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ABSTRACT Combinations of natural products have been used as important sources of disease treatments.
Existing databases contain information about prescriptions, herbs, and compounds and their relationships
with phenotypes, but they do not have information on the use of combinations of natural product compounds.
In this paper, we identified large-scale associations between natural product combinations and phenotypes
by applying an association rule mining technique to integrated information on herbal medicine, combination
drugs, functional foods, molecular compounds, and target genes. The rationale behind this approach is
that natural products commonly found in medicinal multicomponent mixtures have statistically significant
associations with the therapeutic effects of the multicomponent mixtures. Based on a molecular network
analysis and an external literature validation, we show that the inferred associations are valuable information
for identifying medicinal combinations of natural products since they have statistically significant closeness
proximity in the molecular layer and have much experimental evidence. All results are available through
the workbench site at http://biosoft.kaist.ac.kr/coconut to facilitate the investigation of the medicinal use of
natural products and their combinations.

INDEX TERMS Association rules, combination drug, combination therapy, data mining, databases,
medicinal combinations, natural products, pharmaceutical technology, polypharmacology.

I. INTRODUCTION
Natural products and their mixtures have been used as a
valuable source of medicinal agents, and many modern drugs
are still derived from natural products [1], [2]. According
to a previous review, 49% of approved cancer drugs are
based on natural products, while only 25% are synthetic
drugs [3]. Moreover, approximately 70-80% of the world’s
population depends on herbal sources for their primary health
care [4]–[6].

Combination therapy is gaining attention for overcoming
the critical issues of single drug treatments, such as acquired
resistance and side effects [7]–[9]. Recently, several combina-
tions of natural products with various synergies were found
in herbal medicines [10]–[12], which indicates that combi-
nations of natural products can be used as a valuable source
for combination therapy. Therefore, a better understanding
of natural product combinations, including their sources,

efficacy and molecular mechanisms, based on accumulated
knowledge is essential to identify new drug combinations.

There are several ongoing efforts to gather information
on natural products. Herbal medicine databases, such as
TCMID, TCM@Taiwan, HIT, TM-MC and PharmDB-K,
were established to provide information about prescriptions,
herbs, compounds and their relationships [13]–[17]. NPACT,
NutriChem, MAPS and SuperNatural provide bioactivity and
target information about natural products [18]–[21]. How-
ever, these databases rarely consider combinations of natural
products. Although DCDB covers various types of informa-
tion on combination drugs, it lacks information on natural
products and their combinations since most compounds are
small molecules [22]. Therefore, a database containing the
association information between natural product combina-
tions and phenotypes will benefit the discovery of potential
therapeutic compound combinations. However, there is no
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TABLE 1. License information on the 13 resources used in COCONUT.

database dedicated to the analysis of the potential effects of
natural product combinations.

In this study, we developed an innovative database named
Compound Combination-Oriented Natural Product Database
with Unified Terminology (COCONUT), which contains
associations between natural product combinations and
phenotypes inferred from heterogeneous sources regarding
herbalmedicine, drug combinations, functional foods, molec-
ular compounds and target gene information. Our funda-
mental hypothesis is that the natural product compounds
commonly found in medicinal multicomponent mixtures
for treating the phenotype are more related to the pheno-
type than are other compounds. Therefore, an association
rule mining technique was applied to find frequent patterns
between natural product combinations and phenotypes from
medicinal multicomponent mixtures. Inferred associations
were evaluated based on molecular network analysis and
external literature. We confirmed that inferred associations
have a statistically significant proximity in the molecular
layer and cover the large number of results that have been
reported in previous work. All integrated and inferred data
of COCONUT are available through the workbench site at
http://biosoft.kaist.ac.kr/coconut.

II. MATERIALS AND METHODS
A. DATA SOURCES
Korean, Chinese and Japanese herbal medicine informa-
tion on prescriptions, herbs and compounds was collected
from KTKP [23], TCMID [13] and Kampo [24], respec-
tively. Food and its compound composition information
was collected from FooDB [25]. Drug information was
acquired from DrugBank [26], and combination drug infor-
mation was extracted from DCDB [22]. Functional food
information was collected from the BFN database [27].

