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Instantaneous ionization rate as a functional
derivative
I.A. Ivanov1,2, C. Hofmann 2, L. Ortmann2, A.S. Landsman2,3, Chang Hee Nam1,4 & Kyung Taec Kim1,4

The notion of the instantaneous ionization rate (IIR) is often employed in the literature for

understanding the process of strong field ionization of atoms and molecules. This notion is

based on the idea of the ionization event occurring at a given moment of time, which is

difficult to reconcile with the conventional quantum mechanics. We describe an approach

defining instantaneous ionization rate as a functional derivative of the total ionization

probability. The definition is based on physical quantities, such as the total ionization

probability and the waveform of an ionizing pulse, which are directly measurable. The defi-

nition is, therefore, unambiguous and does not suffer from gauge non-invariance. We com-

pute IIR by numerically solving the time-dependent Schrödinger equation for the hydrogen

atom in a strong laser field. In agreement with some previous results using attoclock

methodology, the IIR we define does not show measurable delay in strong field tunnel

ionization.
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The notion of the instantaneous ionization rate (IIR) has
proved extremely fruitful for understanding the physics of
tunneling ionization, where the ionization regime char-

acterized by small values of the Keldysh parameter
γ ¼ ω=E0

ffiffiffiffiffiffiffi
2 Ij jp

≲ 11,2. Here, ω, E0, and I are the frequency, field
strength, and ionization potential of a target system expressed in
atomic units.

Qualitatively, the fact that the IIR is a function which is sharply
peaked near the local maxima of the electric field of the pulse can
be used to pinpoint the most probable electron trajectory. This
provides a basis for the design and interpretation of the results of
well-known experimental techniques, such as attosecond streak-
ing, or angular attosecond streaking3–5 allowing one to follow
electron dynamics at the attosecond level of precision. Recently,
the temporarily localized ionization at the local maxima of the
laser field has been used as a fast temporal gate to measure the
laser field6.

Quantitatively, the notion of IIR underlies many successful
simulations of tunneling ionization phenomena, relying on
Classical Trajectory Monte Carlo method7 or quantum
trajectories8,9 Monte-Carlo simulations. These methods become
practically indispensable if the system in question is too com-
plicated to allow an ab initio treatment based on the numerical
solution of the time-dependent Schrödinger equation (TDSE).
Even if a numerical solution of the TDSE is possible, these
methods may provide a physical insight which is not obvious
from the TDSE wave-function. Accurate quantitative calculations
using these approaches, which agree well with the ab initio TDSE,
have been reported in the literature7,10–15. In these approaches,
quantum-mechanical Keldysh-type theories1,16–18 are used to set
up initial conditions for the subsequent electron motion11–13. IIR
in the well-known Ammosov–Delone–Krainov (ADK) form19,20,
or more refined Yudin–Ivanov IIR21 provides a measure which
allows us to assign probability to an ionization event occurring at
a given moment of time inside the laser pulse duration.

The notion of the ionization event occurring at a given time
and, correspondingly, the notion of IIR, is not free from
ambiguity, however. An interpretation of the ionization event
which is often used is based on the imaginary time method18,22.
In this picture, an electron enters the tunneling barrier at some
complex moment of time with complex velocity. Upon des-
cending onto the real axis, the velocity and coordinates corre-
sponding to the most probable electron trajectory become real,
which can be interpreted as the electron’s exit from under the
barrier. This picture, however, cannot be taken unreservedly,
since the path which descends onto the real axis is not unique
and can be deformed, in principle, to cross the real time-axis at
almost any given point22. An approach which allows us to
define IIR from the solution of the TDSE has been described
recently23. In this approach, the IIR is defined by projecting out
contributions of the bound states from the solution of the
TDSE. The authors found that the IIR thus defined lags behind
the local maxima of the electric field, which suggests a nonzero
tunneling time. A shortcoming of this definition of the IIR,
however, is its nongauge-invariant character. The projection of
the solution of the TDSE onto the subspace of the bound states
performed during the interval of the pulse duration generally
depends on the gauge used to describe atom-field interaction.
Another approach which allows us to define IIR from the
solution of the TDSE is based on the notion of the electron flux
and was given in ref. 24.

