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Abstract: Identifying the health benefits of phytochemicals is an essential step in drug and functional
food development. While many in vitro screening methods have been developed to identify the
health effects of phytochemicals, there is still room for improvement because of high cost and low
productivity. Therefore, researchers have alternatively proposed in silico methods, primarily based
on three types of approaches; utilizing molecular, chemical or ethnopharmacological information.
Although each approach has its own strength in analyzing the characteristics of phytochemicals,
previous studies have not considered them all together. Here, we apply an integrated in silico analysis
to identify the potential health benefits of phytochemicals based on molecular analysis and chemical
properties as well as ethnopharmacological evidence. From the molecular analysis, we found an
average of 415.6 health effects for 591 phytochemicals. We further investigated ethnopharmacological
evidence of phytochemicals and found that on average 129.1 (31%) of the predicted health effects had
ethnopharmacological evidence. Lastly, we investigated chemical properties to confirm whether they
are orally bio-available, drug available or effective on certain tissues. The evaluation results indicate
that the health effects can be predicted more accurately by cooperatively considering the molecular
analysis, chemical properties and ethnopharmacological evidence.

Keywords: phytochemical; health benefits; network medicine; molecular analysis;
ethnopharmacology; herbal medicine; chemical property

1. Introduction

Plants provide not only essential nutrients needed for life, but also other bioactive phytochemicals
that contribute to health promotion and disease prevention. While the macro- and micronutrients in
plants were long thought to be one of the essential components for human health, phytochemicals
have recently emerged as modulators of key cellular signaling pathways [1,2]. Phytochemicals,
often called secondary metabolites, are non-nutritive chemical compounds produced by plants via
several chemical pathways. Recent studies have demonstrated that a large number of phytochemicals
can be beneficial to the function of human cells [3–5]. With several studies indicating the effects of
phytochemical-rich foods on health, it is strongly suggested that ingesting these phytochemicals can
help to improve health [6–8]. Based on such evidence, many researchers have previously conducted
studies to investigate the roles of phytochemicals in health improvements.
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Despite the efforts, studies on the precise roles of phytochemicals were faced with various
limitations. To begin with, most of the studies were performed through in vitro assessment [9–11].
For example, in vitro screening methods were used to confirm biological activities of extracted
phytochemicals. However, large-scale experiments are required for a large number of considered
phytochemicals and potential health effects, a process which is costly and yet very unproductive.
Therefore, in silico approaches, mostly based on molecular or ethnopharmacological information,
have been proposed to identify the potential health effects of phytochemicals from numerous
candidates. Molecular-based approaches focus on the similarity between phytochemicals and approved
drugs, such as the molecular structure, mechanisms of the molecular network or target protein
similarity, to predict potential effects of phytochemicals [12–14]. However, these approaches are
designed to predict the specific effect of phytochemicals on specific phenotypes, or vice versa.
Therefore, it is difficult to analyze the systemic health effects on the human body. Alternatively,
some ethnopharmacological knowledge-based approaches have been developed [15–18]. These studies
focused only on the ethnopharmacological information as a preliminary tool to select plants or
phytochemicals for a certain disease, followed by molecular analysis or in vitro assessment. Although
this process is useful to filter out phytochemicals from a large number of candidates, the productivity
is still low because plants contain hundreds of phytochemicals. Moreover, it is difficult to find plants
that are highly related to a particular health effect, since effect terms are closely related to each
other [19,20]. For example, when extracting plants associated with urination, we need to consider the
phenotypes associated with urination, such as dysuria, urethral stone, and urinary tract abnormalities,
to achieve more relevant results. These problems make it difficult to perform large-scale analysis
of phytochemicals.

In this study, we apply an integrated in silico analysis to identify the potential health benefits
of phytochemicals. Our previous study demonstrated that phenotypic effects of drugs can be
identified by investigating the propagated drug effects from a molecular network, and mapping
these results to phenotypes [21]. Therefore, we inferred the potential health effects of phytochemicals
by adapting our previous method. However, this approach does not provide detailed information
about the effects, such as whether they are beneficial, harmful, or associated. To solve this problem,
we utilized the ethnopharmacological evidence of plants. Our underlying hypothesis is that if a
predicted health effect of a certain phytochemical agrees with the ethnopharmacological use of a
large number of plants which contain the phytochemical, then we can reasonably argue that the
effect of phytochemical is beneficial to health. To measure the association between the predicted
effects of phytochemicals and ethnopharmacological evidence of plants, we calculated the semantic
similarity between phenotype pairs on the Unified Medical Language System (UMLS) network.
Moreover, we investigated the chemical properties of phytochemicals to confirm whether they are
orally bio-available, drug available or effective on certain tissues. Finally, we inferred the health effects
of 591 phytochemicals for 3832 phenotypes based on the integrated analysis of the molecular network,
chemical properties and ethnopharmacological evidence. When we assessed the results, we found that
our predictions cover many results which were reported in previous work. To conclude, the novelty of
our method is threefold: (i) it is the first in silico method which identifies systemic health effects of
phytochemicals by analyzing molecular properties, chemical properties and ethnopharmacological
evidence; (ii) the large-scale analysis can be performed based on the integrated and structured
molecular and phenotype information; and (iii) it can be used as a preliminary tool to screen medicinal
agents from numerous phytochemicals.

