2/173/57
2.2. Generation of grid points

Once the initial surface is generated, grid points are extracted
from the surface. The x and y coordinates of the grid points are
selected such that they match those of the control points of the
control lattice. Then, the grid points are overlaid on the control lat-
tice as shown in Fig. 4.

The rectangular domain X is discretized uniformly to produce
mþ 1 and nþ 1 points in the x and y directions. A uniform cubic
B-spline of degree d is then created using X for the knot vectors
Ts and Tt as follows:
28985 by G
w
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Ts ¼ sijsi ¼ i=ðmþ 3þ dÞ; i ¼ 0;1;2; � � � ;mþ 3þ df g;
Tt ¼ tjjtj ¼ j=ðnþ 3þ dÞ; j ¼ 0;1;2; � � � ; nþ 3þ d

� �
:

Once the surface is defined, the parameters for the grid are
obtained using the knot values
Ju Institute of Science
pij ¼ ðui;v jÞ;
ui ¼ siþ3; i ¼ 0;1; � � � ;m;

v j ¼ tjþ3; j ¼ 0;1; � � � ;n:
Next, the surface is evaluated at pij to produce the grid points,

which are illustrated in Fig. 4.
Fig. 3. Process of multilevel
2.3. Projection of the grid points to the scattered data

After the grid points are generated, they are projected onto the
scattered data as shown in Fig. 5. To this end, the point projection
approach is utilized. The steps of point projection are summarized
as follows (Azariadis & Sapidis, 2005). Let us assume that there is a
point p ¼ ðx; y; zÞ to be projected onto the n points
pd ¼ ðxd; yd; zdÞ; d ¼ 0;1; � � � n� 1. Then, the sum of the weighted
squared distances with a weight factor ad is defined as

EðpÞ ¼
Xn�1

d¼0

adkp� pdk2

¼
Xn�1

d¼0

ad½ðx� xdÞ2 þ ðy� ydÞ2 þ ðz� zdÞ2�:
ð5Þ

Eq. (5) can be efficiently computed using a five dimensional vector c
(Erikson & Manocha, 1999).
B-spline approximation.

 & Technology user on 06 Septem
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Fig. 5. Point projection from an initial surface to the scattered data.
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c ¼ðc0; c1; c2; c3; c4Þ

c0 ¼
Xn�1

d¼0

ad; c1 ¼
Xn�1

d¼0

adxd; c2 ¼
Xn�1

d¼0

adyd;

c3 ¼
Xn�1

d¼0

adzd; c4 ¼
Xn�1

d¼0

adðxd2 þ y2d þ z2dÞ;

ð6Þ

EðpÞ ¼ c0ðx2 þ y2 þ z2Þ � 2ðc1xþ c2yþ c3zÞ þ c4: ð7Þ
We assume that p� ¼ ðx�; y�; z�Þ is the result of the projection along
the direction n ¼ ðnx;ny;nzÞ. Then, p� can be defined as

p� ¼ p�ðtÞ ¼ pþ tn ð8Þ
Eq. (7) can be rewritten using Eq. (8) as follows (Erikson & Manocha,
1999):

Eðp�ðtÞÞ ¼c0ððx�ðtÞÞ2 þ ðy�ðtÞÞ2 þ ðz�ðtÞÞ2Þ
� 2ðc1x�ðtÞ þ c2y�ðtÞ þ c3z�ðtÞÞ þ c4:

ð9Þ

The minimum of Eq. (9) is obtained by determining a root of the
derivative of Eq. (9) with respect to t equal to zero as follows
(Erikson & Manocha, 1999):

dEðp�ðtÞÞ
dt

¼ E0ðp�ðtÞÞ ¼ 0 ) t ¼ k� pn

knk2
; ð10Þ

k ¼ ðc1nx þ c2ny þ c3nzÞ
c0

; ð11Þ

d2Eðp�ðtÞÞ
dt2

¼ E00ðp�ðtÞÞ ¼ 2c0knk2 > 0: ð12Þ

Eq. (12) shows that t in Eq. (10) is a minimum solution for Eq. (9).
This t is utilized for projecting the point p onto the points obtained
by Eq. (8). During the projection process, the weight factor ad plays
a key role. Three methods for estimating the weight factors are sug-
gested in Azariadis and Sapidis (2005), Azariadis (2004), Moon,
Park, and Ko (2017).

ad ¼ 1

kp� pdk4
; ad 2 ½0;1�; ð13Þ

ad ¼ 1

1þ kp� pdk2kðpd � pÞ � nk2
; ad 2 ½0;1�: ð14Þ

ad ¼ 1

kðpd � pÞ � nk4
; ad 2 ½0;1�: ð15Þ

Eq. (13) assigns a large weight to the points near the point to be
projected (Azariadis, 2004), and Eq. (14) adds the distance between
the projection in direction n and the points (Azariadis & Sapidis,
2005). These two equations yield acceptable values for applica-
tions. However, they sometimes fail in high curvature regions of
the point set. This problem was addressed in Moon et al. (2017),
and a new method was proposed namely Eq. (15).