In the present work we describe a different approach to IIR,
which is based on the notion of a functional derivative. This
approach provides an unambiguous and gauge invariant defini-
tion of the IIR. We apply the IIR thus defined to the problem of
the tunneling time for the process of the tunneling ionization.

Our definition does not show any appreciable tunneling delay in
strong field ionization for the case of hydrogen.

Results
Total ionization probability can be considered as a functional P
[E] of the waveform E(t), which maps the electric field of the
pulse into a real number. For the regime of the tunneling ioni-
zation that we are interested in below, this functional is highly
nonlinear and cannot be described in a closed form. A simplifi-
cation is possible if we consider a waveform which can be
represented as E(t)= Ef(t)+ δE(t), with fundamental field Ef(t)
and signal field δE(t). To be more specific, let us assume that the
fundamental field is linearly-polarized (along z-axis, which we
assume to be the axis of quantization) and is defined by the vector
potential Af(t):

Af ðtÞ ¼ �ẑ
E0
ω
sin2

πt
T1

� �
sinωt; ð1Þ

with peak field strength E0, carrier frequency ω, and total dura-
tion T1=NT, where T= 2π/ω is an optical cycle (o.c.) corre-
sponding to the carrier frequency ω, with N 2 N.

We assume the signal field to vanish outside the interval (0, T1)
of the fundamental pulse duration. If the signal field δE(t) is
sufficiently weak, we can write:

δP ¼ P Ef þ δE
h i

� P Ef
h i

�
ZT1

0

δP
δEf ðtÞ

δEðtÞdt; ð2Þ

where δP
δEf ðtÞ is a functional derivative of the functional P[E]

evaluated for E(t)= Ef(t).
On the other hand, using the customary definition of IIR, we

can write the probability of ionization driven by the combined
field E(t)= Ef(t)+ δE(t) as:

Pinst ¼
ZT1

0

WinstðEðtÞÞdt; ð3Þ

where Winst(E(t)) is the IIR, which by definition depends on the
instantaneous value E(t) of the electric field. We introduced the
notation Pinst in Eq. (3) to emphasize that this expression pertains
to the notion of the IIR. Eq. (3) gives a very particular case of the
functional P[E]—clearly not every functional can be represented
in this way.

From Eq. (3), we obtain the change of the ionization prob-
ability Pinst due to the presence of the weak signal field:

δPinst �
ZT1

0

dWinst Ef ðtÞ
� �

dEðtÞ δEðtÞdt; ð4Þ

Taking into account that δE(t) in Eqs. (2) and (4) is arbitrary
(provided it is small and vanishes outside the interval (0, T1)), one
can see that, if the treatment based on the notion of the IIR is
justified (i.e., using Eq. (3) with IIRWinst(E(t)) depending only on
the instantaneous value of the electric field gives an accurate value
for the total ionization probability), one must have:

δP
δEf ðtÞ

�
dWinst Ef ðtÞ

� �
dEðtÞ : ð5Þ

We note that the quantity on the right-hand-side (r.h.s.) of (5)
is an ordinary derivative which depends on time only through the
instantaneous value of the electric field. The quantity on the left-
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hand-side (l.h.s.), on the other hand, is a functional derivative,
which depends on time (through the time moment t at which
differentiation is performed), and on the waveform E(t), i.e., on
the complete history, past, and future, of the pulse. Suppose, for
instance, that we represent the waveform (1) as a Fourier series:

EðtÞ ¼
X
m

ame
imΩt ; ð6Þ

where Ω= 2π/T1. In general, the functional derivative on the l.h.s.
of Eq. (5) depends on the whole set am, while the ordinary
derivative on the r.h.s. is a function of the particular combination
of these coefficients. To express this differently, suppose that we
fix the pulse shape in Eq. (1) and allow only the field amplitude E0
to vary. The l.h.s. of Eq. (5) would then generally be a function of
two variables E0 and t, while the r.h.s. would depend only on a
particular combination of E0 and t, which gives the instantaneous
field strength E(t). Exact equality in Eq. (5), therefore, cannot be
achieved in general. This clearly demonstrates the approximate
character of the notion of the IIR. The more accurate expres-
sion (2), based on the functional derivative of the ionization
probability functional, depends not only on time, but on addi-
tional variables describing the waveform as well. For brevity, we
will dub below the functional derivative in Eq. (2) an “exact
ionization rate”, though as one can see from Eq. (5), it rather
corresponds to the derivative of the IIR with respect to the electric
field.