2. Materials and Methods

2.1. Materials

Information about phytochemicals and the chemical composition of plants was collected from
KTKP [22], TCMID [23] and FooDB [24]. Plants and their ethnopharmacological use were collected from
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KTKP, TCMID and Kampo [25]. Molecular targets of phytochemicals were collected from the DrugBank,
the Drug Combination Database (DCDB) [26], the Comparative Toxicogenomics Database (CTD) [27],
MATADOR [28], STITCH [29] and TTD [30] databases, and gene-phenotype associations were collected
from the CTD database. A protein-protein interaction (PPI) network, including 19,093 nodes and
270,970 edges, was obtained from BioGrid version 3.4.136 [31] and the Context-Oriented Directed
Associations (CODA) system [32]. A phenotypic network was collected from UMLS in the 2017AA
version [33]. UMLS provides integrated information of various terminologies pertaining to biomedicine.
The Metathesaurus is the main component of the UMLS, which is organized by biomedical concepts
where each distinct concept is assigned to a concept unique identifier (CUI). We collected CUIs
with broader (RB), narrower (RN) and other-related (RO) relationships among 11 types of UMLS
relationships from related concept lists (File=MRREL.RRF), resulting in total 220,104 CUIs and
663,018 relationships.

For a gold-standard set, phytochemical derived drugs were collected from DrugBank version
4.3 [34]. Drug-phenotype associations were collected from DrugBank, CTD, ClinicalTrials.gov [35] and
DCDB databases by exploiting the MetaMap tool to extract phenotype-related terms [36]. With inputs
such as narrative text, MetaMap returns a ranked list of Metathesaurus concepts associated with each
word of the input text. Among the Metathesaurus concepts categorized in semantic types, we used
Metathesaurus concepts assigned to 20 semantic types out of 135 semantic types, which have related
phenotypes such as “Disease or syndrome”, “Sign or symptom” and “Clinical attribute” (Table 1).

Table 1. Health effects-related UMLS semantic types. Among 135 semantic types, the following 20
semantic types were selected as related to health effects.

Abbreviation Semantic Type

acab Acquired Abnormality
anab Anatomical Abnormality
biof Biologic Function
cgab Congenital Abnormality
comd Cell or Molecular Dysfunction
dsyn Disease or Syndrome
emod Experimental Model of Disease
fndg Finding
inpo Injury or Poisoning
lbtr Laboratory or Test Result

menp Mental Process
mobd Mental or Behavioral Dysfunction
neop Neoplastic Process
patf Pathologic Function
phsf Physiologic Function
sosy Sign or Symptom
clna Clinical attribute
hops Hazardous or Poisonous Substance
bpoc Body Part, Organ, or Organ Component
tisu Tissue

2.2. Method Overview

We designed a systematic pipeline to predict the potential health benefits of phytochemicals based
on molecular and chemical properties of the phytochemicals, and ethnopharmacological evidence of
the plants that contain the phytochemicals. For a query phytochemical, the algorithm works in three
steps (Figure 1): (i) Inferring the systemic health effects of phytochemicals by calculating propagated
effects on the molecular network and filtering statistically significant phenotypes; (ii) investigating
bioavailability based on the physicochemical properties and physiological effects; and (iii) finding
ethnopharmacological evidence.

ClinicalTrials.gov
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Figure 1. A systematic pipeline for the prediction of the health effects of phytochemicals. (a) Phenotype
values of a phytochemical were obtained by calculating the propagated effects on the molecular
network. In the molecular network, the random walk with restart (RWR) algorithm was performed
based on direct targets (star) and indirect targets (triangle) of a phytochemical, in which the RWR results
are shown as colored nodes. Based on gene-phenotype associations, sums of gene values are mapped
to phenotypes. (b) For all phytochemicals, chemical properties, including physicochemical properties
and physiological effects, were calculated. (c) Plants containing the phytochemical were extracted.
For each extracted plant, we calculated the semantic similarity between the predicted health effect
of the phytochemical and the ethnopharmacological effects of the plant. To do this, we constructed
phenotypic network and calculated the shortest path length between phenotype pairs and depth of the
phenotypes. Plants with the similarity score larger than the user-defined threshold were selected.