Furthermore, compound-phenotype associations were col-
lected fromDrugBank, CTD [28], ClinicalTrials.gov [29] and
SIDER [30]. Compound-gene associations were collected
from DrugBank, DCDB, CTD, TTD [31], BindingDB [32],
MATADOR [33] and STITCH [34]. Gene-phenotype asso-
ciations were collected from CTD. Additionally, we col-
lected protein-protein interaction (PPI) network data from
BioGrid [35] and pathway data from KEGG [36], which
are used to investigate the effects of natural products on the
molecular layer. License and availability information of the
source databases is described in Table 1.

B. DATA INTEGRATION PROCESS
The goal of this study is finding the frequent patterns between
natural product combinations and phenotypes from composi-
tion and efficacy information of medicinal multicomponent
mixtures. To do this, we constructed a database for integrating
the comprehensive information about natural products with
eight major data entities: prescription, functional food, com-
bination drug, herb, compound, compound property, gene and
phenotype. The database included 13 relationships among the
data entities, such as composition and functional information
of the medicinal materials or associations among compounds,
phenotypes and genes. The detailed schema of COCONUT is
shown in Fig. 1.

To store the data in a systematic manner, we integrated the
information from heterogeneous sources into a standard for-
mat and structured the efficacy information. The construction
procedure consists of following four steps (Fig. 2).

1) TERMINOLOGY UNIFICATION
In the terminology unification step, each entity instance
is mapped to the corresponding international identifiers to
resolve duplicate instances and to enhance interoperability
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FIGURE 1. Database schema of COCONUT. There are eight major
dataentities: prescription, functional food, combination drug, herb,
compound, compound property, gene, and phenotype. The 13 types of
relationships among the major data entities are recorded.

with other public databases (Fig. 2a). Herbs were mapped
to NCBI taxonomy ID, a curated classification for the
organisms, based on scientific names [37]. For compounds,
the ChemSpider API was used to find the international
chemical identifier (InChI) [38]. Genes were mapped to
Entrez gene ID with the DAVID gene ID conversion tool
(DICT) [39]. Because most source databases have different
types of gene information, such as gene symbols, UNIPROT
ID and ENSEMBL ID, DICT was used to map the various
types of gene ID to Entrez gene ID. Additionally, we identi-
fied combination drugs and functional foods with DCDB ID
and brand name, respectively.

2) EXTRACTION OF BIOMEDICAL TERMS
In many databases, a large amount of efficacy and indication
information is described in the narrative text. Thus, there
is a problem that when a user searches for entity instances
associated with a particular phenotype, all words of the nar-
rative text should be retrieved. To extract phenotype-related
terms from the narrative text, we employed MetaMap,

FIGURE 2. The systematic procedure for database construction
(a) Terminology unification by mapping entities to international
identifiers. (b) Extracting biomedical terms from narrative text using a text
mining tool. (c) Performing duplication resolution on combined datasets
based on international identifiers. (d) Calculating chemical properties
including four physiological and five physicochemical properties.

a text-mining tool that maps biomedical text to the
Unified Medical Language System (UMLS) concepts
(Fig. 2b) [40]–[43]. Compared to other named entity recog-
nition (NER) tools, MetaMap is strong in the validity and
customization aspects. Many previous studies have demon-
strated that MetaMap has applicability and reliability in
the field of clinical and biomedical forms [44]–[46]. Addi-
tionally, MetaMap can be customized in the configura-
tion layer [47], [48]. To avoid ambiguous results, we used
MetaMap’s word-sense disambiguation (WSD) module that
identifies reliable words based on the context of a sentence.
Depending on the characteristics of sources, we used the term
processing option that recognizes input text as one phrase.
Finally, UMLS concepts for biomedical text can be obtained
from MetaMap.

UMLS currently integrates over 730,000 biomedical con-
cepts from more than fifty biomedical vocabularies [41].
All concepts are categorized into 133 predefined semantic
types. For each concept, UMLS editors assigned one or sev-
eral semantic types. In this study, we tried to identify
phenotype-related terms that could fully describe the effi-
cacy and indications of medicinal materials. Based on the
MetaMap results and definitions of semantic types, 20 seman-
tic types were selected through manual curation to represent
the phenotypes related to diseases or symptoms (Table 2).
Then, we applied MetaMap to the narrative text and extracted
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TABLE 2. Phenotype-related UMLS semantic types.

phenotype-related terms using the selected semantic types as
filtering criteria.

