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We investigate the entanglement entropy of a two-dimensional disordered system holographically. In
particular, we study the evolution of the entanglement entropy along renormalization group flows for a
conformal theory at the UV fixed point, that is perturbed by weak disorder into a Lifshitz theory at the IR
fixed point. Through numerical fitting, we find that the disorder correlations lead to a subleading power-law
term in the entanglement entropy that vanishes at the IR fixed point. Interestingly, the exponent that
controls the power-law vanishing of the subleading term seems to be almost universal as it depends very
weakly on the strength of the disorder. We show that our results can be put in the context of the c-theorem
by defining an effective central charge that decreases along the RG flow. We also investigate disorder
induced long-range correlations between the two subsystems by studying the holographic mutual
information.
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I. INTRODUCTION

Quenched disorder can have far reaching consequences
on the physical properties of quantum materials especially
near quantum critical points [1]. For instance, relevant
disorder fluctuations could drive the renormalization group
flows away from the clean critical point [2] and lead to new
critical behavior. This new critical behavior could be one
which supports conventional power-law scaling with a
finite value of the disorder strength [1,2] or could be of
the infinite disorder kind with activated scaling [3,4], with
accompanying exotic quantum Griffiths effects [5,6]. In
some cases disorder effects can be so stark so as to result in
the ultimate destruction or smearing of the transition itself
[1,7–11]. In addition to the effects discussed above, dis-
order in itself can trigger quantum phase transitions. A case
in point is provided by the case of Anderson localization
[12] wherein the wave function of quantum particles

propagating in a disorder induced random potential
becomes localized.
In the recent past the entanglement entropy (EE) which is

a good measure to characterize the quantum phase tran-
sitions (QPT)[13–18] has been calculated for some quan-
tum systems in the presence of quenched disorder, (see e.g.,
[19] for a review). For instance, the strong disorder
renormalization (SDRG) scheme [3,4,20,21] was adapted
by Refael and Moore initially to calculate the disorder
averaged EE for the random transverse field Ising model
and the random Heisenberg antiferromagnetic chain [22].
Apart from the analytical SDRG scheme, other schemes
such as the numerical exact diagonalization schemes
[23,24] and the density matrix renormalization group
(DMRG) method [25] have also been used to characterize
the EE in disordered systems.
These results, that are centered on one dimensional

disordered spin chains hosting an infinite disorder fixed
point [3,4,22–24,26], conclusively show that concomitant to
results obtained for clean systems, the disorder averaged EE
between a subsystem of size l and its complement scales
logarithmicallywith system size,SðlÞ¼ðceff=3Þlnlþconst.
However, the “effective” central charge ceff that controls this
logarithmic divergence is different from its clean counterpart.
Thus, a wide variety of systems that play host to an infinite
disorder fixed point like the one-dimensional random trans-
verse field Ising model (RTFIM) at its critical point, the
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random antiferromagnetic XXZ chain, the random antifer-
romagnetic spin-S chain at its random singlet phase and the
random q-state Potts chain et al. display this “universal”
logarithmic behavior of the EE.
The logarithmic scaling of the disorder averaged EE

elucidated in the above paragraph is predicated on the
existence of an infinite disorder fixed point wherein the
scaling relation that connects length and timescales are
activated or exponential-like. However, there are situations
where the disorder fluctuations drive the system to a
conventional random fixed point that support the conven-
tional power-law scaling between length and timescales.
The RG flow equations for such a situation was developed
in Refs. [27,28]. The results of these flow equations were
completely in line with the earlier weak coupling RG
results of Refs. [29,30] and the later holographic results
of [31].
In this paper, we calculate the behavior of the holo-

graphic EE at such a disordered conventional random
critical point. This done by laying recourse to the dual
geometrical description [31–38] of the disordered field
theory. We apply the prescription of Ryu-Takayanagi
formula [39–42] to calculate the EE of a disordered
quantum field theory (QFT) from the minimal surface area
defined in the dual disordered geometry [31–38]. For the
disordered system the asymptotic geometry is given by an
AdS space, whereas the geometry corresponding to the IR
regime approaches a Lifshitz geometry. Due to the specific
scaling symmetry of the Lifshitz geometry, its dual QFT is
believed to become a Lifshitz field theory (LFT) which has
also the same scale symmetry (see e.g., Refs. [43–53]).
In particular, this manuscript looks at the flow of the EE