In our previous study, we found that the phenotypic effects of drugs can be identified by
calculating propagated drug effects on the molecular network [21]. We applied this method to
phytochemicals to infer their systemic health effects. For this, we constructed phenotype vectors of
phytochemicals (PVPs). Each vector contains health effects or disease-related terms for 3832 phenotypes
defined by Medical Subject Headings (MeSH) and Online Mendelian Inheritance in Man (OMIM).
The PVPs were generated by the following three steps. In the first step, propagated phytochemical
effects were calculated by using the random walk with restart (RWR) algorithm on the molecular
network (Figure 1a). The effects of phytochemicals are not limited to direct targets, but they are further
propagated to interacting proteins. Therefore, initial values of the molecular network were assigned to
the known and inferred targets of the phytochemicals, and the propagated effects of phytochemicals
were calculated by applying the RWR algorithm. Consequently, this approach addresses the problem
of the relatively small number of known targets of phytochemicals, compared to synthetic drugs. In the
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second step, phenotype values were calculated by combining propagated phytochemical effects based
on gene-phenotype associations. Accordingly, phenotypes have high values when a drug directly
binds to phenotype-associated genes or when drug targets are closely located to phenotype-associated
genes. In the third step, PVPs were constructed by filtering statistically significant phenotypes from
the inferred list of phenotypes, which were calculated from the second step. We then calculated the
chemical properties, including physicochemical properties and physiological effects, to predict the
bioavailability of phytochemicals (Figure 1b). Based on this result, we found phytochemicals which
can be orally absorbed or can be delivered to certain tissues. Finally, ethnopharmacological evidence
of phytochemicals was investigated (Figure 1c). For a query phytochemical, we first found plants
containing the phytochemical. We then calculated the semantic similarity between the predicted
health effects of the phytochemical and the ethnopharmacological use of the plants. If the semantic
similarity score is significantly high, then we determine that the ethnopharmacological use of the
plant is highly associated with the phytochemical. This process is meaningful since it implies that
ethnopharmacological evidence can help to select more relevant results. Also, it can be used as
an additional filtering criterion. We provide all predicted health effects, chemical properties and
ethnopharmacological use evidence of the phytochemicals (Supplementary Data 1 and Data 2).

2.3. Inferring Health Effects of Phytochemicals on the Molecular Network

We constructed a molecular network based on PPI information and performed the RWR algorithm
to investigate the propagated effects of phytochemicals. RWR simulates the random walker from its
seed nodes and iteratively transmits the node values to the neighbor nodes, with the probabilities
proportional to the corresponding edge weights [37,38]. To apply the RWR algorithm, we assigned
initial values to seed nodes in the molecular network based on the target information of the
phytochemicals. Target information of phytochemicals can be divided into two groups: direct and
indirect associations. The direct associations contain binding information between phytochemicals
and target proteins, while the indirect associations involve interactions caused by the changes in the
expression of a protein, compound-induced phosphorylation, or influences of active metabolites of
the phytochemicals. Information from both types of associations had to be taken into consideration,
since the biological activity of a phytochemical can be changed from complex interactions within the
molecular network, and the binding target information of phytochemicals is largely hidden compared
to that of synthetic drugs. The initial values of a direct and indirect association were assigned as 1
and 0.3, respectively [21,27]. Second, the transition probability from a node to the neighbor node was
calculated. We assumed that the transition probability represents the propagated drug effects on the
molecular network. The transition probability vector of each node at time step t + 1 is defined as
following equation:

p(t+1) = (1− r)WT pt + rp0

where r represents the restarting probability of the random walker at each time step, set to 0.7 in this
study [38–41]. W represents the normalized adjacency matrix of the molecular network, pt is the probability
vector of each node at time step t, and p0 represents the initial probability vector. The RWR algorithm
simulates the random walker until all nodes reach the steady state (pt+1 − pt < 10−8). We then mapped
the RWR results to phenotypes based on the gene-phenotype associations. In this step, we found all
genes which are therapeutic targets or biomarkers of certain phenotypes and mapped the sum of these
gene values, which were obtained from RWR results, to the corresponding phenotypes. Through this
process, we obtained a list of phenotype values for each phytochemical.

These phenotype values calculated from propagated effects do not necessarily represent the extent
of the relationship between a phytochemical and phenotype. Even if a phenotype value calculated from
propagated effects is high, it may not mean that the phytochemical is highly related to the phenotype.
In cases where there are many phenotype-associated genes, or when there is a large number of target
proteins for a phytochemical, overall phenotype values increase stochastically. To overcome this
problem, we generated random PVPs and compared them to a list of inferred phenotype values to
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select phenotypes with significant values. A random PVP was generated by randomly selecting targets
of a phytochemical from a fixed number of target proteins. For each phytochemical, 1000 random PVPs
were generated, and phenotypes with an empirical p-value lower than 0.01 were selected. The p-value
was calculated from the following equation:

p = (r + 1)/(n + 1)

where n is the number of random PVPs and r is the number of PVP values that are larger than the
phenotype value [42]. The raw values of PVPs were then replaced with binary values, where only
those with p-values lower than 0.01 are given the value one. From this process, PVPs, which consist of
binary values, were generated with filtered statistically significant phenotypes from a large number of
inferred candidates of phytochemical effects.