3) DUPLICATION RESOLUTION
Because the data were collected frommultiple sources, dupli-
cate instances exist. Therefore, duplicate instances of the
combination drug, functional food, herb, compound and gene
entities are detected by comparing the international identi-
fiers. We then merged duplicate instances into one instance
and registered it with source references (Fig. 2c). For exam-
ple, information about Melia azedarach used as an herb was
collected from the KTKP and TCMID databases. Based on
the NCBI taxonomy ID, we determined whether the herb
information gathered from each resource is the same. If they
are the same, the function and toxicity information are inte-
grated and the reference for each information item is reg-
istered. However, prescriptions are hard to distinguish by
their general name only because they contain different herb
compositions, even though they have the same general name.
Therefore, even if instances of a prescription entity have the
same general name, they are considered as different instances.

4) CALCULATION OF CHEMICAL PROPERTIES
Chemical properties of compounds were calculated for pro-
ducing physiological effects (Fig. 2d). Physiological effects
include human intestinal absorption (HIA), Caco-2 perme-
ability, blood-brain barrier (BBB), and Lipinski’s rule of

five (RO5). Based on the physiological effects, we can
investigate whether natural products are orally bio-available,
drug available or effective on certain tissues. For exam-
ple, in vivo absorption of natural products across the gut
wall can be estimated based on the Caco-2 permeability.
In this study, physiological effects are calculated based on
the physicochemical properties, such as molecular weight,
AlogP, hydrogen-bond donors, hydrogen-bond acceptors and
rotatable bond count. HIA and BBB values are calculated
with Shen’s method [49], while Caco-2 permeability is calcu-
lated using Pham’s method [50]. RO5 are calculated with the
CDK Descriptor Calculator [51]. Based on the physiological
effects, we can analyze various functional activities of the
natural products on the human body.

C. A DATA-DRIVEN ANALYSIS FOR IDENTIFYING
MEDICINAL COMBINATIONS OF
NATURAL PRODUCTS
Our fundamental hypothesis is that compounds commonly
found in herbs, functional foods or combination drugs used
to treat or prevent the phenotype are more related to the
phenotype, compared to other compounds. To extract associa-
tions between natural product combinations and phenotypes,
we applied an association rule mining analysis. The analysis
procedure consists of the following three steps (Fig. 3).

1) GENERATING DATASET FOR ASSOCIATION RULE MINING
To apply association rule mining, we first constructed
compound set profiles for each phenotype that con-
tain compound composition and phenotype information
of 4,370 herbs, 1,322 functional foods and 1,605 combination
drugs (Fig. 3a). In the compound set profile, compounds are
set of items and a phenotype is a class label. Each attribute has
a value of 1 or 0; a ‘1’ is assigned if the multicomponent mix-
ture contains that attribute, otherwise ‘0’ is assigned. To deter-
mine how many herbs, combination drugs and functional
foods are related to phenotypes and how many compounds
are contained in each entity, we examined the distribution of
the number of phenotypes and the distribution of the number
of compounds for each entity (Fig. 4).

2) APPLYING ASSOCIATION RULE MINING
With current biological knowledge, it is impossible to deter-
mine the dependency between natural products in medicinal
materials or the linearity of relationships between combi-
nations of natural products and phenotype. Association rule
mining has the distinct advantage of being able to directly
model based on conditional probabilities, avoiding the lin-
earity assumptions underlying many classical supervised
classification, regression and ranking methods [52]–[54].
Moreover, association rule mining helps avoid problems with
the curse of dimensionality [55], [56]. In this study, medicinal
materials contain 35,741 unique natural compounds. If we
consider all possible combinations of natural compounds,
then there are 235,741 possibilities - a high curse of dimen-
sionality. In practice, however, most of the combination drugs
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FIGURE 3. A computational framework for predicting medicinal
combinations of natural product compounds. (a) Organizing compound
set profiles based on compound composition and phenotypic effect
information. (b) Performing association rule mining to extract frequent
patterns between natural product combinations and phenotypes from
medicinal multicomponent mixtures. (c) Providing additional information;
physiological/physicochemical properties, target analysis, sources of
natural products and network visualization.