2.4. Adjustment of control points

We assume that a point p ¼ ðxc; yc; zcÞ is given, where
zc ¼ f ðxc; ycÞ. Then, from Eqs. (1) and (2), we have

/kl ¼ azc; a ¼ BkðsÞBlðtÞP3
a¼0

P3
b¼0ðBaðsÞBbðtÞÞ2

: ð16Þ

It means that the control point that interpolates zc is computed by
the amount of distance to zc multiplied by a weight a. This approach
can be extended to the adjustment of control points. We assume
that Ddij ¼ jpij � pd

ijj, where pd
ij is the projection of pij on the point

set and pij is the point on the surface defined by the control points
/ij. Then, the new control point is estimated to be /�

ij ¼ /ij þ aDdij

using (16), which defines an updated surface that closely approxi-
mates pd

ij. This adjustment step is applied to all control points one
by one, yielding a new surface approximating the point set. The
updated surface is then used to compute Ddij. This process can be
repeated until the adjustment is less than the user defined
tolerance.

The adjustment of control points proposed in this work reduces

the error Ddij as follows. At the k-th step, we have DdðkÞ
ij ¼ pd

ij � pðkÞ
ij .

Then, we consider two consecutive errors Ddðkþ1Þ
ij and DdðkÞ

ij . Con-

sider the difference of Ddðkþ1Þ
ij and DdðkÞ

ij . Namely,

Ddðkþ1Þ
ij � DdðkÞ

ij ¼ pd
ij � pðkþ1Þ

ij � ðpd
ij � pðkÞ

ij Þ;
¼ pðkÞ

ij � pðkþ1Þ
ij ;

¼
X
a

X
b

/abBaðuiÞBbðv jÞ

�
X
a

X
b

ð/ab þ aDdðkÞ
ij ÞBaðuiÞBbðv jÞ;

¼ �
X
a

X
b

aDdðkÞ
ij BaðuiÞBbðv jÞ:

For DdðkÞ
ij > 0;Ddðkþ1Þ

ij � DdðkÞ
ij < 0 because

P
a

P
baDd

ðkÞ
ij BaðuiÞ

Bbðv jÞ > 0. Therefore, Ddðkþ1Þ
ij < DdðkÞ

ij , which means that as the
adjustment step is repeated, the approximation error decreases.

For DdðkÞ
ij < 0, a similar conclusion can be drawn. Here, a is the coef-

ficient that controls the convergence speed. In this work, a ¼ 1:49 is
used. For a 4� 4 control points, we have a � 1:49 with s ¼ 1=3 and
t ¼ 1=3 from (16). This particular value, which shows the best per-
formance, has been chosen empirically through a series of tests
with various a’s for each s ¼ 0;1=3;2=3;1 and t ¼ 0;1=3;2=3;1.
Using this process, the surface can be adjusted for reducing Ddij,
which can represent more details on the surface and improve the
accuracy of the approximation.

Through a series of experiments, it is noticed that the error
reduction obtained by the iteration of the adjustment process is
not significant in most cases. Therefore, applying the adjustment
method once is sufficient in practice. However, if one iteration of
adjustment does not satisfy the tolerance, then we run the MBA
with a refined control lattice as shown in Fig. 3.

2.5. Measurement of approximation quality

In this study, the quality of approximation of the input point set
is measured using the RMSE (Root Mean Square Error). It is based
on the Euclidean distance which is the distance between a grid
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point on the approximation surface and its closest point among the
input points. Suppose that we have ng grid points and the input
point set P. Then, the RMSE is defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPng

i¼1ðMinðjjGi � PjjÞÞ2
ng

s
: ð17Þ

Eq. (17) is suitable for evaluating the quality of approximation
compared to others that may involve curvature. The curvature is
a surface-intrinsic property that requires the second derivatives,
which are sensitive to the surface smoothness. When a surface is
represented by a set of points, distorted curvature values could
be obtained because the derivative computation from the discrete
points is highly affected by the level of noise in the point set. On
the other hand, the Euclidean distance is less sensitive to the noise.
Therefore, we used the Euclidean distance based measure in this
study.