2.4. Calculating Chemical Properties of Phytochemicals

The chemical properties of phytochemicals were calculated to provide an understanding of the
physicochemical properties and physiological effects (Figure 1b). Physicochemical properties include
molecular weight, log of the octanol-water partition coefficient (AlogP), hydrogen-bond donors,
hydrogen-bond acceptors, and rotatable bond count. Physiological effects include human intestinal
absorption (HIA), Caco-2 permeability, blood-brain barrier (BBB) permeability and Lipinski’s rule of
five (RO5). By utilizing the physiological effects of phytochemicals, we can predict various functional
activities of the compounds on the human body. For example, we can predict the in vivo absorption of
phytochemicals across the gut wall based on the Caco-2 permeability [43]. Phytochemicals are required
to cross the BBB to have a neuroactive function. In this study, HIA and BBB values are calculated with
Shen’s work [44], while Caco-2 permeability is calculated through the quantitative structure–activity
relationship (QSAR) model [45]. RO5 and other physicochemical properties are calculated with the
Chemistry Development Kit (CDK) Descriptor Calculator [46].

2.5. Finding the Ethnopharmacological Use of Phytochemicals

We investigated the ethnopharmacological use of plants to provide further evidence of the
predicted health effects of phytochemicals. The ethnopharmacological information, such as efficacy
or indications collected in articles from scientific journals and documents of traditional medicine,
is generally described in narrative text. Moreover, there are complex associations between phenotypes,
such as synonyms and symptoms of diseases. Therefore, it is difficult to determine whether
certain ethnopharmacological evidence is associated with the phenotype of interest. To extract
plants which have ethnopharmacological evidence of the predicted effects of a phytochemical,
(i) phenotype terms should be extracted and structuralized from the narrative text, and (ii) the complex
relationship between phenotypes should be quantified. To solve this problem, we first extracted
phenotype-associated terms from the narrative text by applying the MetaMap tool (Figure 2a). Next,
plants containing the queried phytochemical were found based on external database information
(Figure 2b). Next, the phenotypic network was constructed based on the hierarchical relationship
of UMLS [33], and the semantic similarities between phenotypes were calculated (Figure 2c).
A relationship between two general phenotype concepts, such as neoplasms and cardiovascular
diseases, would result in a reasonably large difference, while one between two closely related concepts
such as coronary stenosis and coronary vasospasm would result in a small difference. Semantic
similarity can measure the quantitative relatedness between phenotypes by considering the distance
and depth of phenotypes in the network. We applied the semantic similarity measure proposed by Wu
& Palmer (wup) and defined as [47]:

sim(c1, c2) =
2× depth(lcs(c1, c2))

path(c1, lcs(c1, c2)) + path(c2, lcs(c1, c2)) + 2× depth(lcs(c1, c2))
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where lcs (c1,c2) is the lowest common subsumer of concepts c1 and c2. Based on this method, we can
calculate the distance between the inferred effect of a phytochemical and the ethnopharmacological
use of a plant. In this study, we assumed that the phenotype pair is highly associated when a
semantic similarity score is larger than 0.8. Therefore, we calculated semantic similarities between
all possible pairs of predicted health effects of a phytochemical and ethnopharmacological effects
of the plant, and plants with the similarity score larger than 0.8 were selected. We showed that the
effect type of predicted health effects is likely to be beneficial by investigating the evidence of the
ethnopharmacological use of plants based on semantic similarity.
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Figure 2. An overview of the findings of the ethnopharmacological use of phytochemicals. (a) From
public databases, we collected ethnopharmacological evidence of medicinal plants. We then extracted
phenotype-associated terms from the narrative text of the collected information by applying the
MetaMap tool. (b) For a queried phytochemical, plants containing the phytochemical were extracted.
(c) For each extracted plant, we mapped its ethnopharmacological effects to the phenotypic network
(blue circle). Then, we calculated semantic similarities between all possible pairs of predicted health
effects of phytochemicals and ethnopharmacological effects of the plant. In this example, the semantic
similarity between stroke and nephrosis is 0.57, based on the semantic similarity formula, because the
depth of lcs is 2, the shortest path length between nephrosis and lcs is 1 and the shortest path length
between stroke and lcs is 2. Plants with a similarity score larger than 0.8 were selected.