Below, we will fix the functional form of the fundamental pulse
shape in Eq. (1) and allow only the peak field strength E0 of the
fundamental field to vary. In Fig. 1 below, presenting results of
the TDSE calculation, we show and analyze, not the functional
derivative itself, but a proportional quantity, viz. the first variation
of the ionization probability δP(E0,τ), obtained if we substitute
expression (17) for the signal field in Eq. (2).

In Fig. 1, we show the first variation δP(E0, τ), computed fol-
lowing the numerical procedure outlined above as a function of
time τ and electric field strength E0 for pulses (1) with total
duration T1 of one (Fig. 1a) and two (Fig. 1b) optical cycles.

In Fig. 2a, b, we show the functional derivative δP
δEðtÞ obtained

using the ADK expression19,20 for the IIR. Since the ADK
ionization probability assumes an instantaneous relation between
the field strength and the probability of ionization at any given
time, this naturally leads to a definition of the IIR following Eq.
(4). The functional derivative in this case is just the derivative of
the ADK ionization rate with respect to the instantaneous electric
field. Plots showing results of the TDSE and ADK calculations
show good qualitative agreement, with the functional derivative
sharply peaked in the vicinity of the electric field maximum. We
can expect such peaks to occur for every local maximum. The
magnitudes of the secondary peaks, however, can be much
smaller compared to the peak corresponding to the principal
maximum of the field. This, in particular, is the case for the two-
cycle driving pulse shown in Fig. 1 (TDSE results) and Fig. 3a
(ADK results). On a linear scale, the secondary peaks occurring in
the vicinity of the secondary field maxima (at τ ≈ T/2 and τ ≈ 3T/
2) are practically absent both in the TDSE and ADK cases. To see

these peaks clearly we show in Fig. 3b the quantity δP
δEðtÞ
� �1=3

.

These properties are, of course, a direct consequence of the sharp
dependence of the ionization rate on the electric field. This
dependence is exponential in the case of the ADK IIR. The
dependence on the electric field of the IIR that we define in the
present work will be discussed below.

A more detailed picture of the IIR’s emerges by looking at the
contour plots (i.e., lines of equal elevation) of δP(E0, τ) in the E0,
τ-plane. Of particular interest is, of course, the behavior of

the IIR near the local maxima of the electric field where the IIR
attains its largest values. We will concentrate, therefore, on the
region of τ-values close to the highest maximum of the electric
field strength.

We will consider below only pulses with a total duration of one
optical cycle. The results for pulses with duration of 2 optical
cycles have been found to be essentially the same as for the one
optical cycle duration.

Since the ADK IIR is a function of the instantaneous electric
field only, lines of constant elevation in this case are just the lines
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Fig. 1 First variation of the ionization probability δP(E0, τ) obtained from the
time-dependent Schrödinger equation for Coulomb potential. a Total pulse
duration of one optical cycle (o.c.). b Total pulse duration of two optical
cycles. Insets show corresponding pulse shapes. Base frequency of the
pulses is ω= 0.02 atomic units
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satisfying |E(τ)|= const. Contour lines given by this equation are
shown in Fig. 2b. The curves are perfectly symmetric with respect
to the instant of time when the electric field of the pulse has a
maximum, and are parabolic near this point. These features, of
course, can be readily deduced from the fact that the electric field
of the pulse (1) is an even function, symmetric about the mid-
point of the pulse.

In ref. 23 it was found that the IIR defined in that work by
projecting out bound states contributions from the TDSE wave-
function lags behind the electric field of the pulse, which was
interpreted as a manifestation of the tunneling delay. Analogous
result was reported in ref. 24, where the authors monitored the
probability current density at the (albeit adiabatic) exit point, as
calculated by a one-dimensional TDSE solution. The point of
view that the tunneling delay has a nonzero value has also been
expressed in the works25–28, as opposed to papers advocating the
view of tunneling as an instantaneous process29–31.