as we traverse from the ultraviolet (UV) CFT to the infrared
(IR) LFT. Its dual gravity and geometric solution were
found in Ref. [31] in which a disordered source was
represented as a massive bulk scalar field. On this known
dual geometry, we will study the effect of the randomly
disordered source on the UV EE and investigate how the
random disordered source modifies the UV EE to the IR
one described by the LFT. Wewill also look into the mutual
information between two subsystems when the theory
evolves from CFT to LFT.
The rest of the paper is organized as follows: In Sec. II,

we take account of a two-dimensional CFT deformed by a
disordered source. Intriguingly, its dual geometry allows a
Lifshitz IR fixed point where the Lifshitz scale symmetry
appears. In Sec. III, on this background, after investigating
the long-range quantum correlation described by the holo-
graphic EE, we look into its critical behavior represented by
a critical exponent. In Sec. IV, we study the renormalization
group (RG) flow of the holographic EE. In Sec. V, we
further investigate how the disordered source affects the
mutual information in both UV and IR regions. The
concluding remarks are in Sec. VI where we also place
our results in the context of earlier results in the field of

holographic EE and also in the context of disordered
quantum many-body systems. Finally, we reiterate several
interesting and important properties of a scale invariant
theory through the holographic EE formula in the Appendix.

II. THE RANDOMLY DISORDERED
SYSTEM FROM HOLOGRAPHY

Recently, significant progress was made in understand-
ing the disordered system holographically. It has been
shown that when a two-dimensional CFT is deformed by a
disorder operator, its contribution is finite even in the IR as
well as UV regimes [31]. The dual geometry of the
randomly disordered system has been analytically con-
structed by using the Poincaré-Lindstedt resummation
technique. Although it is a perturbative geometric solution,
it opens a new window to study an IR critical behavior
holographically. Interestingly, the dual geometry modified
by the disordered fluctuation remains as an AdS space in
the UV limit, while in the IR limit it continuously changes
into a Lifshitz geometry with a nontrivial dynamical critical
exponent. This geometry implies that the dual QFT runs
from a CFT to a LFT along the RG flow. Since the dual
geometry connects the UVand IR fixed points smoothly, it
provides a good playground to study the RG flow caused
by a disordered operator. In this section, we briefly review
the dual geometry of a randomly disordered system [31].
The starting point to describe a disordered fluctuation

holographically is a (2þ 1)-dimensional Einstein-scalar
gravity described by the following action

S¼ 1

16πG

Z
d3x

ffiffiffiffiffiffi
−g

p �
Rþ 2

R2
−2∂aϕ∂aϕ−

2m
R2

ϕ2

�
; ð1Þ

where R is an AdS radius and the scalar field corresponds to
the source of the disorder. From now on, we will set R ¼ 1
for simplicity. When m ¼ −3=4, the scalar field near the
asymptotic AdS boundary can be expanded into

ϕ ¼ u1=2ϕ1ðxÞ þ u3=2ϕ2ðxÞ þ � � � ; ð2Þ

and its dual scalar operator saturates the Harris criterion. In
this case, the randomly disordered source can be repre-
sented as (see [31] for the details)

ϕ1ðxÞ ¼ v
XN−1

n¼1

An cos ðknxþ γnÞ; ð3Þ

where kn ¼ nΔkwithΔk ¼ k0=N and γn denotes a random
phase uniformly distributed in ð0; 2πÞ. Here k0 indicates the
highest mode of the disorder and the disorder amplitude An
is given by

An ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðknÞΔk

p
; ð4Þ
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where the function SðknÞ controls the correlations of the
noise. The random average denoted by h� � �iR is defined in
the N → ∞ limit and accounts for the local Gaussian noise

hϕ1ðxÞiR ¼ 0 and hϕ1ðxÞϕ1ðyÞiR ¼ v2δðx − yÞ: ð5Þ

Regarding the gravitational backreaction of the scalar
field, the resulting dual geometry of the randomly disor-
dered system becomes up to v2 order [31]

ds2 ¼ 1

u2

�
−

Aðu; xÞ
FðuÞβðvÞ dt

2 þ BðuÞdx2 þ du2
�
; ð6Þ

with

Aðu; xÞ ¼ 1þ v2fe−2k0u½ð1þ 2k0uÞðlnð2k0uÞ þ γÞ�g

− v2
�
2k0ue−2k0u þ ln

�
2k0uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k20u

2
p

��
;

