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Distance-Based Control of Kn Formations in General Space
With Almost Global Convergence

Myoung-Chul Park , Zhiyong Sun , Member, IEEE, Brian D. O. Anderson , Life Fellow, IEEE,
and Hyo-Sung Ahn , Senior Member, IEEE

Abstract—In this paper, we propose a distance-based formation
control strategy for a group of mobile agents to achieve almost
global convergence to a target formation shape provided that the
formation is represented by a complete graph, and each agent is
governed by a single-integrator model. The fundamental idea of
achieving almost global convergence is to use a virtual formation of
which the dimension is augmented with some virtual coordinates.
We define a cost function associated with the virtual formation and
apply the gradient-descent algorithm to the cost function so that
the function has a global minimum at the target formation shape.
We show that all agents finally achieve the target formation shape
for almost all initial conditions under the proposed control law.

Index Terms—Almost global convergence, distance-based for-
mation control, gradient control.

I. INTRODUCTION

Recently, there have been many publications on the stabilization of
formations represented by mobile agents under various problem for-
mulations [1]. Depending on the measured and controlled variables,
we can consider position-based formation control, displacement-
based formation control [2]–[5], distance-based formation control [6],
bearing-based formation control [7], [8], etc. Based on the use of
graph rigidity theory [9]–[12], various techniques and convergence
results have been developed on distance-based formation control [6],
[13]–[25]. It is known that for any undirected rigid formation, we can
achieve local asymptotic stability [19] and local exponential stability
[24] under the distance-based control algorithm proposed in [15] and
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its generalizations. Although there are many other publications dealing
with distance-based formation stabilization problems, most of them
are focused on local stability analysis with a few exceptions (e.g., [14],
[16]–[18], [20], [22], [25]) handling global stability issues for some
special formation shapes.

To be more specific about those exceptions, undirected polygonal
formations in the plane are studied in [14] based on a distance-based
formation control strategy, but the authors successfully show almost
global convergence to only a triangular target formation. Regarding
four-agent formations, there is a formation that is termed aK4 formation
because it is represented by the four-vertex complete graph. References
[16] and [18] contribute to showing that any rectangular K4 formation
in R2 is achieved almost globally under the control law proposed in
[15]. Nevertheless, it is still not known whether a general rather than
rectangular K4 formation can be achieved under the same control law
almost globally; obviously, more complicated general rigid formations
consisting of more than four agents have not been studied well. A
control law to stabilize rigid formations in R2 almost globally was
proposed in [26], but it has been shown that there exists a counter
example formation that cannot be stabilized almost globally under
the same control law [27]. Only partial analyses of particular classes
of rigid formations are reported recently in [22] and [25]. Reference
[22] provides a discontinuous control law to achieve a universally
rigid target formation, and [25] shows that a triangulated formation
can be stabilized almost globally.1 Consequently, the ultimate goal of
providing a global stability analysis for a general rigid formation is a
challenging task, which still remains an open problem. Likewise, we
cannot provide a complete solution to the problem at this stage, but we
want to explore another branch related to the ultimate goal.

One of the aforementioned exceptions can be noted, as it motivates
much of this paper. It is known that, under the control law proposed
in [15] (with an extension of the dimension), we can obtain almost
global convergence for a K4 formation in R3 [20]. However, whether
the same control law can be used for a K4 formation in R2 to achieve
global convergence has yet to be established for other than special
cases. In our previous works [23], we proposed an alternative approach
to treating the K4 formation in R2 by having it mimic the K4 formation
in R3 , thereby taking advantages of the global convergence results for
the K4 formation in R3 in solving the problem of K4 formation in R2 .
But, the work in [23] is confined to K4 formation control in R2 . In
this paper, we further generalize the works of [23] in both dimensions
and the size of graphs. Thus, as the main contribution of this paper,
we first generalize the results so that they could be applied to general
Kn formations in R2 with n ≥ 4. Then, as the second contribution, we
remove the restriction that the realization space is R2 . More precisely,
we can seek to realize a Kn formation in Rd , for any d ≤ n − 1, as
opposed to the case d = 2, n = 4 of [23].

1One can refer to [22] and [25] for the definitions of universal rigidity and a
triangulated formation, respectively.
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The rest of the paper is organized as follows. In Section II, we pro-
vide background knowledge on formation graphs and the control law
proposed in [15]. The notation used throughout the paper is summa-
rized at the beginning of the section. In Section III, we explore Kn

formations in Rn−1 , which provides some results generalized from
[20] based on the results of [21]. We establish the main results in
Section IV by providing a method to construct a virtual formation and
analyzing the convergence of the virtual formation. Some examples and
related simulations are given in Section V. We summarize the paper in
Section VI.

II. NOTATIONS AND MOTIVATION

We first introduce the notation used in the rest of the paper.
1) Rd : d-dimensional Euclidean space.
2) R≥a = {x ∈ R | x ≥ a}.
3) |S|: the cardinality of a set S.
4) ‖x‖: the Euclidean norm of a real vector x.
5) For some real vectors v1 , . . . , vn , (v1 , . . . , vn ) = [v�

1 . . . v�
n ]�.