In the approach we pursue, a nonzero tunneling delay would
lead to an asymmetry of the contour lines about the midpoint of
the pulse, as can be seen from the following argument. The
variation δP(E0, τ) is a function of E0 and τ. In the vicinity of a
local field maximum, we can introduce electric field and its
derivative (E(τ), E′(τ)) as another pair of independent
variables. The variation becomes a function δP(E(τ), E′(τ)).
Expanding δPv(E(τ), E′(τ)) in the vicinity of the field maximum

and keeping only first order terms in small E′(τ), one can then
write:

δPðEðτÞ; E′ðτÞÞ � δPðEðτÞ; 0Þ þ AðEðτÞÞE′ðτÞ
� f ðEðτ � ΔÞÞ ð7Þ

with some A(E(τ)), Δ, and function f(x). The lag Δ in the latter
equation can be interpreted as the tunneling delay. As can be seen
from Eq. (7), in a small vicinity of the field maximum, the lines of
constant elevation δP(E(τ), E′(τ))= const locally assume the form
E(τ− Δ)= const. Nonzero Δ, therefore, makes the contour lines
asymmetric about the midpoint of the pulse.

Figure 4a shows contour lines of δP(E0, τ) obtained from TDSE
calculation for hydrogen with the Coulomb potential. The
absence of any appreciable asymmetry in the Figure suggests that
our definition of the IIR gives us an essentially zero time delay for
the Coulomb potential.

We considered also the case of the Yukawa potentials VðrÞ ¼
�Ae�

r
a=r with different screening parameters a. For every a we

adjusted the value of A so that the resulting ionization potential
for the ground state was always 0.5 atomic units (a.u.), corre-
sponding to hydrogen. Results for the Yukawa potentials shown
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in Fig. 4b, c again show an absence of any appreciable asymmetry
of the contour lines, and consequently the time delay.

We used above the functional derivative δP
δEðtÞ, which as Eq. (5)

shows, provides a definition for the derivative of the IIR, dWinst
dEðtÞ ,

rather than for the IIR itself. To obtain the IIR provided the
functional derivative δP

δEðtÞ is known, one can proceed as follows.
Let us write the the functional P[E] (we remind readers that it

is the total ionization probability considered as a functional of the
laser field) as:

P½E� ¼
ZT1

0

WðEðtÞ; E′ðtÞ¼ EðnÞðtÞ; tÞdt; ð8Þ

The IIR Winst(E(t)) in (3) depends, by definition, only on the
instantaneous value of the electric field E(t). The function W in
Eq. (8) is used to represent the exact functional P[E]. It
may depend, therefore, not only on the electric field but on the
(in principle infinite) number of its higher order derivatives
and time, as reflected by the notation in Eq. (8). From the
Eq. (8) we obtain for the functional derivative of the functional
(8):

δP
δEðtÞ ¼

∂W
∂EðtÞ �

d
dt

∂W
∂E′ðtÞ þ ¼ ð�1Þn dn

dtn
∂W

∂EðnÞðtÞ ; ð9Þ

where we used integration by parts to handle the electric field
derivatives (the usual procedure which in the case of W in Eq.
(8) depending only on E(t) and E′(t) gives the standard from of
the Euler–Lagrange equations).

To advance further, we can proceed as follows. We can assume
a trial form Wtrial(e), depending on the set e of variational
parameters, for the function W. Using this trial function, we
compute a trial functional derivative δPtrial

δEðtÞ as prescribed by the Eq.
(9) for the field strengths E0 we considered above and form a
functional:

DðeÞ ¼
Z

δPtrial
δEðτÞ �

δP
δEðτÞ

����
����
2

dE0 dτ: ð10Þ

In practice, of course, both E0 and τ in Eq. (10) assume a
discrete set of values for which we performed the TDSE calcu-
lations we described above, so the double integral in Eq. (10) is, in
fact, a double sum. Minimizing expression (10) (we use the well-
known gradient decent method) we find the trial parameters e
and hence a variational approximation to the exact IIR in Eq. (8).

We will consider the following trial IIR:

Wa
trial ¼ exp � 2

3 EðtÞj j þ e1 ln jE tjð Þ þ e2

� �
ð11Þ

Wb
trial ¼ exp � 2

3 EðtÞj j þ e1ln jE tjð Þ þ e2 þ e3E′ðtÞ
n o

Wc
trial ¼ exp � 2

3 EðtÞj j þ e1 lnjE tjð Þ þ e2 þ e3E′′ðtÞ
n o

with variational parameters e1–e3. The leading small-E term
−2/3E(t) in the exponential reproduces, of course, the leading
term in the ADK formula19, the coefficient e1 with the logarith-
mic term would be −0.5, had we used the ADK expression. It is
known, however22, that the Coulomb potential modifies con-
siderably the pre-exponential factor in the ADK formula, we treat,
therefore, e1 as a fitting parameter.