BðuÞ ¼ 1þ v2ðe−2k0u þ γ − 1Þ;
FðuÞ ¼ 1þ k20u

2;

βðvÞ ¼ v2

2
; ð7Þ

where γ is the Euler constant, γ ≈ 0.577. Even when v is
order one, the gravitational backreaction of the disordered
source is still regular in the entire range of u. Interestingly,
this geometry smoothly changes from an AdS geometry in
the UV regime (u → 0) into a Lifshitz one in the IR regime
(u → ∞) with the dynamical critical exponent

z ¼ 1þ v2

2
: ð8Þ

Note that the above averaged metric contains only the
second order correction v2 caused by disorder fluctuations.
Another thing we must notice is that the averaged metric is
not singular in the entire range of the radial coordinate u.
According to the AdS=CFT correspondence, this radial
coordinate corresponds to the energy scale of the dual field
theory. In the UV region (u → 0), the averaged metric
represents a two-dimensional conformal field theory
deformed by relevant disorder fluctuations. Along the
renormalization group flow, the regularity of the dual
geometry implies that the deformed dual CFT smoothly
flows to a Lifshitz field theory in the IR limit. From this
fact, we can see that the minimal surface, although it is
governed by a nonlinear differential equation, also becomes
regular only except the UV divergence. The regularity of
the minimal surface enables us to take a perturbative
expansion in terms of a small disorder strength in the
entire range of u. Although the averaged metric is not an
exact one including all higher order corrections, it is still
valid up to second order perturbation if the strength of

disorder fluctuations remains small. The same thing is also
true for the minimal surface. This fact implies that the small
disorder parameter v allows us to find a perturbative
solution in the entire range of u. Since we have taken into
account only the v2 contribution to the averaged metric, the
resulting area of the minimal surface is also valid only up to
v2 order. In the case of a small disorder strength, the v2

order contribution is the leading correction caused by
disorder fluctuations. We can further consider higher order
corrections like v4. Though such higher order corrections
are also regular and can modify the critical exponent and
the minimal surface area [31], they are negligible when
comparing it with the v2 order contribution for v ≪ 1.
Hereafter, we concentrate on the leading correction of
disorder fluctuations occurring at order v2.

III. HOLOGRAPHIC ENTANGLEMENT ENTROPY
FOR THE DISORDERED SYSTEM

In order to study the disorder effect, let us investigate the
holographic EE. Since the perturbative expansion with
respect to v is applicable in the entire regime of the dual
geometry, here we focus on the leading correction of v2

order. By using Ryu-Takayangi formula [39,40], the EE can
be evaluated by calculating the area of the minimal surface
extended to the dual geometry, whose boundary have to
coincide with the entangling surface dividing a total system
into two parts. In order to clarify the entangling surface, we
take a subsystem defined in the following interval

−
l
2
≤ x ≤

l
2
: ð9Þ

The configuration of the minimal surface can be expressed
by u as a function of x. Using this parametrization, the
induced metric on the minimal surface reduces to

ds2in ¼
1

uðxÞ2 ½BðuðxÞÞ þ u0ðxÞ2�dx2; ð10Þ

where the prime indicates a derivative with respect to x.
Then, the EE is governed by the following action

SE ¼ 1

4G

Z
l=2

−l=2
dx

1

uðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðuðxÞÞ þ u0ðxÞ2

q
: ð11Þ

In order to obtain a unique minimal surface, we should
impose two boundary conditions which fix the integral
constants of the second order differential equation. Natural
boundary conditions are uðl=2Þ ¼ 0 and u0ð0Þ ¼ 0. Here
the first constraint is required because the entangling
surface must be located at the boundary u ¼ 0, while the
second is needed to find a smooth minimal surface at the
turning point, x ¼ 0.
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A. In the UV regime