6) 1k = (1, . . . , 1) ∈ Rk .
7) 0k = (0, . . . , 0) ∈ Rk .
8) RFd

m = Rm × {0d−m } ⊆ Rd for d > m, and RFd
d = Rd .2

9) dist(x, y), x ∈ Rn , y ∈ Rm :

dist(x, y) =

⎧
⎪⎨

⎪⎩

‖(x, 0m −n ) − y‖, (n < m),

‖x − (y, 0n−m )‖, (n > m),

‖x − y‖, (m = n).

10) dist(x,S) = infy∈S dist(x, y), x ∈ Rn , S ⊆ Rm .

A. Formation Graph

Let G denote a graph defined by G = (V, E), where V =
{1, . . . , n} is the set of all vertices representing the agents, and
E = {. . . , {i, j}, . . .} is the set of all edges representing certain pairs
of the vertices. Let pi ∈ Rd be a column vector denoting the position
vector of vertex i. The jth component of pi is represented by pj

i , i.e.,
pi = (p1

i , . . . , p
j
i , . . . , p

d
i ). We call p = (p1 , . . . , pn ) ∈ Rdn a realiza-

tion of G in Rd . A framework (formation) is defined by a pair of a graph
G and its realization p, and denoted by (G, p). Two realizations p and
z are said to be congruent if ‖pi − pj ‖ = ‖zi − zj ‖ for all i, j ∈ V ,
and two frameworks (G, p) and (G, z) are said to be equivalent if
‖pi − pj ‖ = ‖zi − zj ‖ for all {i, j} ∈ E . We use Kn to denote the
complete graph of n vertices. A formation (G, p) such that G = Kn is
called a Kn formation.

B. Rigidity and Infinitesimal Rigidity

Since the notion of rigidity of a framework is essential for under-
standing distance-based formation control, we provide a brief introduc-
tion to rigidity and infinitesimal rigidity. One can refer to [6], [9], [10],
[12], and [28] for more detailed explanations. For a given framework
(G, p) in Rd with G = (V, E), a function rG : Rd |V| → R|E| defined
by rG(p) = 1

2 (. . . , ‖pi − pj ‖2 , . . .), {i, j} ∈ E is called the rigidity
function of (G, p). Thus, for two frameworks (G, p) and (G, z), they
are equivalent if and only if rG(p) = rG(z) by definition.

Definition 1 (see [9] and [28]): Consider a framework (G, p) in
Rd with G = (V, E) and the associated rigidity function rG . Then,
the framework (G, p) is rigid in Rd if there exists a neighborhood

2For instance, RF3
1 ⊆ R3 is a subspace spanned by (1, 0, 0), and RF3

2 ⊆
R3 is a subspace spanned by (1, 0, 0) and (0, 1, 0).

Fig. 1. Two noncongruent, but equivalent, formations induced from the
same interagent distance set.

U ⊆ Rd |V| of p such that

r−1
G
(
rG(p)

) ∩ U = r−1
K|V|

(
rK|V|(p)

) ∩ U . (1)

Furthermore, if (1) holds forU = Rd |V|, then (G, p) is said to be globally
rigid in Rd .

From Definition 1, we can notice that any framework (G, z), which
is equivalent to (G, p) with z ∈ U , results in congruence of p and z if
(G, p) is rigid.

In addition to rigidity, there is a concept called infinitesimal rigidity,
which is more conservative than rigidity.3 Although the definition of
infinitesimal rigidity is given in [10] rigorously, we provide a theorem
that can be taken as a definition of infinitesimal rigidity instead.

Theorem 1 (see [10]–[12]): With the same notation in Definition 1,
let R(G, p) = ∂ rG (p )

∂ p
∈ R|E|×d |V|. The framework (G, p) is infinitesi-

mally rigid in Rd if and only if

rank R =

{
d|V| − d(d + 1)/2 if |V| ≥ d,

|V|(|V| − 1)/2 otherwise.

The matrix R in Theorem 1 is called the rigidity matrix of (G, p).
One can refer to [29, p. 33] for better understanding of infinitesimal
rigidity based on the Taylor series expansion of rigidity function. �

C. Steepest Descent Flow Under the Single-Integrator Model

Consider n agents evolving in Rd under the following single-
integrator model:

ṗi = ui ∀i ∈ V (2)

where ui = (u1
i , . . . , u

d
i ) ∈ Rd denotes the control input for agent i.