With the fitting parameters given by the fitting procedure, we
can compute the total ionization probability Ptrial(E) using Eq. (8)
and judge thereby the quality of the variational approximations to
the IIR. We illustrate this strategy in the case of a hydrogen atom
with Coulomb potential driven by a single cycle pulse. Expression
(10) was minimized using a set of τ-values in the interval of the
pulse duration and peak field strengths in the interval between
0.055 and 0.07 a.u. for which we performed the TDSE calculations
we described above.

The results are illustrated in Fig. 5, where we show the total
ionization probability P(E) obtained from the TDSE calculation
(Fig. 5a), IIR’s obtained using the fitting procedure we described
above (Fig. 5b), and the relative errors (Ptrial(E)− P(E))/P(E)
which fits (a–c) in Eq. (12) give for the total ionization
probability for the interval of the electric field strengths we
consider (Fig. 5c).

It is noteworthy that inclusion of the first derivative in the
expression for the trial function has no appreciable effect on the
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quality of the fit. The value for the fitting parameter e2 in the
expression for Wb

trial, which our fitting procedure returns is very
small (on the order of 10−6). This result agrees with the absence
of the tunneling delay for Coulomb potential which we found
above by studying lines of constant elevation for δP(E0, τ).
Indeed, were the term with the first derivative present with a
nonnegligible coefficient in the expression Wb for the IIR, we
could rewrite it (keeping only first order terms in E′(t) as as we
did above in deriving Eq. (7) for the first variation of the

ionization probability) as:

WbðEðtÞ; E′ðtÞÞ � Wb Eðt � ΔÞ; 0ð Þ; ð12Þ

to obtain an ADK-type expression for the IIR without the first
derivative but with a shifted argument E(t− Δ) of the electric
field. This would imply a nonnegligible tunneling delay.

We applied our method above in the case of the ionization in
the tunneling regime (with Keldysh parameter γ≲ 1/3 for the
field parameters we considered). We should note that, at least
formally, the procedure of calculating the functional derivative
and retrieving the IIR from its values can be applied in the
multiphoton or in the intermediate regimes as well. Indeed, by
construction, the time- integral of the IIR in the Eq. (8) should
give the total ionization probability regardless of the ionization
regime. In the multiphoton regime, however, we cannot
expect ADK-type trial expressions in Eq. (12) to be good trial
guesses. In the multiphoton case and in the intermediate regime
between the multiphoton and tunneling case, we can expect the
role of the higher order time derivatives in Eq. (8) to be more
important.

The theory and calculations we presented above were based on
the delta-function signal pulse δE(t, τ)= αδ(t− τ) which has a
DC-component (integral of the electric field along the interval of
the pulse duration has nonzero value). We could use a more easily
obtainable experimentally attosecond sine-pulse, with an electric
field which can be approximated as a derivative of the delta-
function: δEðt; τÞ= α ∂

∂tδðt � τÞ. For such a signal pulse, our Eq.
(2) gives:

δP �
ZT1

0

δP
δEf ðtÞ

δEðtÞdt ¼ �α
d
dt

δP
δEf ðtÞ

 !
t¼τ

: ð13Þ

Taking into account the correspondence between the func-
tional derivative δP

δEf ðtÞ and the derivative of the IIR we established
in (5), we see that variation δP of the ionization probability in this
case can be estimated as (provided the notion of the IIR
depending only on the instantaneous value of the field is
applicable):

δP � �α
dW2

instðEðtÞÞ
dE2ðtÞ E′ðtÞ

� 	
t¼τ

: ð14Þ

Instead of probing the first derivative of the IIR as we did
above, we would be probing in this case its second derivative. The
general behavior and the lines of the constant elevation in the case
of the function given by the r.h.s. of the Eq. (13) are shown in
Fig. 6a, b for the ADK IIR, and are quite different from those we
have shown above in Figs. 1 and 4 for the case of the delta-
function pulse.