FIGURE 4. Distributions of herbs, functional food and combination drugs.
(a) The distribution of the number of compounds related to each herb,
functional food and combination drug. (b) The distribution of the number
of phenotypes related to each herb, functional food and combination
drug.

consist of two compounds [22]. Association rule mining
makes predictions from subsets of coexisting items, which
makes the estimationmuch easier.Moreover, ‘lutein→ fever’
could bemuch easier to analyze than ‘lutein, quercetin, biotin,
spermine, etc.→ fever’. As molecular mechanisms between
natural compounds and phenotypes are very complex, it is
important to simplify the prediction results. One other advan-
tage of association rule mining is high-level interpretability,

which enables intuitive explanations for the reasons why the
inferred result occurred [57], [58]. It is useful to support
further investigation of the inferred results in the functional
food or drug development field.

3) STATISTICAL PARAMETERS OF ASSOCIATION RULES
A rule generated by association rule mining has the form
of ‘antecedent → consequent’, where the antecedent is the
combination of natural product compounds and the conse-
quent is the target phenotype (Fig. 3b). For all association
rules, we measured the significance with support, confidence
and lift. The support value represents the ratio of instances
containing both antecedent and consequent item-sets of the
rule over the whole instances, which indicates the number
of evidence items for the rule. Because the number of whole
instances is constant, the support value is not expressed as a
ratio, but rather is expressed as the number of instances con-
taining both antecedent and consequent item-sets. For exam-
ple, the support value of 10 means that there are ten medicinal
materials containing the natural product combination that
have effects on the target phenotype, as evidence of the rule.
The confidence value is the ratio of instances containing
both antecedent and consequent item-sets over the instances
containing antecedent item-sets, which represents how often
the rule is found to be true. For example, a confidence value of
0.5 means that the half of the medicinal materials containing
the natural product combination have effects on the target
phenotype. The lift value is the confidence value normalized
by the number of instances containing consequent item-sets,
which indicates the independence between the antecedent and
consequent item-sets. For example, a lift value of 1 means
that the natural product combination and target phenotype are
completely independent, and a lift value of 2 means that the
natural product combination is two times more dependent on
target phenotype than random natural product combination.

4) ADDITIONAL INFORMATION FOR INFERRED
ASSOCIATION RULES
We provide additional information of inferred associations to
support further investigation on the inferred combinations of
natural products (Fig. 3c). Compound properties and a list
of sources of natural products are provided by searching the
integrated information in COCONUT. For the target analysis,
we adopted Dijkstra’s algorithm to find the shortest paths
between compound targets and phenotype-associated genes
in the PPI network and signaling pathways [47]. All informa-
tion related to inferred associations is visualized in the form
of a network.

III. RESULTS
A. DATABASE CONTENTS
COCONUT contains information on 794,730 chem-
ical compounds with calculated chemical properties.
For medicinal multicomponent mixtures, data were col-
lected for 20,259 prescriptions, 1,615 functional foods,
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1,623 combination drugs and 8,492 herbs. Furthermore,
we extracted 18,451 phenotype terms from the functional
information of the prescription, combination drug, functional
food, herb and chemical compound records. We also sup-
plemented 39,286 genes that encode therapeutic targets or
biomarkers. Each item of information was standardized based
on the corresponding international identifiers (Table 3).

TABLE 3. COCONUT data entities.

We structured the composition and functional information
of the medicinal multicomponent mixtures as relationships
between the entities. For example, the herbal composition of
prescriptions is stored as 140,690 relationships, and the func-
tional information of prescriptions is stored as 103,085 rela-
tionships. To support further investigation at the molecular
level, we stored relationships among chemical compounds,
phenotypes and genes (Table 4).

TABLE 4. Relationships of COCONUT.

B. ASSCIATIONS BETWEEN NATURAL PRODUCTS
AND PHENOTYPES
The core data of COCONUT consists of 899,476 associ-
ations between 23,036 natural product combinations and

TABLE 5. Examples of inferred associations.

TABLE 6. Oral bioavailability and molecular target path information for
top 10 phenotypes with respect to the number of associations.

