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Shape transformable bifurcated 
stents
Taeyoung Kim & Yong-Gu Lee

Non-invasive delivery of artificial implants, stents or devices in patients is vital for rapid and successful 
recovery. Unfortunately, because the delivery passage is often narrower than the size of the delivered 
object, a compromise between the shape that is effective at the targeted location and a thin form that 
allows smooth unobstructed travel to the destination is needed. We address this problem through two 
key technologies: 3D printing and shape memory polymers (SMPs). 3D printing can produce patient-
customizable objects, and SMPs can change their initially formed shape to the final desired shape 
through external stimulation. Using these two technologies, we examine the design and fabrication 
of bifurcated stents. This study presents a mock-up where blood vessels are fabricated using moulded 
silicon, which supports the effectiveness of the proposed method. The experimental results reveal that 
a bifurcated stent with a kirigami structure can smoothly travel inside a vessel without being obstructed 
by branched parts. We believe that this work can improve the success rate of stent insertion operations 
in medicine.

The shape memory effects of materials have been known for a long time, and various applications of shape mem-
ory materials, such as fasteners, eyeglass frames, underwires for women’s brassieres, aircraft rivets, heat-shrinking 
tubes, and medical implants, have been widely recognized1,2. For a survey of example usages, we refer to two 
review papers on alloys1 and polymers2. Note that these applications utilize only simple geometries, such as disks, 
cylinders and arcs. We envision that more successful commercial applications will emerge through the use of 
complex geometries enabled by the use of advanced manufacturing processes such as 3D printing. Shape memory 
alloys (SMA)3 are still not very compatible with 3D printers, but an increasing number of shape memory poly-
mers (SMPs) are currently being processed with 3D printers, giving rise to interesting applications. The appli-
cation that we are presenting involves a branch of 3D printing that utilizes smart materials, including SMAs/
SMPs. This application is called 4D printing. In 4D printing, the time-transient change in morphology is one 
of the key characteristics, and there are several materials, including SMAs and SMPs, that change their initially 
formed shape in response to external stimuli, such as temperature, humidity, electricity, and light. Compared to 
3D printing, 4D printing requires careful considerations of the shape changes and possible side effects, such as 
self-collision, because of its dynamic nature4–9.

The processing of SMPs in 3D printing was once considered difficult. The highly viscous nature of shape 
memory thermoplastics often blocked the nozzles of extruders in fused deposition modelling (FDM)-based 3D 
printers. Moreover, shape memory thermosets were only available in private laboratories. The situation is chang-
ing because at present, we have several commercially available shape memory filaments. In addition, we are wit-
nessing an explosion of published articles addressing SMPs in 3D printing6–13. SMPs can be initially transformed 
to a temporary shape via stimulation with heat or electricity with the addition of applied forces and subsequent 
cooling. The SMPs can later be returned to their original shape by further stimulation. Figure 1 illustrates the 
described material characteristics. The material in its original shape softens by heating it above the glass tran-
sition temperature (Tg). When it is soft, we can easily change the shape by applying forces (similar to playing 
with dough), although the applied forces need to be sustained; otherwise, the material will return to its original 
shape. While keeping the applied forces intact, we cool down the object below its Tg. Once cooled, the shape will 
be retained, even if we remove the applied forces. Surprisingly, if we heat the object above the Tg once again, the 
shape will deform back to its original state. This recovery of the initial shape is called the shape memory effect. 
SMPs possess the flexibility of polymers, and prior research efforts have achieved SMPs with biocompatibility and 
biodegradability, allowing them to be used for medical devices14–16. One of the most active applications in medi-
cine is stents. In the human anatomy, blood vessels, lungs and biliary tracts are flow channels of important bodily 
fluids. Once these channels are blocked or narrowed, serious health problems can arise. Stents, often cylindrical 
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in shape, are inserted into these congested locations to mechanically widen the pathways. Huang J. J. et al. have 3D 
printed a fistula stent using an FDM printer that uses a pharmaceutical grade thermoplastic polyurethane (TPU) 
filament. These researchers have also provided clinical results17. Although their work shows the successful usage 
of a 3D-printed patient-specific stent, we must emphasize that such practices are very rare and that no long-term 
follow-up study has been conducted. Using the same type of 3D printer, Robert van Lith et al. produced a stent 
using a copolyester material that can be biodegraded18. Furthermore, a cylindrical stent composed of a bioresorb-
able material was 3D printed using UV lamp photocuring19. Most stents used today are manufactured by knitting 
SMA wires using specialized frames. Due to the large demand for stents, they are mass-produced in several fixed 
shapes and forms. For a particular patient, the size that best matches the congested pathways is selected by the 
physician. Most pathways are cylindrical tubes; however, there are special needs for regions such as branches. In 
these areas, bifurcated stents are needed. We believe that the use of personalized stents can increase the chances of 
operation success, although such stents are not obtainable using modern production practices. The reason for this 
problem is that when SMA wire stents made in mesh structures are used, it is almost impossible to accommodate 
the size variations among the operating pathways. The problem is more severe for branched pathways because the 
shapes cannot be approximated with a single cylinder but rather require two cylinders with differing diameters. 
Bifurcated stents exhibit shapes that have significant protrusion on their sides, thereby making it extremely diffi-
cult to travel through the internal vessels to reach the target area. This difficulty is why, in practice, two separate 
stents are each delivered to the site and fixed at the operating location.