3. Results

3.1. Inferred Health Effects of Phytochemicals

From public databases, we were able to collect information for 2136 phytochemicals found in
1212 plants. However, the information on chemical structures was only available for 512 of the
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phytochemicals (23.9%), while the molecular target was known for only 591 of them (27.6%). Hence,
we predicted the potential health effects of 591 phytochemicals by investigating their propagated
effects on the molecular network based on molecular target information and mapping the effects to
phenotypes. From the results, an average of 415.6 ± 27.3 (confidence interval = 0.95) health effects
were predicted for each phytochemical (Figure 3). Since there are many candidate health effects in the
molecular network analysis, and their detailed effect types are unknown, we further investigated the
intersection between the predicted health effects of the phytochemicals and the ethnopharmacological
use of the plant containing the phytochemicals. The results indicated that 31% of the predicted health
effects had ethnopharmacological evidence (129.1 out of 415.6 health effects).
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Figure 3. The distribution of the number of predicted health effects. The distribution of the number
of predicted health effects by molecular network analysis (red violin plot). The mean of predicted
health effects is 415.6 ± 27.3. Next, we investigated the intersection between predicted health effects
of the phytochemicals and ethnopharmacological use of the plant containing the phytochemicals.
The distribution of the number of predicted health effects by molecular network analysis and
ethnopharmacological use evidence (blue violin plot). The mean of predicted health effects is
129.1 ± 11.4.

Next, the physiological effects of phytochemicals were confirmed (Table 2). To do this,
we investigated RO5, HIA, Caco-2 permeability and BBB permeability for 512 phytochemicals
(Supplementary Data 2). For example, 446 phytochemicals were found to satisfy RO5. Additionally,
401 phytochemicals were confirmed to satisfy both RO5 and HIA.

Table 2. The number of phytochemicals which satisfy RO5, HIA, Caco-2 and BBB. We also investigated
the number of phytochemicals which satisfy two physiological effects.

RO5 HIA Caco-2 BBB

RO5 446 401 280 365
HIA 482 330 407

Caco-2 335 303
BBB 428



Nutrients 2018, 10, 1042 9 of 17

3.2. Performance Evaluation

Our method predicts the potential health effects of phytochemicals from the integrated analysis
(Supplementary Data 1). The core information used in such a prediction is the propagated effects
of phytochemicals obtained from the molecular network. Therefore, we evaluated the performance
of the prediction by calculating precision (p) and recall (r) values [48]. To do this, we collected the
experimentally validated information as the gold-standard positive set. Indications from DrugBank
were used as the set for therapeutic effects, while information from Side Effect Resource (SIDER) was
used as that for side effects. Furthermore, considering that information on phytochemicals is limited
for DrugBank and SIDER, we additionally collected potential candidate effects from CTD as the silver
standard positive set to address a large number of phytochemicals.

In the prediction of phytochemical effects, large class skew and large changes in class distributions
are common, because the negative set is not available. Therefore, many studies have excluded
gold-standard positive sets from all possible health effects and used the remaining as the gold-standard
negative set [49–51]. To see the effect due to class skew, we calculated precisions for different
positive/negative ratios to evaluate the precision performance in the various skewness of datasets
(Table 3) [52]. To do this, we generated a negative set by random sampling without replacement
of the phytochemical and phenotype associations in different ratios. In each ratio, the negative
set was generated ten times, and the performance for each case was evaluated by averaging the
results. Moreover, since we predict an average of 415.6 potential health effects per phytochemical,
the precision is very low (p = 0.006 ± 0.001 and 0.049 ± 0.010, respectively). This is natural, because
the correct answer in DrugBank or SIDER is only a fraction of all health effects of phytochemicals.
Therefore, we evaluated the precision performance by adjusting skewness between the positive set
and negative set, and we confirmed that molecular network analysis predicts health effects with high
precision. Next, we checked the recall performance. Out of 270 therapeutic effects of 61 phytochemicals,
our method covered 191 phenotypes (r = 0.738± 0.062). Similarly, for side effect prediction, our method
covered 1059 phenotypes among the total 1784 phenotypes of 60 phytochemicals (r = 0.576 ± 0.061).
In potential candidate effect prediction, our method covered 119,233 phenotypes among the total
136,862 phenotypes of 453 phytochemicals (r = 0.909 ± 0.011). Overall, the prediction of health effects
with molecular network analysis shows a good performance.

Table 3. Precision and recall performance of molecular network analysis in predicting therapeutic
effects, side effects and potential candidate effects.