376 target phenotypes. For all associations, we provide sup-
port, confidence and lift values as the significance scores
(Table 5). Furthermore, we examined oral bioavailabil-
ity and molecular target paths to provide additional evi-
dence, which helps us to select drug candidates among
inferred associations (Table 6). For oral bioavailability,
we check whether the natural products in inferred associ-
ations satisfy RO5. For all associations, 496 natural prod-
ucts and 266,263 natural product combinations satisfied
the RO5. Next, we check whether natural product com-
binations are associated with the target phenotype on the
molecular network. For 193,332 associations of 96 pheno-
types, 26,825 associations have direct or indirect connec-
tions between compound targets and phenotype-associated
genes. For example, the combination of L-(+)-arginine
and biotin was inferred to be associated with diarrhea.
This association is considered to be an important candi-
date because it is given a high confidence and lift values
(conf.= 1.0 and lift= 23.63). Further analysis of COCONUT
revealed that both L-(+)-arginine and biotin satisfy RO5.
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FIGURE 5. An example of target analysis for the inferred association
‘L-(+)-arginine, biotin → diarrhea’. Shortest paths from compound
targets (blue) to phenotype-associated genes (brown) are investigated in
PPI network.

Moreover, we found that many of both targets of L-(+)-
arginine and biotin are connected to the diarrhea-associated
gene from the shortest path analysis (Fig. 5). Based on this
approach, the COCONUT database can be used as a prelim-
inary tool to identify the medicinal compound combination
candidates from a large number of natural products.

C. PERFORMANCE EVALUATION
1) ROBUSTNESS TESTING
To verify whether inferred associations were not vulner-
able with respect to variations of the dataset, we exam-
ined their robustness among different datasets with 4-fold
cross-validation (Table 7). For this, the compound set profiles
were divided into four folds. The instances having a thera-
peutic effect on the target phenotype were equally divided
in each fold. Then, each three-fold was used to infer the

TABLE 7. Robustness of top 10 ranked phenotypes.

associations between natural product combinations and target
phenotype, while the remaining one was used to evaluate
the robustness of the inferred associations. The robustness
score of an association rule is defined as n/N , where N is the
number of instances having the natural product combination
in the test set, and n is the number of instances having
the natural product combination with effects on the target
phenotype in the test set. Consequently, the robustness score
measures whether the inferred associations have a robust
explanatory power for known indications of medicinal mate-
rials in the data set. For the target phenotype, associations
with confidence values higher than 0.7 were selected. Then,
the robustness of the target phenotype was calculated as the
average robustness score of the selected associations. As a
result, the average robustness (ravg = 0.733) for 41 target
phenotypes was relatively high, considering the proportion
of compounds shared by both test and training sets (22%).
This indicates that the inferred associations are robust in the
data set.

2) EVALUATION BASED ON MOLECULAR
NETWORK ANALYSIS
To evaluate the significance scores of the inferred associa-
tions, we selected the top 5% highest scoring associations
and the bottom 5% lowest scoring associations based on
the support, confidence and lift, respectively. In the previous
study, the relative proximity (zc) was proposed to quantify the
relationship between compounds and phenotype genes in the
molecular network [59]. They found that a compound tends
to have a phenotype when compound targets and phenotype-
associated genes are closely located on a molecular network.
For each compound-phenotype pair, they compare the dis-
tance between compound targets and phenotype-associated
genes to the random expectation distances, which were calcu-
lated by randomly selecting the phenotype-associated genes
within the molecular network. This study also found that
closest measure, which calculated the distance based on the
average shortest path between the compound targets and the
nearest phenotype-associated gene, showed the best perfor-
mance in predicting drug efficacy, when compared with the
shortest, kernel, centre and separation measures. Therefore,
in this study, the relative proximity using the closest mea-
sure was used to assess the prediction results according to
the significance scores. We compared the relative proxim-
ity values of the selected six association sets and the veri-
fied drug-phenotype set collected from DrugBank [26]. The
molecular network was constructed by using the PPI infor-
mation collected from BioGird [35] (Fig. 6).

The average relative proximity values of all sets are
lower than zero, which means that compound targets and
phenotype-associated genes are closer in the molecular net-
work than randomly selected gene sets (avg.zc > 0).
Moreover, the average relative proximity values of associa-
tions having high support, confidence and lift values (avg.
zc = −0.71, −0.87 and -0.91, respectively) are compara-
ble to the verified drug-phenotype set (avg. zc = −1.54).
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FIGURE 6. The distribution of relative proximity for inferred associations
and verified drug-phenotype set. The inferred associations were ranked
by the support, confidence and lift and divided into two independent sets
by selecting the top 5% and bottom 5% associations, respectively. The red
dotted line indicates the relative proximity of pure randomness (zc = 0).