Before studying the disorder effect in the IR regime, we
first investigate the EE in the UV regime satisfying
k0l ≪ 1. Above the action is invariant under x → −x, so
that we can further reduce the action into

SE ¼ 1

2G

Z
l=2−x�

0

dx
1

uðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðuðxÞÞ þ u0ðxÞ2

q
: ð12Þ

where x� is introduced to denote a UV cutoff in the x-
direction. Due to the existence of the small expansion
parameter v in the entire regime, u can be expanded to be

uðxÞ ¼ u0ðxÞ þ v2u2ðxÞ þOðv4Þ: ð13Þ

Then, u0ðxÞ and u2ðxÞ satisfy the following equations of
motion

0 ¼ u0u000 þ u020 þ 1; ð14Þ

0 ¼ e2k0u0ðγ þ 2u00u
0
2 þ u2u000 þ u0u002 − 1Þ

− 2k0u20u
00
0 − k0u0 þ 1: ð15Þ

The boundary conditions discussed above reduces to
ui ¼ 0 at x ¼ �l=2 and u0i ¼ 0 at x ¼ 0.
The solution of the first equation, u0, describes the

geodesic curve in a pure AdS3 space [39]

u0ðxÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − 4x2

p
; ð16Þ

which automatically satisfies two required boundary con-
ditions. The second equation governs the deformation of
the minimal surface caused by the disorder. It does not
allow an analytic solution, so that a numerical study is
needed to figure out its effect in the IR regime. However, in
the UV regime the existence of another small expansion
parameter still enables us to look into the EE analytically
but perturbatively. In the UV regime where the highest
momentum of the disorder is much smaller than the energy
scale observing the dual QFT, k0l is small and u2 can be
further decomposed into

u2ðxÞ ¼ u20ðxÞ þ
k0l
2

u21ðxÞ þOðk20l2Þ: ð17Þ

The first solution satisfying the equation of motion is
given by

u20ðxÞ ¼
c1lþ 2c2x − γx2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 − 4x2
p : ð18Þ

The smoothness at x ¼ 0 fixes c2 ¼ 0 and the other
boundary condition, uðl=2Þ ¼ 0, gives rise to c1 ¼ γl=4.
Using this result, u21ðxÞ satisfying the equation of motion
reads

u21ðxÞ¼
2x2− l2

2l
þc3lþ2c4xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2−4x2
p −

lxtan−1
�

2xffiffiffiffiffiffiffiffiffiffi
l2−4x2

p
�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2−4x2

p : ð19Þ

Imposing again two required boundary conditions, we
finally obtain c4 ¼ 0 and c3 ¼ πl=8.
Now, let us introduce a UV cutoff, ϵ, in the u-direction

which is associated with the UV cutoff, x�, introduced
previously. Using the perturbative solutions we found, they
are related by

x� ¼
�
1 −

�
π

8
k0lþ γ

�
v2
�
ϵ2

l
þOðϵ3Þ: ð20Þ

Substituting these results into Eq. (11) and integrating it
perturbatively, the holographic EE in the UV regime can be
written as

SE ¼ −
c
3
ln ϵþ SLðl; v; k0Þ; ð21Þ

with

SLðl; v; k0Þ ¼
c
3
ln lþ c

6
ðγv2Þ − cπ

24
v2k0l; ð22Þ

We use the relation, c ¼ 3R=2G, where G is the Newton
constant in three dimensional gravity and R ¼ 1 is the
radius of AdS3. Here, the first part including the UV
divergence can be regarded as the short distance correlation
across the entangling surface (two boundary points), while
SLðl; v; k0Þ corresponds to a long-range quantum correla-
tion between the subsystem and its complement.
In the UV regime, our result in (22) shows that the

disorder corrections affect the long-range quantum corre-
lation and that the resulting EE starts to decrease linearly as
the subsystem size increases.