Let p̄ be a realization congruent to the target formation. The goal of
distance-based formation control is to achieve a formation that is con-
gruent to (G, p̄) by adjusting the interagent distances corresponding to
the edges of the underlying formation graph. Depending on the graph
structure and the characteristics of the target formation, we may or may
not achieve the target formation shape even if all the desired interagent
distances are satisfied. For example, we can see two noncongruent for-
mations having the same interagent distance set in Fig. 1. Agent 4 can
satisfy the distance constraints to agents 2 and 3 at the both positions
denoted by 4 and 4′. In this particular case, if there were a distance con-
straint between agents 1 and 4, there would not be such an ambiguity.
From the definition of global rigidity [28], a necessary and sufficient
condition to guarantee that a formation satisfying the desired interagent
distances, which are induced from a target formation, is congruent to

3Infinitesimal rigidity requires not only rigidity but also infinitesimal motions
that are only trivial; so infinitesimal rigidity implies rigidity, but the reverse is
not true in general [12].
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Fig. 2. Five-agent formation, which is globally rigid in R2 : (a) and (b)
show the convergence to the target formation shape, while (c) and (d)
show the convergence to an incorrect formation shape.

the target formation is that the target formation is globally rigid be-
cause global rigidity of the target formation means that the interagent
distances uniquely define the shape of the formation.

However, even if the target formation is globally rigid, finding an ef-
fective control law for (2) to achieve a target formation from almost all
initial conditions is a different and challenging task. For example, con-
sider the control law proposed by Krick et al. [15], which is equivalent
to a steepest descent flow of a potential function defined by

v(p) =
1
4

∑

{i ,j }∈E

(‖pi − pj ‖2 − d2
ij

)2
(3)

where dij = ‖p̄i − p̄j ‖. The control law can be written as

u = −
[

∂v

∂p

]�
(4)

where u = (u1 , . . . , un ). Since we are using a single-integrator model,
the overall closed-loop system is represented by

ṗ = −
[

∂v

∂p

]�
. (5)

Under the control law in (4), we can find an example showing the
convergence (from selected initial conditions) to an incorrect equi-
librium formation (i.e., an equilibrium formation that does not make
v = 0), even if the target formation is globally rigid. Let us consider
a globally rigid five-agent target formation in R2 where a representa-
tive realization is given by p̄ = (p̄1 , p̄2 , p̄3 , p̄4 , p̄5 ) with p̄1 = (0, 1),
p̄2 = (−3, 0), p̄3 = (0,−1), p̄4 = (2, 0), and p̄5 = (1,−5). Fig. 2(a)
shows a simulation result representing the trajectories generated from
an initial condition 1.1p̄ under (5). On the other hand, we obtain
Fig. 2(c), which shows convergence to an incorrect equilibrium for-
mation, if we use 1.1(p̄1 , p̄2 , p̄3 ,−p̄4 , p̄5 ) as an initial condition.

A different indication of the difficulties with the closed-loop system
is provided by a K4 formation in R2 , which is the simplest form

Fig. 3. (a) K4 formation in R1 . (b) K4 formation in R1 and virtually in
R3 . In (b), the actual agents live in RF3

1 like (a), but they are treated as
if they live in R3 with the virtual coordinates augmented to the position
vectors of agent 1 and agent 2.

of globally rigid formation with more than three agents. It is still
an open problem to determine whether a general K4 formation in
R2 can achieve the target formation almost globally for (5). Some
papers offer a partial analysis of a K4 formation in R2 to show the
almost global convergence property [16], [18], but there are only limited
results that can be applied to some particular examples, e.g., rectangular
formations. On the other hand, it is shown in [20] that aK4 formation in
R3 can achieve the target formation shape almost globally by showing
the instability of degenerate4 incorrect equilibrium formations, and the
results on instability of the degenerate incorrect equilibrium formations
are extended to more general formation cases in [21].

In [23], the almost global convergence property of a K4 formation
in R3 is used to achieve almost global convergence of a K4 formation
in R2 under a modified control law. In that paper, the actual agents are
considered as agents moving in a two-dimensional (2-D) space, but one
virtual variable is used as a virtual additional coordinate of an agent,
thereby allowing the whole formation to be viewed as a pseudo or
virtual formation in three-dimensional space with three agents locked
on the original 2-D plane. A conventional control law is constructed
for the virtual formation and used to motivate a control law for the real
formation, which is, of course, restricted to the 2-D plane. This strategy
can be used to guarantee almost global convergence of a K4 formation
in R2 . We seek to generalize this approach in this paper.

Our starting point is that if we want to describe a Kn formation in
Rd , 1 ≤ d ≤ n − 2, we can usefully introduce a virtual formation in
Rn−1 and associated control problem with a minimal number of virtual
variables; the number of required virtual variables is given by

(1 + 2 + · · · + n − 1 − d) =
(n − d)(n − 1 − d)

2
. (6)

To understand (6), let us consider a K4 formation in R1 . Let the
position of each agent be represented by 1-vector, e.g., p1 = (3), p2 =
(0), p3 = (1), and p4 = (2), as shown in Fig. 3(a). Suppose that we
want to describe the K4 formation in R1 as a virtual K4 formation in
R3 , as shown in Fig. 3(b). To obtain the formation in Fig. 3(b) from the
formation in Fig. 3(a), we first need to augment one virtual coordinate
variable for one agent, e.g., agent 1, so that the agent virtually lives
in the x–y plane. Next, we need two virtual coordinate variables for
another agent, e.g., agent 2, so that the agent virtually lives in the
x–y–z space. The K4 formation in R3 is defined by agents at 1′,
2′, 3, and 4. In general, if we want to describe a Kn formation in
Rd , 1 ≤ d ≤ n − 2, the total number of required virtual variables
is the sum of an arithmetic sequence, as given in (6). The projection
of the virtual formation into the Rd space together with a control law
derived from that for the virtual formation yields convergence to the
Kn formation of interest.