Skewness Therapeutic Effects Side Effects Inferred Candidates

Precision
1:1 0.921 ± 0.032 0.922 ± 0.021 0.942 ± 0.005

1:10 0.518 ± 0.059 0.432 ± 0.040 0.706 ± 0.013
All 0.006 ± 0.001 0.049 ± 0.010 0.522 ± 0.022

Recall All 0.738 ± 0.062 0.576 ± 0.061 0.909 ± 0.011

Next, we compared the prediction performance with and without considering
ethnopharmacological evidence (Table 4). To consider the ethnopharmacological evidence,
predicted health effects were filtered based on the presence of the ethnopharmacological use of the
plant containing the phytochemical. The results show that the precision performance is increased when
the ethnopharmacological evidence is considered, in terms of predicting therapeutic (p = 0.014 ± 0.003)
and potential candidate effects (p = 0.563 ± 0.059). Interestingly, we found that the precision value of
the side effects prediction was reduced because we only used the therapeutic use case information in
the ethnopharmacological evidence. This indicates that the ethnopharmacological evidence helps
distinguish between types of phytochemicals effects, such as therapeutic or side effects, which is one
of the disadvantages of molecular network analysis.
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Table 4. Precision performance of the method, which uses molecular network analysis and
ethnopharmacological use evidence in predicting therapeutic effects, side effects and potential
candidate effects.

Skewness Therapeutic Effects Side Effects Inferred Candidates

1:1 0.941 ± 0.035 0.761 ± 0.033 0.948 ± 0.014
1:10 0.541 ± 0.069 0.319 ± 0.055 0.732 ± 0.037
All 0.014 ± 0.003 0.025 ± 0.005 0.563 ± 0.059

Lastly, we confirmed the performance improvement using chemical properties. Because
phytochemicals must pass through the BBB to regulate a neuroactive function, we compared the
performance of the prediction of neurological disorder for the two independent sets by selecting
phytochemicals based on BBB permeability. From the results, we found that the precision and recall
values of the set that crosses the BBB (p = 0.611 ± 0.046, r = 0.725 ± 0.033) are much higher than the set
that does not cross the BBB (p = 0.312 ± 0.052, r = 0.558 ± 0.042). Overall, our results indicate that the
integrated analysis can predict health benefits of phytochemicals more accurately than analysis using
individual information.

3.3. External Literature Validation

In this section, we aimed to provide additional performance evaluations using the external
data set that has not been used in our prediction method. We evaluated the reliability of our
prediction results that are phytochemical-phenotype associations by checking the frequency of
co-occurrence of phytochemicals and phenotypes in the PubMed abstract. Our basic assumption
here is that if our method predicts reliable associations, then those phytochemical-phenotype
associations would have higher probability of co-occurrence in previous studies than random
phytochemical-phenotype associations would. Therefore, we made two independent sets based
on the predicted health effects of phytochemicals. First, the predicted association set was
generated by selecting phytochemical-phenotype associations, which were predicted as positive
by molecular analysis, oral-availability and ethnopharmacological evidence. Second, for the control,
the random association set was generated by randomly sampling the same number of samples from
phytochemical-phenotype associations, without the aforementioned predicted association set.

We used 13,200,786 PubMed abstracts that were published from 1950–2013 for external
literature validation. For the predicted phytochemical-health effects, we counted co-occurrences
of phytochemical-phenotype terms (nc) from PubMed abstracts, calculated the Jaccard index (JI),
and conducted the Fisher’s exact test (np) and false discovery rate (FDR) test (nq) (Table 5). We also
performed the Mann-Whitney U test and calculated the corresponding p-values to check the statistical
difference of the literature evidence between the predicted and random association sets [53]. A p-value
of the Mann-Whitney U test lower than 0.05 was considered statistically significant.

Table 5. Literature validation was performed by comparing co-occurrence, the Jaccard index and
Fisher’s exact test values between predicted and random association sets. Statistical significance was
calculated by the p-value of the Mann-Whitney U test.

Co-Occurrence Jaccard Index p-Value 1 q-Value 2

Predicted association set 1.25 1.8 × 10−4 2984 1341
Random association set 0.09 9.5 × 10−6 612 274