For associations selected by confidence value, the average
relative proximity of a high-scoring set (avg. zc = −0.87)
is higher than the low-scoring set (avg. zc = −0.38).
Next, we performed a Mann-Whitney U test and calculated
the corresponding p-values to check the significant differ-
ence between the high-scoring and low-scoring sets [60].
A p-value of the Mann-Whitney U test lower than 0.05 was
considered statistically significant. From the result, we found
that the difference between high- and low-scoring sets is
statistically significant (p-value = 2.1 × 10−10). Similarly,
for associations selected by the lift value, the average rel-
ative proximity of high-scoring sets (avg. zc = −0.91) is
higher than the low-scoring sets (avg. zc = −0.37), and this
difference is also significant (p-value = 2.8 × 10−9). These
observations indicate that the associations with high confi-
dence or lift imply significant interplay between compound
targets and phenotype-associated genes. However, for associ-
ations selected by the support value, there is no significance
difference (p-value = 0.76) between high- and low-scoring
sets (avg. zc = −0.71 and −0.69, respectively).

3) EVALUATION BASED ON EXTERNAL LITERATURE
In this study, the associations between natural products
and phenotypes were inferred from the known efficacy of
medicinal multicomponent mixtures and their chemical com-
positions. In other words, PubMed information for direct
evidence between natural products and the phenotypes was
not used during the inference process. Therefore, to evalu-
ate the inferred associations, we employed PubMed as the
independent external dataset and searched literature evidence
containing the inferred associations. Using the selected six
association sets described in the previous section, we checked
whether the associations with high support, confidence and
lift values have more evidence in the external literature than
the associations with low values. To do this, co-occurrences
(nc) of compounds and a phenotype in each association

were counted in 13,200,786 PubMed abstracts that were
published from 1950 to 2013 [61]. For associations selected
by the confidence value, the average co-occurrence count of
the high-scoring sets (nc = 39.17) is 6.9 times larger than
the low-scoring sets (nc = 5.38). Similarly, for associations
selected by the lift value, the average co-occurrence count
of the high-scoring sets (nc = 33.7) is 10.9 times larger
than the low-scoring sets (nc = 3.08). These results show
that confidence and lift can be used as parameters for identi-
fying significant associations (Table 8). We also performed
a Mann-Whitney U test and calculated the corresponding
p-values to check the significant difference of literature evi-
dence between the high- and low-scoring sets.

TABLE 8. External literature validation.

Co-occurrence values do not take the frequencies of indi-
vidual terms into account; they were normalized as the
Jaccard index (JI) about the frequencies of individual terms.
For the association sets selected by the confidence and lift
values, the average Jaccard index values of high-scoring sets
(JI = 1.89 × 10−3 and 3.04 × 10−3, respectively) were
markedly higher than those of the low-scoring sets (JI =
1.15 × 10−4 and 1.03 × 10−4, respectively). Furthermore,
we investigated the number of significant associations (nf) by
performing Fisher’s exact test (p-value < 0.001). Fisher’s
exact test can assess the null hypothesis of independence
by applying the hypergeometric distribution of the numbers
in a contingency table [62]. To obtain a Fisher’s test value
of each association, the number of PubMed abstracts was
counted based on whether they included the compound and
whether they included the target phenotype. For association
sets selected by the confidence and lift, the numbers of
significant associations of the high-scoring sets (nf = 20
and 22, respectively) were markedly larger than those of the
low-scoring sets (nf = 2 and 4, respectively). Additionally,
the p-values of the Mann-Whitney U test indicated that the
difference in documented evidence between the high- and
low-scoring sets was significant.

However, for association sets selected by the support value,
there was no significant difference between high-scoring and
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low-scoring sets in the average co-occurrence count, average
Jaccard index and the number of significant associations
based on Fisher’s exact test. This result could be due to the
characteristics of support, which only indicate the appear-
ance of the associations as mentioned in the former section.
In conclusion, we suggest that inferred associations with
higher significance scores can be used as potential therapeutic
compound combinations for future studies.