In this paper, we extend and use the control strategy proposed in [23]
to enable a Kn formation in Rd , 1 ≤ d ≤ n − 2, to achieve a target

4Definitions and exact meaning will be provided in Section III-A.
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formation shape with almost global convergence. For this purpose, we
first review the results in [21] showing that any degenerate incorrect
equilibrium formation of (5) is unstable provided that the target forma-
tion is nondegenerate (the definition of (non-)degenerate formation is
given in the next section).

III. ALMOST GLOBAL CONVERGENCE OF A Kn FORMATION IN Rn−1

A. Degenerate Formation

Let S be a set of k vectors in Rd such that S = {s1 , . . . , sk }. The
affine hull of S is defined by

aff hullS =

{

w ∈ Rd |w =
k∑

i=1

aisi , si ∈ S, ai ∈R,
k∑

i=1

ai = 1

}

.

Consider a formation in Rd represented by p = (p1 , . . . , pn ) ∈ Rdn .
The dimension of the formation is defined as the dimension of
aff hull {p1 , . . . , pn }. The formation is said to be degenerate if the
dimension of the formation is less than min {d, n − 1}, i.e., the for-
mation is degenerate if the number of linearly independent vectors in
{pi − pj | i ∈ V, i �= j} is less than min{d, n − 1} for some j ∈ V .
For instance, if three agents in R2 form a line formation, or four agents
in R3 form a planar formation, then those formations are degenerate.
On the other hand, if four agents in R2 form a planar formation, the
formation is nondegenerate.

Note that infinitesimal rigidity of a formation implies its nondegen-
eracy by the following proposition.

Lemma 1 (see [10, p. 174]): For a given framework (G, p) in Rd

with p = (p1 , . . . , pn ) ∈ Rdn , if (G, p) is infinitesimally rigid in Rd ,
then the dimension of aff hull{p1 , . . . , pn } is equal to min{d, n − 1}.

B. Kn Formation in Rn−1

Let us consider a Kn formation in Rn−1 represented by P =
(P1 , . . . , Pn ) ∈ Rn (n−1) . Unlike Kn formations existing in Rd with
1 ≤ d ≤ n − 2, a Kn formation in Rn−1 has special properties so we
use, with abuse of notation, P instead of p to distinguish it. Analo-
gously to the potential function in (3), let us define a potential function
V : Rn (n−1) → R≥0 as V (P ) = 1

4

∑
1≤i< j≤n

(‖Pi − Pj ‖2 − D2
ij

)2
,

where Dij = ‖P̄i − P̄j ‖, and P̄ = (P̄1 , . . . , P̄n ) ∈ Rn (n−1) is a rep-
resentative of the target formation with desired interagent distances.
Then, we can consider the gradient system given by

Ṗ = −
[

∂V

∂P

]�
= −R�e (7)

where R is the rigidity matrix of the framework (Kn , P ), e =
(e12 , . . . , e1n , e23 , . . . , e2n , . . . , e(n−1)n ), and eij = ‖Pi − Pj ‖2 −
D2

ij for all {i, j} ∈ E . Note that we have eij = ej i for all {i, j} ∈ E
by definition. Obviously, the target formation corresponds to a correct
equilibrium point of (7), i.e., an equilibrium point such that V = 0. In
general, there may exist an incorrect equilibrium point at which we can-
not achieve the target formation. Such an incorrect equilibrium point
is defined by an equilibrium point of (7) with V �= 0. Based on this
understanding, we can state the following proposition on the relation
between an incorrect equilibrium and degeneracy of the corresponding
formation.

Lemma 2: For an arbitrary n ≥ 2, consider the Kn formation
in Rn−1 governed by (7). Suppose that the target formation is
infinitesimally rigid in Rn−1 . Then, for any incorrect equilibrium
point of (7), the corresponding formation is degenerate.

Proof: Consider an incorrect equilibrium point P ∗ of (7) at which
V �= 0 (equivalently e �= 0 because V = 1

4 e�e). Since we are consid-

ering a Kn formation, we have
∑

j∈V\{i}(P
∗
i − P ∗

j )eij = 0 for each
i ∈ V . From e �= 0, we have eij �= 0 for some i, j ∈ V . For such i, we
know that (n − 1) vectors in {P ∗

i − P ∗
j | j ∈ V \ {i}} are linearly de-

pendent so the maximum number of the linearly independent vectors
is at most n − 2. Therefore, the dimension of aff hull{P ∗

1 , . . . , P ∗
n }

is at most n − 2, which means that the formation corresponding to
P ∗ is degenerate. However, this conclusion contradicts the assumption
that the target formation is infinitesimally rigid because infinitesimal
rigidity of the formation implies its nondegeneracy from Lemma 1. �

From Lemma 2, we can state the following proposition on the Hes-
sian matrix of V .