Mann-Whitney U test, p-value <0.001 <0.001 <0.001 <0.001
1 The number of phytochemical-health effects associations which satisfy the p-value of Fisher’s exact test is lower
than 0.001. 2 The number of phytochemical-health effects associations which satisfy q-value of FDR test is lower
than 0.05.
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The co-occurrence value was calculated by counting the number of PubMed abstracts where a
phytochemical and its corresponding phenotype were in a same sentence. The average number of
co-occurrence of the predicted association set (nc = 1.25) were 13.8 times larger than that of the random
association set (nc = 0.09). Also, we normalized the co-occurrence value by the Jaccard index to correct
the differences in the frequency of phytochemicals and phenotypes [54]. To do this, we additionally
calculated an occurrence value (no) by counting the number of PubMed abstracts that contain both or
either of a phytochemical or a phenotype. For each phytochemical-phenotype association, the Jaccard
index was calculated by dividing nc by no. For example, assume that we calculate the Jaccard Index
for the phytochemical-phenotype pair “quercetin—stroke”. If there are 50 abstracts that mention
both quercetin and stroke and there are 200 abstracts that mention either or both, then the Jaccard
Index value for this pair would be 0.25. From the results, the average Jaccard index value of the
predicted association set (JI = 1.8 × 10−4) was 18.9 times higher than that of the random association
set (JI = 9.5 × 10−6). Furthermore, we performed Fisher’s exact test to find the significant associations
(p-value < 0.001). To get the Fisher’s test value of each association, we counted the number of PubMed
abstracts based on whether they included the phytochemical and target health effect. The results
indicate that the number of significant associations of the predicted association set (np = 2984) was
4.8 times higher than that of the random association set (np = 612). However, when a large number
of associations are evaluated, multiple testing problems arise and lead to many false positive results.
Therefore, we additionally performed the FDR test and found associations satisfying a q-value lower
than 0.05 [55]. The results indicate that the number of associations satisfying the q-value criteria from
the predicted association set (nq = 1341) was 4.9 times higher than that from the random association set
(nq = 274). In addition, the p-values of the Mann-Whitney U test indicated that the difference in the
literature evidence among the predicted and random association sets was significant. These results
showed that our method can be used as a tool to identify the health effects of phytochemicals.

3.4. Case Studies

To further illustrate the potential of this algorithm in finding phytochemicals with possible
medicinal effects against specific diseases, we selected a few phytochemicals, such as choline,
isoquercitrin and niacin, as case study subjects on whether there is evidence of their health benefits.
To begin with, our method predicted that choline could be effective against 1151 phenotypes,
such as hypertension, neurological diseases and hypoimmunity. Of these, 515 phenotypes were
supported by ethnopharmacological evidence. From this list, the top 10 phenotypes with the
most ethnopharmacological use evidence were selected. Then, we manually searched through
the ClinicalTrials.gov database to check whether any clinical trials were performed regarding these
phenotypes using choline. Interestingly, there were two phase four trials done with choline to treat
neurological disorders (ethnopharmacological evidence ne = 48, rank = 2). The first trial was by
Daewoong Pharmaceutical Co. LTD. in 2016, where the study was designed to test the efficacy of the
choline alfoscerate on cognitive improvements of patients with cerebrovascular injury in Alzheimer’s
disease. Along with this study, there are several animal studies [56,57] and another clinical trial
that support the dietary supplement of choline for the possible prevention of dementia and memory
loss [58]. The second trial related to neurological disorders was by Seoul National University Hospital
in 2013, in which the study focused on the cognitive impairment of post-stroke patients treated with
choline alfoscerate. Such an approach to cognitive damage with a choline supplement is also supported
with various animal studies [59,60] and a clinical trial [61]. Although one may claim that the range
of the term “neurological disorder” covers a wide spectrum of phenotypes, it is important to note
that the specific phenotypes of the clinical trials mentioned above, which are Alzheimer’s disease
(ne = 31, rank = 81) and cognitive impairment (ne = 3, rank = 419), were also on the list of possible
target phenotypes of choline. Furthermore, there was also a phase four clinical trial for pain (ne = 44,
rank = 6) by Columbia University in 2016, where the researchers planned to study the effects of taking

ClinicalTrials.gov
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choline to decrease postoperative pain. The anti-nociceptive effects of choline have been suggested
with various in vivo animal studies as well [62,63].

The evidence that illustrates the effectiveness of the algorithm in finding the
effects of phytochemicals on potential phenotypes can be also found in the other two
phytochemicals—isoquercitrin and niacin—as well. The results of these case studies are organized,
along with those of the choline, in Table 6. In each case it can be seen that, for the phenotypes that
are found to have a high potential relationship to the phytochemical, there have been related clinical
trials, many of which are already on phase three or four. As the algorithm discussed in this paper
agrees with the conclusions from the aforementioned clinical trials and experiments, it is possible to
clearly see that the algorithm can provide productive and plausible insights into potential therapeutic
relationships between phytochemicals and diseases of interest.

Table 6. Summary of evidence indicating potential health effects of exemplary phytochemicals:
isoquercitrin, niacin and choline.