D. WEB INTERFACE AND USE CASE
We implemented a workbench website for the COCONUT
database to provide two services. First, the search service
enables exploring comprehensive information about natural
products (Fig. 7). The database search service can be accessed
through the ‘Search’ tab on the main page (Fig. 7a). After
selecting the entity type, users can search instances by typing
query keywords or selecting an instance in the alphabetic
table (Fig. 7b). Detailed information of the query instance
is represented in the search result (Fig. 7c). The information
on related entities is also provided in the association table
with source references. Therefore, users can know the source
for the information of interest. The related entities can be
investigated through hyperlinks in the association table or the
visualized network (Fig. 7d). As an example, Panax ginseng
can be queried in the ‘Herb’ tab of the search service. From
the result, users can investigate that Panax ginseng has been
used in the treatment of diarrhea, impotence and intestinal
pain, and it is composed of various natural product com-
pounds, such as ginsenoyne I, lutein and trifolin.

FIGURE 7. ‘Search’ service in the web interface. (a) The search query page
can be accessed through the ‘Search’ tab on the main page (red circle).
(b) For seven entity types (b1), users can search detailed information by
keywords (b2) or the alphabetic table (b3). (c) For a query, COCONUT
provides detailed information of the resulting instance (c1) and a list of
associations with other entities (c2). (d) The relationships between
selected instance and other entities are summarized through a network.

Second, the analysis service offers the users the abil-
ity to analyze inferred associations between natural product

FIGURE 8. ‘Analysis’ service in the web interface. (a) The analysis query
page can be accessed through the ‘Analysis’ tab on the main page (red
circle). (b) For target phenotype or compound of interest (b1), users can
search detailed information by keywords (b2) or the alphabetic
table (b3). (c) For a query, COCONUT provides a list of associations
between natural product combinations and the target phenotype (c1)
with support, confidence and lift scores (c2). (d) Additional information
on the selected association, such as pharmacokinetic property, target
analysis, related herbs and network visualization, is provided.

combinations and phenotypes (Fig. 8). The analysis service
can be accessed through the ‘Analysis’ tab on the main
page (Fig. 8a). The user can inquire about natural product
combinations for a natural product or phenotype of interest.
Like the database search, users can search for information
by keyword or the alphabetic table (Fig. 8b). In the analysis
result, a list of associations between natural product com-
binations and phenotype is represented along with statisti-
cal significance parameters, such as support, confidence and
lift (Fig. 8c). By adjusting the threshold of each parameter,
users can focus on reliable associations. Moreover, users can
analyze the association of interest more minutely in terms
of pharmacokinetic property, target analysis, related herbs
and network visualization (Fig. 8d). For example, fever can
be queried in the ‘Phenotype’ tab of the analysis service.
Associations between natural product combinations and fever
are represented as query results. By sorting the associa-
tions with a confidence value, users can observe statistically
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TABLE 9. Information on Panax Ginseng in COCONUT.

significant associations, such as ‘Magnoflorine, Colum-
bamine→ Fever’. Additional information on the association
can be obtained in the bottom panel. From the PK property
tab, users can find that both magnoflorine and columbamine
satisfy RO5. All shortest paths between target genes and
phenotype-associated genes in a molecular network, such
as CDH5 (columbamine target gene) – CTNNA1 – UBC –
HTR1A (fever-associated gene), can be investigated using the
target analysis tab. Furthermore, users can examine the list of
herbs that contain both magnoflorine and columbamine. Enti-
ties, including herbs, combination drugs, functional foods and
genes, related to each compound are visualized through a
network.

IV. DISCUSSION
Natural products and their combinations have distinctive
advantages in drug and functional food discovery. Since they
are secondary metabolites of other organisms, they are more
likely to have bioactivities, and they present unique struc-
tural diversities from which we can discover novel thera-
peutic compounds [63], [64]. Therefore, a better understand-
ing of the natural products through scientific analysis will
provide new insights into the use of natural products as
medicine.