The reason for this difference is the factor E′(t) in Eq. (14) due
to which the r.h.s of this equation vanishes near the field extrema.
This, however, could be advantageous if we wish to obtain
information about the IIR far from the field maxima. Indeed, for
the variational approach based on Eq. (10), the time values close
to the field maxima, where the quantity δP

δEðtÞ has a large magni-
tude, contribute mostly to the variational functional. We can
develop a similar variational procedure which would allow us to
reconstruct the IIR from the quantity on the r.h.s. of Eq. (13). In
this case, because of the factor which makes this quantity small
near the field maxima, we could hope to determine the IIR more
accurately for the time values farther away from the field extrema.

Discussion
To summarize, we described an approach which allows us to
define the IIR as a functional derivative of the total ionization
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probability. This approach provides an unambiguous definition of
the IIR. In particular, it is based on directly measurable quantities,
such as the total ionization probability and the waveform of the
pulse, which makes it gauge invariant. We applied the IIR thus
defined to the problem of the tunneling time for the process of
the tunneling ionization of systems with Coulomb and Yukawa
potentials as examples. In agreement with some previous results
using attoclock methodology (which assume the most probable
electron trajectory to begin tunneling at the peak of the laser
field), the IIR we define does not show any appreciable tunneling
delay in strong field ionization for the case of hydrogen.

Finally, we would like to note that we have pursued several
goals in doing this work. One was to shed some light on the
tunneling time problem. We tried to do that by giving a precise
meaning to the concept of the IIR which, by itself, is an important
and useful notion. As explained in the introductory section of the
manuscript, the notion of the IIR is in the core of many successful
approaches to simulations of strong field ionization. Use of a
notion which has not been clearly and unambiguously defined for
such purposes can lead to considerable confusion. The definition
we give is mathematically clear, unambiguous, and useful.

Methods
To compute the exact ionization rate in Eq. (5) for a given moment of time τ and a
given waveform Ef(t), one can calculate numerically the modulation of the ioni-
zation probability δP using Ef(t) as a fundamental field and employing a special

form δE(t, τ)= αδ(t− τ) of the signal field, containing the Dirac delta-function.
We did this by solving numerically the TDSE for a hydrogen atom in the presence
of the pulse (1). We considered pulses with a low carrier frequency of ω= 0.02a.u.
We need to work with low frequencies to stay within the framework of the adia-
batic theory, which makes the notion of the IIR at least qualitatively applicable.

We report below results of the calculations with total pulse durations T1 of one
or two optical cycles respectively, and various peak field strengths, E0 (chosen so as
to remain in the tunneling regime of ionization).

The solution of the TDSE has been found by representing the wave function
as a series in spherical harmonic functions, and discretizing the resulting system
of radial equations on a grid with the step-size δr= 0.05a.u. in a box of the size
Rmax= 700a.u., which was sufficient for the pulses of a short duration we consider
below. More details about the numerical procedure used to solve the TDSE can be
found in refs. 32,33.

Total ionization probability, which we need for the practical implementation of
the definition (5), is found by decomposing the wave function at the end of the
pulse as:

Ψ T1ð Þ ¼ ϕþ χ; ð15Þ

where ϕ ¼ Q̂Ψ T1ð Þ, χ ¼ Î � Q̂

 �

Ψ T1ð Þ, and Q̂ is the projection operator on the
subspace of the bound states of the field-free atomic Hamiltonian. Total ionization
probability P can be found then as the squared norm P ¼ χk k2. The projection
operator Q̂ is obtained by numerically computing (employing the same grid we
used to solve the TDSE) the bound states nlmj i of the field-free Hamiltonian:

Q̂ ¼
XLb
nl

l ¼ 0

nl0j i nl0h j;
ð16Þ

where we use the fact that, for the geometry we employ, we need to consider only
the states with zero angular momentum projection. We retain in Eq. (16) all the
eigenvectors that we obtain for 0 ≤ l ≤ Lb. We use Lb= 12 in the calculations below
after checking that results are well converged with respect to this parameter. We
note that the definition of the ionization probability as the squared norm of χ is
formally equivalent to the commonly-used definition in terms of the projection on
the ingoing scattering states ϕ�k : P ¼ R dk ϕ�k

� ��Ψ T1ð Þi�� ��2 (assuming normalization
ϕ�k′jϕ�k
�  ¼ δðk � k′Þ). Indeed, substituting the decomposition (15) into this
equation, and using orthogonality of χ to the subspace of the bound states, we
obtain again P ¼ χk k2. In practice, the prescription based on the calculation of the
norm of the part of the wave-function describing the ionized wave-packet in the
coordinate space, as encapsulated in Eq. (15), is preferable. The reason for this is
that the calculation of the total ionization probability by projecting Ψ(T1) on the set
of the scattering states implicitly presumes the strict orthogonality of the scattering
and bound atomic states. We are interested below not in the ionization probability
itself, but rather in its relatively small variations due to the weak signal field. Even
small nonorthogonality of the scattering and bound states, unavoidable in
numerical calculations, may lead to a significant loss of precision.