Kirigami comes from combining two Japanese words: ‘to cut,’ ‘kiri’, and ‘paper,’ ‘gami’. Kirigami is a superset 
of origami with the addition of cutting. Origami and kirigami start from a thin sheet that is folded (‘ori’) or cut 
(‘kiri’) according to special patterns, and by repeating these processes, a three-dimensional form can be obtained. 
Kirigami developed from art and is now being adopted in engineering20–25. For example, it has been used to study 
the movement of Vorticella and aortic heart valves in the area of biomimetic sciences25–27. Furthermore, the use of 
origami structure for stents has also been studied28.

In this study, we present a novel design and realization of a bifurcated stent through the use of kirigami struc-
tures and SMPs29. By utilizing kirigami structures, we were able to produce a transformable shape that can change 
from the initial compactly folded shape to ‘y’ shaped branched cylinders. The extremely challenging problem we 
have solved is how to collapse two upper branched tubes into a single tube. In this way, two bifurcated tubes were 
compacted to a sufficiently small size to pass through a tight cylindrical pathway. Furthermore, we thoroughly 
investigated the shape recovery of the proposed structure as a function of the applied temperature and the var-
iation in stiffness based on the thickness and the number of repeated patterns in the kirigami structure. Finally, 
we demonstrated our idea through a mock-up where blood vessels were fabricated using moulded silicon. The 
physical bifurcated stents made by 3D printing with SMPs were later inserted into the artificial blood vessels and 
expanded to the desired shape, verifying the feasibility of our idea. We would like to emphasize that through 3D 
printing, we can obtain a patient-customized stent that will perfectly fit into the target branched vessels.

Methods
Design and Fabrication. 3D modelling design was performed with NX (Siemens PLM software). 
Cylindrical and bifurcated stents were printed on a MakerPi 3D printer (M2030X, Shenzhen Soongon Technology 
Co., Ltd). The resolution of the printer is 0.05–0.30 mm. Filaments were extruded from an SMP pellet (MM-5520, 
SMP Technologies Inc.). The pellet consists of a polyurethane-based SMP. The stress-strain curve information 
about the pellet is downloadable from the manufacturer at the following location: http://www2.smptechno.com/
en/smp/post_15.html. The printing bed was not heated, and the nozzle temperature was raised to 210 °C. The 
blood vessel mock-up was made by solidifying silicon (KE-1606, ShinEtsu) mixed with a hardener at room tem-
perature with 3D-printed blood vessels placed at the centre. The blood vessel mock-up was later finalized by 
cutting the solidified silicon and carefully extracting the 3D-printed core.

Analysis. The images and videos were obtained from a digital camcorder (HDR-CX450, Sony). The recorded 
footage was analysed by motion analysis software (ProAnalyst, Xcitex). Fiducial markers were placed on the speci-
men to record the position data that were used to compute the distances and radii of curvatures. Compression test 
simulations were performed on finite element analysis (FEA) software (ANSYS, ANSYS Inc.) (see SI for details).

Figure 1. Shape fixing and recovery stages in shape memory polymers.
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Results
Single cylindrical tube made from a kirigami structure. We first illustrate the design and fabrication 
of a kirigami-based single cylindrical tube representing a stent. The most important design criterion for a stent 
is that the shape should be tubular such that blood and bodily fluids can flow without obstruction through the 
inner pathway. Figure 2(a) illustrates our conceptual design of the kirigami structure. In this figure, the black 
lines denote cutting lines, and the blue arrow lines are directions and locations of the forces that will be applied 
to expand the shape. Note the interchanging directions of the applied forces in the vertical direction. The physi-
cal realization of these concepts is depicted in Fig. 2(b). Note that the left curled sheet of paper is expanded to a 
cage-like cylinder to the right. This idea is later used to fabricate 3D-printed tubes. The modelling was performed 
in a commercial 3D modeller, as shown in Fig. 2(c). The 3D model was later used to 3D print the stent, as shown 
on the left side of Fig. 2(d). The printed stent was subsequently softened by immersing the object inside a water 
basin where the temperature was set slightly above the Tg. After softening, the stent was removed in order to shape 
it into a compact structure (a half cylinder) and immediately cooled down while applying pressure so that the 
changed shape was retained during cooling. Once cooled, the shape is memorized, and by heating it above the Tg, 
it will recover its memorized shape.