3. Experimental results and discussion

Three different scattered data sets were used to demonstrate
the proposed method. The first example is a scattered data set rep-
Fig. 6. Result of the multilevel B-spline approximation and the proposed method. (a) T
control points, RMSE = 0.0905). (c) The proposed method (19� 19 control points, RMSE

Fig. 7. Result of the multilevel B-spline approximation and the proposed method. (a) Lan
control points, RMSE = 0.0194). (c) The proposed method (13� 13 control points, RMSE

Fig. 8. Result of the multilevel B-spline approximation and the proposed method. (a)
(23� 23 control points, RMSE = 0.0116). (c) The proposed method (23� 23 control poin
resenting a human face as shown in Fig. 6(a). It consists of 9801
unstructured points. The MBA method with 19� 19 control points
yielded an RMSE value of 0.0905, whereas the proposed method
yielded an RMSE value of 0.0902 with the same number of control
points. Although the RMSE values by the MBA and proposed meth-
ods are similar, the proposed method represented the shape of the
data points more accurately. The nose is better approximated by
the proposed method, as shown in Fig. 6.

The second example is a data set of a simulated landform. This
data set consists of 9801 data points, as shown in Figs. 7 and 8. In
this experiment, two different control nets were considered. Fig. 7
shows the approximation results by the MBA and the proposed
methods with 13� 13 control points. The RMSE value of the pro-
posed method (RMSE = 0.0167) is smaller than that of the MBA
method (RMSE = 0.0194), and more details are approximated by
the proposed method as shown in Fig. 7. In Fig. 8, both methods
are compared using 23� 23 control points. The proposed method
yielded a smaller RMSE (0.0099) value than the MBA method
(0.0116), and represented more small features.

In the third example, the same landform data set with more
points was considered. In this example, the 35� 35 control points
he human face scattered data set. (b) Multilevel B-spline approximation (19� 19
= 0.0904).

dform scattered data set (N = 9801). (b) Multilevel B-spline approximation (13� 13
= 0.0178).

Landform scattered data set (N = 249,001). (b) Multilevel B-spline approximation
ts, RMSE = 0.0105).
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Table 1
More examples. The number of input points, the size of control points, and RMSE for each case are provided.

No. Input data MBA Proposed

1

50,000 pts (35� 35) (35� 35)
RMSE = 0.01741 RMSE = 0.01735

2

45,000 pts (35� 35) (35� 35)
RMSE = 0.03521 RMSE = 0.03514

3

40,000 pts (35� 35) (35� 35)
RMSE = 0.04284 RMSE = 0.03995

4

11,726 pts (19� 19) (19� 19)
RMSE = 0.01050 RMSE = 0.00897

Fig. 9. Result of the multilevel B-spline approximation and the proposed method. (a) Landform scattered data set (N = 249,001). (b) Multilevel B-spline approximation
(35� 35 control points, RMSE = 0.0124). (c) The proposed method (35� 35 control points, RMSE = 0.0120).
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were for comparison. The proposed method yielded a smaller
RMSE value (0.0119) than the MBA method (0.0124). Moreover,
the high curvature regions are better represented by the proposed
method, as shown in Fig. 9.

Four more examples were taken to demonstrate the perfor-
mance of the proposed method compared to the MBA approach
as shown in Table 1. As shown in the table, the proposed method
produces more accurate results than the MBA method for the same
number of control points. In addition, it represents more details of
the shape than the MBA method.
4. Conclusion

A novel method for improving the approximation accuracy in
the MBA scheme was proposed. The proposed method directly
adjusted the control points by considering the errors between
the approximated surface generated by the MBA method and the
input scattered points.

In contrast to the MBA method, the proposed method
increased accuracy without increasing the number of control
points. Therefore, the MBA method can avoid further refinement,
and the number of control points can be minimized. This can
reduce memory requirements and computation time for subse-
quent processes.

Currently, the weight value for the adjustment of the control
points is fixed to be 1.49. However, an optimal weight can be esti-
mated depending on the underlying geometric shape of the points.
Moreover, the amount of adjustment can be represented using the
multiwavelet method such as Geronimo and Marcellan (2015)
without introducing a in the adjustment. The computation of
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adaptive a and the derivation of an exact representation of the
amount of adjustment are recommended for future work.
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