Lemma 3: Consider theKn formation as in Lemma 2 with the same
assumption on the target formation. Then, the Hessian matrix of V has
at least one negative eigenvalue at any incorrect equilibrium point of
(7). Thus, each incorrect equilibrium point is unstable and is not a local
minimizer of V .

Proof: Let H(P ) be the Hessian matrix of V at P and J(P ) the
Jacobian matrix of the right side of (7) at P . Consider an incorrect
equilibrium point P ∗ of (7) with the same assumption on the target
formation mentioned in Lemma 2. From Lemma 2, we know that the
formation corresponding to P ∗ is degenerate. Then, from Lemma 6 in
[21], H(P ∗) has at least one negative eigenvalue, which means that
P ∗ is not a local minimizer of V . Moreover, since we have H(P ∗) =
−J(P ∗), P ∗ is an unstable equilibrium point of (7). �

IV. Kn FORMATION WITH VIRTUAL VARIABLES

A. Introduction of Virtual Variables

Consider a Kn formation in Rd represented by p = (p1 , . . . , pn ) ∈
Rdn with 1 ≤ d ≤ n − 2. For a given target formation shape repre-
sented by p̄ = (p̄1 , . . . , p̄n ) ∈ Rdn , the goal of distance-based forma-
tion control can be interpreted as achieving the following control goal:
limt→∞ ‖pi (t) − pj (t)‖ → dij ∀{i, j} ∈ E , and p(t) converges to a
fixed point, where dij = ‖p̄i − p̄j ‖. It is not guaranteed that one can
achieve the target formation shape under (5) because there might exist
a nondegenerate incorrect equilibrium formation, which is not guaran-
teed to be unstable, as shown in Fig. 2. Instead of the control law (4),
we are going to propose a modified control law using virtual variables
to imitate the Kn formation in Rn−1 .

Let η = n − 1 − d and ω = (n−d )(n−1−d )
2 , where ω is determined

from (6). We assign a total of ω scalar virtual variables denoted
wi

j , 1 ≤ i ≤ j ≤ η to the first η agents so that

q1 = (p1 , w
1
1 ) ∈ Rd+1 ,

q2 = (p2 , w
1
2 , w2

2 ) ∈ Rd+2 ,

...

qη = (pη , w1
η , . . . , wη

η ) ∈ Rd+ η ,

qη +1 = pη +1 ∈ Rd ,

...

qn = pn ∈ Rd .

By doing so, we pretend that agent i lives in Rd+ i for all i ∈ {1, . . . , η}.
For such augmented vectors, we now define the target formation in
terms of the augmented vectors by letting q̄i = (p̄i , α1i ) for all i ∈
{1, . . . , η} with arbitrary but fixed α > 0, and q̄j = p̄j for all j ∈
{η + 1, . . . , n}. Thus, the q̄i vectors represent a virtual target formation
shape in terms of the augmented vectors. The reason why we use
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α > 0 is that α = 0 produces a degenerate target formation in a higher
dimensional ambient space, which is a situation we want to avoid.
Hence, α > 0 is a necessary condition for a nondegenerate virtual
target formation.

Based on the augmented vectors, the desired interagent distances
in a virtual ambient space are determined by Dij = dist(q̄i , q̄j )
for all {i, j} ∈ E . Note that Dij can be calculated by Dij =√‖p̄i − p̄j ‖2 + |i − j|α2 , which consists of given information dij

and α. Let q = (q1 , . . . , qn ). Then, we can define a potential func-

tion V̄ : Rdn +ω → R≥0 by V̄ (q) = 1
4

∑
1≤i< j≤n

([
dist(qi , qj )

]2 −
(Dij )2

)2
, and propose a control law so that the overall closed-loop

system becomes

q̇ = −
[

∂V̄

∂q

]�
(8)

under the assumption that the virtual variables are governed by ẇj
i =

sj
i ∀i ∈ {1, . . . , η} ∀j ∈ {1, . . . , i}, where sj

i are virtual control
inputs used for the update of wj

i only. Note that since wj
i are not

physical states, and are updated in software, we can simply assume
that the values can be transmitted by wireless communication, rather
than being obtained with physical sensors.

B. Interpretation of Kn Formation in Rn−1 Space

We can view the Kn formation represented by q in Section IV-A as
a Kn formation in Rn−1 with some constraints. Let

Qi =

⎧
⎪⎨

⎪⎩

(qi , 0n−1−d−i ) ∀i ∈ {1, . . . , η − 1},
qi , i = η,

(qi , 0n−1−d ) ∀i ∈ {η + 1, . . . , n},
Q = (Q1 , . . . , Qn ) ∈ Rn (n−1) .