To quantify the recoverability of the cylindrical tube, we put fiducial markers along the top of the cylinder and 
tracked their trajectory by using image analysis software. The analysis was performed at 50 °C, and Fig. 3 shows 
the recovery results. Figure 3(b) plots the distance between points ① and ⑤ in Fig. 3(a). The peak value in this 
graph shows the moment when the curvature sign of the upper half of the cylinder is reversed. This moment is 
also when the upper half suddenly snaps outward from the containing lower half of the cylinder. The distance 
reaches its original value once unfolding concludes. Figure 3(c) plots the radius of curvature at point ③, approx-
imately obtained by circumscribing a circle around three points: ②, ③, ④. Notice that the sign of the curvature 
changes at 13 secs, which denotes that the bulge that was directed downwards moved to the upward direction 
after snapping through. The recovery rate of an SMP through heat depends on the applied temperature. We per-
formed additional experiments to determine the effect of temperature on the recovery rate, as shown in Fig. 4. 

Figure 2. Design process of a tube. (a) The black lines denote cutting lines, and the blue arrow lines denote 
loading directions. (b) Working example of the conceptual design with paper. (c) A digital 3D model. (d) A 3D 
printed tube and its compacted state. The scale bar is 10 mm. The stents were post-processed with black paint for 
visual clarity in (d).
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Figure 4(a) plots the distance between points ① and ⑤ in Fig. 3(a), again with various temperature settings. 
The time when the structure reaches its peak point shortens as we increase the applied temperature. Similarly, as 
shown in Fig. 4(b), the moment in which the sign of the radius of curvature is reversed occurs more quickly as we 
increase the applied temperature.

Finite element analysis simulations. We investigated how the shell thickness and the number of repeated 
patterns affected the stiffness of the structure. The investigation was conducted through finite element analysis 
(FEA) simulation. The stiffness is important because pathways cleared by the stents can undergo compression and 
because we want the structure to withstand the external disturbances, not to collapse. We followed the analysis 
performed by Han et al.30 FEA simulation was carried out with commercial software (ANSYS). The model vari-
ation was performed by changing the thickness and the number of patterns, as shown in Fig. 5(b). The ambient 
temperature was set at room temperature (25 °C). In this simulation, we did not consider the thermal effect. As 
illustrated in Fig. 5(a), the cylinder was compressed by fixing the upper plate and raising the lower plate upward 
at 10 N (see SI for details). For the reference model that was used in this article, with a 1 mm thickness and 4 pat-
terns, a compression of 10 N resulted in 17.54% compression. For other experiments with various thicknesses and 
numbers of patterns, we were able to conclude that the deformation decreases (increase in stiffness) for thicker 
tubes and for tubes with a greater number of patterns. The results are shown in Fig. 5(c,d). Detailed material 
properties are given in Table S2. The numerical results showed an inverse relation between the deformation and 
the thickness of the stent, as well as between the deformation and the number of patterns. The results shown in 
this study can be used to determine how the designer can modify the stent to achieve the same goal, i.e., structural 
stiffness versus external compressive forces.

Figure 3. Shape recovery image analysis of a tube at 50 °C. (a) Five fiducial tracking points and their trajectory 
during shape recovery. (b) Distance plot of ① and ⑤ as a function of time. (c) Radius of curvature plot as a 
function of time. Positive values denote bulging towards the bottom. The scale bar for (a) is 10 mm.
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Bifurcated stent using kirigami structure. Based on the cylindrical tube using kirigami structures, we 
designed a bifurcated stent. The stent was designed such that it would fit snugly inside the target branched blood 
vessels shown in Fig. 6(a). The outer diameter of the stents is equal to the inner diameter of the vessels, which 
is approximately 22 mm. The design of the lower trunk (Fig. 6(b)) of the stent was borrowed from conventional 
designs where circumferential contractions and expansions were known to be effective. Our kirigami design 
shown in Fig. 6(b) is applied starting from the junction up to the branched tubes. The digital design was sent to 
a 3D printer and printed as shown on the left of Fig. 6(c), and the compacted form is shown on the right. The 
detailed stages of the transformation from the compacted shape to the deployed shape are shown in Fig. 6(d). 
We attached two of the previously described tubular kirigami structures that were folded into half cylinders and 
closed by touching them other, similar to an alligator mouth. Once closed, the structure appears to be one cylin-
der. We will explain this in more detail. In Fig. 2(d), the right half of the cylinder is first collapsed and nested into 
the left half cylinder. Subsequently, two concentric half cylinders can be further compacted by increasing the cur-
vature. This secondary compaction enables the stent to consume less space than the completely unfolded diam-
eter. The closed and compacted stent enters the tunnel as shown in Fig. 6(e). To measure the Tg, we conducted a 
thermomechanical analysis of the 3D-printed specimen. The result was that 50 °C was the optimal temperature. 
As we reached the target location, we raised the ambient temperature above the Tg. We raised the temperature 
of water by mixing 1500 ml of water heated at 90 °C with 2000 ml of 25 °C water. The equilibrium temperature 
measured with a digital thermometer was approximately 51 °C. The raised temperature will open and expand the 
branching tubes that will be further guided by themselves and enter the branch vessels. After a period of time, 
the expansion finalizes, and the stent perfectly fits the branched vessels. Figure 6(f) shows a mock-up experiment 
of the whole process. The branched vessels were made by using a 3D-printed blood vessel as a mould. Liquid 
silicon was solidified with the 3D-printed blood vessel held inside and subsequently removed. We can see that the 
insertion and expansion stages were performed as prescribed, and the time shots at 7 and 8 sec show the impor-
tant moments when the two branches separate and each enters its corresponding tunnel. The two branches were 
folded together as they were inserted into the bifurcating site. The end tip of the folded dual branches starts to 
divide due to the heating of the stent by the surrounding medium. The division is further expedited by the oper-
ator pushing as each branch is inserted into its target vessel. After full entry, the cylindrical branch tubes expand 
to their full size, and the deployment is completed.