The definition of exact ionization rate in Eq. (2) is based on the physically
observable quantities: the electric field of the pulse and modulation of the total
ionization probability. It is clearly gauge invariant. It is immaterial, therefore,
which gauge describing the atom-field interaction is used when solving the TDSE
(provided, of course, that a sufficient level of numerical accuracy has been
achieved). We used the length (L-) gauge. Convergence of the expansions in
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spherical harmonic functions that we use to represent the solution of the TDSE was
achieved by including spherical harmonic functions of the rank up to Lmax= 70. In
numerical calculations we have to regularize, of course, the expression δE(t, τ)= αδ
(t− τ) for the signal field. We used the regularization:

δEðt; τÞ ¼ α

ε
exp �ðt � τÞ2

ε2

� �
; ð17Þ

with ε= T/1000 (here T is an optical period (o.c.) corresponding to the carrier
frequency we use), and α= 0.001a.u. The value of α is to be small enough to
warrant omission of the higher order functional derivatives in the Taylor expansion
for the ionization probability functional. That our choice of this parameter achieves
this goal can be seen from the plot in Fig. 7, where the total ionization probability is
shown as a function of the parameter α for the Yukawa potential VðrÞ ¼ �Ae�

r
a=r

with the screening parameter a= 20, and A= 1.05a.u. (the parameter A was
adjusted so that the ionization potential equals that of the hydrogen atom), total
duration of the fundamental pulse 1 o.c., its peak field strength E0= 0.061a.u. The
parameters in Eq. (17) were τ= 0.5 o.c., ε= T/1000.

One can see from Fig. 7 that for α≲ 0.002 the ionization probability is very well
approximated by a linear function of α. Least squares linear fit P(α)= P(0)+ cα
(here P0 is the ionization probability in the absence of the signal field, c is a fitting
parameter) performed using all data-points with α ≤ 0.002 allows us to quantify
this statement. For α ≤ 0.002 the relative error of the linear fit is less than one
percent. We may conclude, therefore, that for α= 0.001 the relative contributions
of the terms containing higher order functional derivatives in the Taylor expansion
of the ionization probability functional are of the order of 1%. To ascertain that the
parameter ε is adequately chosen, we performed a series of calculations, using the
same pulse and Yukawa potential parameters for different values of ε. Results,
summarized in Table 1, show that the relative error introduced by the finite spread
of the Gaussian in Eq. (17) is of the order of 10−5 for the value of ε= T/1000 we
use. We have ascertained thus that the combined relative error due to the omission
of higher order functional derivatives and the finite width of the Gaussian reg-
ularization (17) is of the order of 1%. To conclude the discussion of the regular-
ization procedure employed in the calculations, we note that for the Coulomb
potential, the ionization probability is typically larger than that for the
Yukawa potential, so the relative accuracy of the calculation in the case of
the Coulomb potential (for the same signal pulse parameters) would be even
higher.

It is worth noting that, even for ε= T/30, the relative error we get for the
ionization probability is of the order of 1%. Full width at half maximum of the
pulse (17) for this value of ε is about 300 attoseconds. Delta-function-like
pulses of such duration have already been produced in the laboratory34, which
makes possible experimental measurements of the IIR which we define in the
present work.

Data availability
All relevant data are available from the authors upon request.
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Table 1 Dependence of ionization probability on the
regularization parameter ε and full width at half maximum
(FWHM) of the signal pulse

ε FWHM of the pulse (17)
(attoseconds)

Ionization probability

T/30 298 6.05598 × 10−3

T/200 45 6.04588 × 10−3

T/500 18 6.04618 × 10−3

T/750 12 6.04623 × 10−3

T/1000 9 6.04626 × 10−3
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