From such constructions, we know that Qi ∈ RFn−1
d+ i for all i ∈

{1, . . . , η}, and Qi ∈ RFn−1
d for all i ∈ {η + 1, . . . , n}. Thus, (d + 1)

agents corresponding to the indices (η + 1) through n are locked on
RFn−1

d , and they cannot escape from RFn−1
d . Similarly, agent (η + 1)

through agent n and agent 1 are locked on RFn−1
d+1 . Generally,

agent (η + 1) through agent n together with agent 1 through agent i
are locked on RFn−1

d+ i for each i ∈ {1, . . . , η}. In terms of the target
formation, we can also define Q̄ as

Q̄i =

⎧
⎪⎨

⎪⎩

(q̄i , 0n−1−d−i ) ∀i ∈ {1, . . . , η − 1},
q̄i , i = η,

(q̄i , 0n−1−d ) ∀i ∈ {η + 1, . . . , n},
Q̄ = (Q̄1 , . . . , Q̄n ) ∈ Rn (n−1) .

For example, consider the K4 formation in R1 illustrated in Fig. 3.
In terms of Qi vectors, agents 3 and 4 are locked on the x-axis. Thus,
Q3 and Q4 can evolve only in RF 3

1 . Since agent 1 has one virtual
variable, Q1 can evolve in RF 3

2 , but cannot be taken out of RF3
2 .

Thus, agents 3, 4, and 1 are considered as being locked on RF3
2 in that

aff hull{Q1 , Q2 , Q3} = RF3
2 in general. On the other hand, agent 2

has two virtual variables so agent 2 can evolve in R3 . By doing so, we
can view the K4 formation in R1 as a virtual K4 formation in R3 with
constraints.

Lemma 4: Consider two realizations P ∈ Rn (n−1) and q ∈
Rdn +ω , which are congruent.5 Assume that P and q are critical points

5We use an extended notion of congruence of two realizations with different
dimensions. Two realizations P and q are said to be congruent if dist(Pi , Pj ) =
dist(qi , qj ) for all i, j ∈ V .

of V and V̄ , respectively, and V and V̄ are generated by the same target
distances. Then, P is not a local minimizer of V if and only if q is not
a local minimizer of V̄ .

Proof: Suppose that P is not a local minimizer of V . Then, for
any δ > 0, there exists P ′ ∈ {X ∈ Rn (n−1) | ‖P − X‖ < δ} such
that V (P ′) < V (P ). Consider arbitrarily small δ̄ > 0. Then, there
always exists q′ ∈ {x ∈ Rdn +ω | ‖q − x‖ < δ̄} such that V̄ (q′) <
V̄ (q) because we can choose q′ so that q′ and P ′ are congruent and that
V (P ′) < V (P ) with arbitrarily small δ > 0. Consequently, q is not a
local minimizer of V̄ if P is not a local minimizer of V . �

Conversely, suppose that q is not a local minimizer of V̄ . Then,
for any δ̄ > 0, there exists q′ ∈ {x ∈ Rdn +ω | ‖q − x‖ < δ̄} such
that V̄ (q′) < V̄ (q). Now, for arbitrarily small δ > 0, we can always
find P ′ ∈ {X ∈ Rn (n−1) | ‖P − X‖ < δ} such that V (P ′) < V (P )
from the fact that we can take P ′ so that P ′ and q′ are congruent and that
V̄ (q′) < V̄ (q). Thus, we can conclude that P is not a local minimizer
of V if q is not a local minimizer of V̄ .

C. Convergence Analysis

In this section, we are going to first show that the solution of (8)
converges to a point. Then, we prove that for almost all initial con-
ditions, the agents achieve the target formation shape under (8). For
convergence analysis, let us invoke the following proposition on the
gradient flow of a real analytic function.

Lemma 5 (Theorem 2.2 in [30]): Let φ : Rn → R be a real ana-
lytic function and let x(t) be a continuously differentiable curve in
Rn . Assume that there exist a δ > 0 and a real τ such that for t > τ ,

x(t) satisfies the angle condition φ̇ = ∂ φ
∂ x

ẋ ≤ −δ

∥
∥
∥
∥

∂ φ
∂ x

∥
∥
∥
∥‖ẋ‖, and a weak

decrease condition

φ̇ = 0 implies ẋ = 0.