Our study has strengths in two aspects. First, the
COCONUT database provides comprehensive information

about natural products in a structured and standard form.
Compared to existing databases such as KTKP, TCMID and
KAMPO, using a simple query, researchers can obtain the
prescription, herb, compound and gene information associ-
ated with a particular phenotype because all information in
COCONUT is structured. This process allows researchers to
easily collect data when designing in vitro and in silico exper-
iments for specific natural products or phenotypes. In addi-
tion, COCONUT provides standardized information; thus,
it can minimize confusion or misreading of information and
improve interoperability when researchers use COCONUT
with other external databases. For example, when researchers
identify medicinal compounds from Panax ginseng, they
could use COCONUT in an initial stage of the experiment
to collect comprehensive information about the Panax gin-
seng with standardized international identifiers, such as the
known efficacy, the natural products they contain, and the
associated genes (Table 9). Second, we provide promising
candidates of medicinal combinations of natural products
to support combination drug or functional food discovery
studies. Most of the previous studies on finding medicinal
agents from natural products were performed by in vitro
assessment. However, large-scale experiments are required
for a large number of natural products and their combinations.
Therefore, in silico approaches have been proposed, pri-
marily based on molecular analysis. However, many natural
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TABLE 10. Combinations of natural product included in panax ginseng, which is expected to be effective for fever.

products do not have molecular structural information, and
their target protein information remains mostly unknown.
More importantly, the conventional in silico methods are
aimed at investigating single agents. Hence, there is no
method to predict the medicinal combinations of natural
products. Our approach is different from previous in sil-
ico methods in that it finds combination patterns of nat-
ural products from the accumulated medicinal materials
using a data-driven approach. In the performance evaluation,
we performed molecular network analysis. There is no gold-
standard dataset for the therapeutic effects of combinations
of natural products; thus, we investigate whether there is
a significant relationship between the targets of the natural
products and the phenotype-associated genes in themolecular
network. From the results, we confirmed that the inferred
associations with high scores between natural products and
phenotypes have significant associations in themolecular net-
work. We also found that the high-scoring associations have
more evidence in the external literature. This indicates that the
proposed data-driven analysis enabled us to identify medici-
nal candidate effects of natural products. Our results can help
researchers conduct further in vitro and in silico experiments
by filtering natural products or herbs from a large number of
candidates. For example, when researchers study the effects
of Panax ginseng on fever, they can utilize our results to find
promising combinations of natural products found in Panax

ginseng (Table 10). Additionally, the information of chemical
properties and path analysis in the COCONUT database helps
to select the specific candidates before they carry out further
studies.

There are some additional considerations for improving
our work. First, although this study analyzed the shortest
path between the known natural product targets and the
phenotype associated genes, the results are insufficient due
to the lack of molecular information. However, this limita-
tion can be resolved with further experiments and improved
techniques. We expect that more accurate predictions can be
made in additional in silico studies. For example, previous
studies have demonstrated that associations between com-
pounds and targets can be predicted by investigating prop-
agated compound effects on the disease genes in a molecular
network [65], [66]. Based on this approach, researchers can
estimate potential mechanism of actions of natural prod-
uct combinations by calculating overlap effect in a molecu-
lar network based on COCONUT information. Second, our
database contains associations between medicinal materials
and phenotypes, but there is no specification about the types
of associations, such as cause, treat or prevent. To overcome
the limitation, we will improve the text mining method to
extract the detailed association types. Finally, the database
volume will be periodically expanded by integrating infor-
mation from various sources. At present, COCONUT mainly
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focused on herbal medicine information of northeastern
Asia. Therefore, information can be biased toward a par-
ticular region or country. In the future, we will add herbal
medicine information from various regions, such as India,
Australia and America. Additionally, we are planning to
include information not only from conventional databases
but also from biomedical literature and experiment results.
With the updated information, we will develop and apply
various methods for more reliable prediction of the medicinal
combinations of natural products. Ultimately, we believe that
COCONUTwill be used as a valuable resource in eliminating
the bottlenecks in the current natural product research by
combining with various biological information sources.

V. CONCLUSION
Natural products have been used as important sources of
herbal medicine and modern drug development. COCONUT
is useful for investigating natural products and their corre-
sponding information, such as major sources, activities and
efficacies. More importantly, COCONUT enables us to per-
form large-scale analysis on the medicinal use of natural
product combinations. We believe that COCONUT will be a
major bioinformatics resource for polypharmacology studies
and will be of interest to pharmacologists, toxicologists and
computational biologists by providing clues for the prediction
of medicinal combinations from a wide range of natural
products.
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