Figure 4. Recovery characteristics at various ambient temperatures.
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Discussion
In this work, we presented a novel design and fabrication of a bifurcated stent that utilizes kirigami structures. 
Kirigami structures allow the shape to change between a thin sheet and a volumetric object. The 3D-printed kiri-
gami bifurcated stent was folded into a compact shape that allowed it to travel through the vessel without interfer-
ing with the inner vessel walls. This compact shape resembles a smooth cylindrical pipe and can smoothly travel 
inside the vessel without being obstructed or hindered. Upon reaching the target location, the stent was triggered 
to return to its expanded form for the purpose of expanding the blocked or narrowed blood vessels. Through 
FEA simulations, we were able to find the relation between the thickness and the number of patterns in terms of 
their effect on the stiffness of the kirigami structure. For this kirigami structure to be clinically used, the stiffness 
should be tailored to the particular deployed site. For example, the stents should be stiffer when deployed in an 
artery than in the bile duct. Furthermore, the force-displacement behaviour and critical force of the collapse, as 
well as the experimental result, should all be thoroughly investigated. For the purpose of maintaining the integrity 
of the blood vessel, a stiffer stent is necessary. Finally, we fabricated our design using an FDM-based 3D printer 
with SMP filaments. The use of 3D printers enabled us to develop stents that are exactly the negative replica of 
the blood vessel. This method will greatly increase the effectiveness of the proposed stent in areas where there 
are highly irregular forms of blood vessels. Although we have not addressed the issues of the biocompatibility, 

Figure 5. Compression simulation of a cylinder shape. (a) Upper plate (fixed support) and lower plate (force 
applied). (b) Definition of thickness and pattern. (c) 10 N compression test result with various thicknesses. (d) 
10 N compression test results with various numbers of patterns.
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biodegradability and high Tg of our material, these problems can be solved by referring to previous works that 
have reported biocompatible and biodegradable SMP materials14,31,32.

Limitations of the Study. The novel kirigami-based bifurcated stent structure that we have proposed pro-
vides a new approach where shape transformation can greatly ease the problems of the hindrance and obstruction 
of conventional stent structures when used in bifurcating vessels. However, there still exist many unsolved and dif-
ficult problems to be overcome before the proposed method can actually be used for patients. First, the SMP used 
for the demonstrated kirigami structure was not tested for biocompatibility. Second, the shape transformation 

Figure 6. Bifurcated stent design and deployment. The scale bars for (c) and (f) are 20 mm. The stents were 
post-processed with black paint for visual clarity in (c) and (f). The length and width of the folded struts shown 
in (c) are 80 mm and 50 mm, respectively.
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temperature of the demonstrated material is too high for clinical use. Although previous works14 have shown the 
existence of biocompatible SMPs, extensive tests need to be performed to clinically use our method. Third, the 
stents are too thick to be clinically used. This thickness was the thinnest structure that we could produce using the 
material and the printer that were utilize for the experiment. For actual clinical applications, much thinner and 
smaller stents must be developed, along with a material that is biocompatible, as noted above. Finally, we need 
to measure the radial forces of the proposed structure in real patient situations. We need to verify whether the 
exercisable radial force is strong enough to expand vessels obstructed with plaque. Therefore, the contribution of 
the proposed method needs to be assessed on structural shape changes that are very well suited for bifurcating 
vessels. Indeed, many studies on force measurements, biocompatibility, and clinical verification need to be done 
in order for patients to actually benefit from the proposed method.
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