Then, either limt→+∞ ‖x(t)‖ = ∞ or there exists x∗ ∈ Rn such that
limt→+∞ x(t) = x∗.6

Theorem 2: The solution of (8) converges to a limit point.
Proof: For the real analytic function V̄ , we have

˙̄V =
∂V̄

∂q
q̇ = −

∥
∥
∥
∥

∂V̄

∂q

∥
∥
∥
∥

2

≤ 0. (9)

In light of Lemma 5, we can choose δ = 1, τ = 0; then and ˙̄V = 0
implies that ∂ V̄

∂ q
= 0, which is equivalent to q̇ = 0. Thus, we can

conclude that either limt→+∞ ‖q(t)‖ = ∞ or there exists q∗ such
that limt→+∞ q(t) = q∗. Then, we can rule out the case of diverging
‖q(t)‖ by showing that the solution is bounded. Note that bound-
edness of q is implied by boundedness of Q from the relation
between q and Q, so we simply need to show that Q is bounded.
Let eij = [dist(qi , qj )]2 − (Dij )2 = ‖Qi − Qj ‖2 − (Dij )2 . We can

show that
∂ e i j

∂ p i
= − ∂ e i j

∂ p j
for each edge, which results in that

∑n
i=1 ṗi =

−∑n
i=1

[
∂ V̄
∂ p i

]�
= 0. Therefore, the centroid of Q1 , . . . , Qn pro-

jected onto RFn−1
d is stationary under (8). Moreover, we know that

‖Qi − Qj ‖ cannot diverge for any i, j ∈ V from (9), and Qη , . . . , Qn

are locked on RFn−1
d . Consequently, Q is bounded, which implies that

q is bounded so q converges to a limit point. �
In spite of Theorem 2, we cannot be assured that q(t) will con-

verge to the equilibrium set of (8) because convergence of a function
does not imply convergence of its derivative in general. Convergence
of q(t) to the equilibrium set can be shown from the fact that ˙̄V is

6We recovered x(t) omitted by mistake in [30, Th. 2.2].
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uniformly continuous.7 Since q(t) converges to a point, V̄ (q(t)) also

converges. Then, from Barbalat’s lemma [31, Lemma 8.2], ˙̄V (q(t))
converges to 0, which guarantees that q(t) converges to the equilib-
rium set. Consequently, we can state that q(t) converges to either the
desired equilibrium set or the incorrect equilibrium set of (8). There-
fore, if we show that any incorrect equilibrium point of (8) is unstable,
then we can conclude that q(t) converges to the desired equilibrium
set, in which the target interagent distances are achieved for almost
all initial conditions. This conclusion is formalized in the following
theorem.

Theorem 3: Suppose that the target Kn formation represented by Q̄
is nondegenerate and infinitesimally rigid in Rn−1 . Then, any incorrect
equilibrium point of (8) is unstable.

Proof: Let q∗ be an incorrect equilibrium point of (8). Suppose, in
order to show a contradiction, that q∗ is stable. Since V̄ is real analytic,
q∗ must be a local minimizer of V̄ [32]. Consider a realization P ∗

representing aKn formation in Rn−1 such that q∗ and P ∗ are congruent.
Then, from Lemma 4, P ∗ is a local minimizer of V . However, since P ∗

is an incorrect equilibrium point, it must be unstable, and it cannot be a
local minimizer of V from Lemma 3. Thus, we reach a contradiction,
which means that any incorrect equilibrium point of (8) is unstable. �

From Theorem 3, we can finally conclude that q(t) converges to
the desired equilibrium set, and we can achieve the target interagent
distances for almost all initial conditions. We summarize the final
conclusion in the following theorem.

Theorem 4: Under the closed-loop system (8), the agents achieve
the target Kn formation shape in Rd for almost all initial conditions if
the target formation represented by Q̄ is nondegenerate and infinitesi-
mally rigid in Rn−1 .

The expression “almost all” in Theorem 4 can be interpreted as that
there may exist an incorrect equilibrium point at which we do not obtain
the target formation shape, but the incorrect equilibrium point is not
attractive.

D. Ingredients of the Control Input

We emphasize that the modified control input for the actual (as
opposed to virtual) formation can be calculated based on the relative
position measurements and exchange of the information of the virtual
variables. To explain this, let us consider theK4 formation in R1 shown
in Fig. 3. The system equations, which are spread out from (8), in terms
of q are given by

ṗ1 = (p2 − p1 )e12 + (p3 − p1 )e13 + (p4 − p1 )e14 ,

ẇ1
1 = (w1

2 − w1
1 )e12 + (0 − w1

1 )e13 + (0 − w1
1 )e14 ,

ṗ2 = (p1 − p2 )e12 + (p3 − p2 )e23 + (p4 − p2 )e24 ,

ẇ1
2 = (w1

1 − w1
2 )e12 + (0 − w1

2 )e23 + (0 − w1
2 )e24 ,

ẇ2
2 = (0 − w2

2 )e12 + (0 − w2
2 )e23 + (0 − w2

2 )e24 ,

ṗ3 = (p1 − p3 )e13 + (p2 − p3 )e23 + (p4 − p3 )e34 ,

ṗ4 = (p1 − p4 )e14 + (p2 − p4 )e24 + (p3 − p4 )e34 .

Note that pi − pj are relative position measurements and wj
i are sup-

posed to be transmitted among the neighboring agents. Moreover, the
eij terms consist of relative position measurements and/or the vir-
tual variables. For example, we have e34 = (p3 − p4 )2 − (p̄3 − p̄4 )2 ,
which means that the calculation of e34 requires the relative position

7Uniform continuity of ˙̄V can be concluded from boundedness of the second
derivative of V̄ .