Phytochemical Potential Health Effects Rank ne
Clinical Trials

(Phase)
Exemplary Studies

(PMID)

Choline

Neurological disorder 2 48 - -

Alzheimer’s disease 81 31 NCT02648906
(Phase 4)

12787861, 15647594
12637119, 7913981

Cognitive impairment 419 3 NCT01363648
(Phase 4)

21195433, 19304299
26366063, 23403474

Pain 6 44 NCT00720343
(Phase 4)

15780465, 19372354,
16942753, 29082318

Isoquercitrin
Hypertension 2 64 NCT01691404

(Not Applicable)
20134098, 25460361
17951477, 16636461

Thrombosis 10 56 NCT02195232
(Phase 2, 3)

12854360, 15234778
20148891, 20626032

Niacin

Neurological Disease 2 128 - -

Parkinson’s Disease 59 65 NCT03462680
(Not Applicable)

26273459, 25455298
26988916, 18381761

Heart condition 7 117

NCT00120289
(Phase 3)

NCT00000599
(Phase 3)

28057839, 23916935
28927896, 10924076

Vascular disease 9 113 - -

Cardiovascular disease 20 105

NCT00715273
(Phase 4)

NCT02003638
(Not Applicable)

3295315, 19159436
15258194, 24641964

4. Discussion

In this study, we introduced an integrated analysis to predict the health benefits of phytochemicals.
By investigating the propagated effects of 591 phytochemicals in the molecular network, we inferred
potential health effects of those phytochemicals for 3832 phenotypes. For all phytochemicals, we
investigated various physicochemical and physiological properties, such as HIA, Caco-2 permeability,
BBB permeability and RO5, so that the results can be used in further studies, such as on oral
bioavailability, drug availability and tissue specificity. Moreover, we provided evidence on the
ethnopharmacological use of plants to support the predicted health effects. Herbal medicine
has accumulated information on medicinal plants for thousands of years. Recent studies have
demonstrated that herbal medicine information can be used as an important resource in drug or
functional food development [64–66]. Therefore, we supported our results by investigating whether
the predicted health effects of phytochemicals are also found in the ethnopharmacological use of plants
containing the phytochemicals. For example, when we are looking for effective phytochemicals against
neurological disorders, we first check the 3832 predicted health effects of phytochemicals which were
inferred from molecular network analysis. Then, we select phytochemicals with positive physiological
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effects for RO5 and BBB permeability. Finally, we can find phytochemical candidates for neurological
disorders by investigating whether the phytochemicals have ethnopharmacological evidence for
neurological disorders. Performance evaluation revealed that the accuracy of predictions using all
three types of information together was better than that using each individual type. Such improvement
can be attributed to how each type of information fills in each other’s gap in content. Mere health
effect candidates can be obtained with simple molecular network analysis, but the results would
have been based on information with two major gaps for proper pharmacological studies: tissue
specificity and effect type prediction. By considering the phytochemical’s physiological properties
in the algorithm, it became possible to consider tissue specificity, thereby improving the overall
prediction. Likewise, utilizing ethnopharmacological evidences allowed to overcome a major drawback
of molecular network analysis, which is that the prediction does not consider effect types. The effect
types, such as therapeutic or side effects from experience, help to narrow down possible medicinal
influences of the phytochemicals on human body.

The strength of this algorithm is further highlighted by illustrating that there are several clinical
trials already deep into phases three or four that are investigating the potential effects of the selected
phytochemicals on their predicted phenotypes. This implies that the algorithm can be utilized to
effectively predict the potential targets of the phytochemicals and vice versa. Also, this shows the
application potential of the proposed method. Thus, productivity in such studies of medicinal effects
can be expected to improve.

There are additional considerations that may improve our method. First, although this study
utilized the ethnopharmacological use of the plants as important information to analyze the effects of
phytochemicals, we did not consider the combination effects of phytochemicals. Because plants are
composed of many phytochemicals, pharmacological effects of plants are often caused by the combined
actions of multiple phytochemicals, as well as the individual actions of phytochemicals. However, this
issue is very complex since the number of candidate combinations has increased exponentially with
the increase of the number of considered phytochemicals. Second, the dosage of phytochemicals is not
taken into an account in the method, although the health effects can be varied by different amount of
chemicals taken. Until now, most studies have focused on the dose-response relationship for drugs,
whereas only a few computational methods have calculated the expected content-response relationship
for phytochemicals [67,68]. Lastly, current knowledge of phytochemicals is limited, and hence only
a small proportion of phytochemicals could be analyzed [69]. In this study, we only consider 591
phytochemicals, since the information on chemical structure and molecular targets of phytochemicals
are mostly hidden. Nevertheless, these limitations can be taken into an account for further experiments
or improved computational methods. With these further improvements, our method can be used as an
in silico screening tool to provide a list of health effects of phytochemicals in a cost-effective manner.

5. Conclusions

This study identified the health benefits of phytochemicals by utilizing various phytochemical
properties, including molecular and chemical properties, along with ethnopharmacological evidence.
Based on the known and inferred effects from gold and silver standard datasets, we confirmed that
the health effects of phytochemicals could be successfully predicted with high coverage. We believe
that the identification of the potential health benefits of phytochemicals may be a key factor to provide
further insights into the discovery of drugs or functional foods.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/10/8/1042/
s1, Supplementary Data 1: Predicted health effects of phytochemicals, Supplementary Data 2: Chemical properties
of phytochemicals.
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