Fig. 4. Simulation for a K4 formation in R. (a) Trajectories of the agents
in R3 . (b) Trajectories of the agents projected onto RF3

2 . (c) Squared-
distance errors.

measurement (p3 − p4 ) only. On the other hand, e12 = (p1 − p2 )2 +
(w1

1 − w1
2 )2 + (w2

2 )2 − [(p̄1 − p̄2 )2 + α2 ] so the calculation of e12

needs a relative position measurement and exchange of virtual vari-
ables.

Remark 1: Since the underlying formation graph used in our prob-
lem is a complete graph, one may consider the proposed control strat-
egy as a centralized formation control strategy. However, the proposed
control strategy does not require a centralized coordinator, which is
supposed to collect the information of the whole system, calculate, and
distribute the control inputs for local agents. In our problem formu-
lation, each agent is supposed to measure the relative positions to its
neighbor(s) using local sensors based on its independent local reference
frame, and communicate with its neighbors to exchange the informa-
tion of the virtual coordinate variables. Thus, the control law proposed
in this paper is a distributed formation control law and inherits the
advantages of the existing distance-based formation control strategies
in the literature.

V. EXAMPLES WITH SIMULATION

We introduce some examples to support our results. A particular
example of generalKn formations is aK4 formation in R2 . The analysis
on the K4 formation under the control law proposed in this paper can
be found in [23]. In this section, we introduce two more examples
representing situations more general than the K4 formation in R2 in
terms of the number of virtual variables.

A. K4 Formation in R

Consider a K4 formation in R. Since the number of agents of interest
is 4, the virtual realization space should be R3 , and the number of
required virtual variables is 3 from (6). Let p̄ = (3, 0, 1, 2), which
represents the formation in Fig. 3(a). Then, with α = 1, we have

Q̄ =

⎛

⎝

⎡

⎣
3
1
0

⎤

⎦,

⎡

⎣
0
1
1

⎤

⎦,

⎡

⎣
1
0
0

⎤

⎦,

⎡

⎣
2
0
0

⎤

⎦

⎞

⎠ .

By applying the proposed control law, we can obtain the results shown
in Fig. 4. The virtual K4 formation in R3 achieves the target shape
represented by Q̄. As a result, we can obtain the target formation shape
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Fig. 5. Simulation for a K5 formation in R2 . (a) Trajectories of the
agents projected onto RF4

3 . (b) Trajectories of the agents projected onto
RF4

2 . (c) Squared distance errors.

in R as well. Note that the centroid of the formation is stationary on
the x–axis in Fig. 4(b), which coincides with our analysis in the proof
of Theorem 2.

B. K5 Formation in R2

Consider a K5 formation in R2 . In this case, the number of required
virtual variables is also 3 according to (6). Let

p̄ =
([

0
0

]

,

[
2
0

]

,

[
2
2

]

,

[
0
2

]

,

[
1
3

])

.

Then, with α = 1, we have

Q̄ =

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

0
0
1
0

⎤

⎥
⎥
⎦,

⎡

⎢
⎢
⎣

2
0
1
1

⎤

⎥
⎥
⎦,

⎡

⎢
⎢
⎣

2
2
0
0

⎤

⎥
⎥
⎦,

⎡

⎢
⎢
⎣

0
2
0
0

⎤

⎥
⎥
⎦,

⎡

⎢
⎢
⎣

1
3
0
0

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠ .

By applying the proposed control law, we can obtain the results shown
in Fig. 5. Remark that we cannot illustrate the trajectories of the agents
in virtual R4 space. Thus, Fig. 5(a) represents only the trajectories
projected onto RF 4

3 . Fig. 5(b) shows that we finally achieve the target
formation shape in the original space, and the centroid of the agents in
the original space is stationary.

VI. CONCLUSION

In this paper, we showed that achieving (almost) global convergence
to a target formation shape under the distance-based formation control
law in [15] is impossible for a particular example of a globally rigid
formation. Formations represented by complete graphs form a particu-
lar set of globally rigid formations. For those formations, we proposed
a new control law motivated from the existing one in [15], and showed
that we can achieve almost global convergence under the proposed
control law.

However, whether the proposed control law can be applied to general
globally rigid formations, thereby achieving global convergence, has

yet to be proved. Thus, achieving global convergence for an arbitrary
globally rigid formation will be our ultimate goal. Of course, one
obvious approach to achieving this would be to determine a formation
with a complete graph in which the target formation was embedded.
There are potential difficulties in doing this, however. First, if it is
necessary to compute those interagent distances not given as part of
the target formation with a globally rigid graph, especially if it is
the task of the agents themselves to compute the missing interagent
distances, the computation may be constrained to be distributed and the
computational burden is simply unclear. However, it may well be that
the missing distances are readily available. There remains, however, a
second potential difficulty. Operation of the algorithm requires agents
to sense relative positions. It may be that the extra relative position
sensing required for the complete graph approach overloads agents
(the sensed variables scale with the size of the formation) or demands
sensing outside the range of the sensors through some agents.
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