B. In the IR regime

In order to understand the disorder effect in the IR
regime, we need to know the exact minimal surface
configuration extended into the deep interior of the dual
geometry. In the interior corresponding the IR regime of
the dual field theory, the expansion parameter used in the
previous section is not small, so that we can not apply the
previous expansion any more. In this section, therefore, we
will investigate the disorder effect in the IR regime numeri-
cally. Noting that the minimal surface action in Eq. (11)
does not depend explicitly on x, we can find a conserved
quantity

H ¼ −
BðuðxÞÞ

uðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðuðxÞÞ þ u0ðxÞ2

p : ð23Þ

At the turning point satisfying u0ðxÞ ¼ 0 at x ¼ 0, it
reduces to
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H ¼ −
ffiffiffiffiffiffi
B0

p
u0

; ð24Þ

where u0 and B0 indicate the turning point and the value of
B on it. Comparing these two results, we can determine the
subsystem size and EE in terms of u0

lðu0; v; k0Þ ¼ 2

Z
u0

0

du
u

ffiffiffiffiffiffi
B0

p
ffiffiffiffi
B

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bu20 − B0u2

p ; ð25Þ

SEðu0; v; k0Þ ¼
c
3

Z
u0

ϵ
du

u0
ffiffiffiffi
B

p

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bu20 − B0u2

p ; ð26Þ

where a UV cutoff in the second integral is introduced for
the regularization. Note that unlike the previous section
where lwas used as a free parameter, above l is determined
by three free parameters, u0, v and k0. Since c appears as an
overall constant in the EE formula, the exact value of c is
not important to understand the qualitative behavior of
the EE.
Now, let us concentrate on the long-range quantum

correlation in order to look into IR physics

SL ¼ c
3
ln lþ SD: ð27Þ

Here, the first term represents the common dependence on
the subsystem size, while the second term corresponds to
the disorder effect, which can be obtained from the
numerical data of SE, that

SE ¼ c
3
ln
l
ϵ
þ SD: ð28Þ

From now on, we take a specific UV cutoff, ϵ ¼ 10−10, for
the numerical calculation. If changing the UV cutoff, the
value of SE must be changed. However, the qualitative
behavior described by the RG flow is not affected as
mentioned before, so that we use SD and SL to describe the
physical properties. Figure 1(a) shows that the value of SD
in the large l limit converges into a certain constant. This
fact becomes clear in Fig. 1(b) where the slope of SD also
approaches to zero. These results strongly indicate that a
new scale invariant theory arises at the IR critical point
(l → ∞).
Due to the existence of the scale invariance at the IR

critical point, it would be interesting to check whether the
IR EE can show a universal critical behavior represented as
a critical exponent. Assuming that SD is given by a
polynomial of l, v and k0, then near the IR critical point
it can be expanded into

SD ¼ S∞ þ C
lδ
þ � � � : ð29Þ

Above the ellipsis means higher order corrections, Oðl−σÞ
with σ > δ, and can be ignored in the l → ∞ limit.
In order to check the above expected form, we fit

numerical data of SD with Eq. (29). Figure 2 shows
in the large l limit that numerical data of SD can be well
fitted by Eq. (29) with S∞ ¼ −0.00284, C ¼ 1.146 and

(a)

(b)

FIG. 1. The numerical results for SD and S0D in terms of l, for
v ¼ 0.1 (dotted), 0.2 (dashed), and 0.3 (solid). These two results
show that SD in the large l limit approaches to a certain constant
value [See also Fig. 3(b)].

FIG. 2. Numerical result of SD in terms of l (solid curve) and
fitted by Eq. (29) (dashed line) with S∞ ¼ −0.00284, C ¼ 1.146
and δ ¼ 2.107 for k0 ¼ 0.1, v ¼ 0.2 and c ¼ 1.
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δ ¼ 2.107 for k0 ¼ 0.1, v ¼ 0.2 and c ¼ 1. In addition, the
negative value of SD implies that the disorder effect reduces
the long-range quantum correlation.
In order to study how the disorder deformation affects

the long-range correlation behavior and what the critical
behavior of the EE is near the IR fixed point, we extract
information about S∞, SL, C and δ depending on v in
Fig. 3, where we use l ¼ 200, c ¼ 1 and k0 varies from 0.1
to 0.5. The values of S∞ in Fig. 3(a) and C in Fig. 3(c) are
given by well-behaved continuous functions. When the
amplitude of the disorder v increases S∞ decreases, whileC
increases. In general, δ in Eq. (29) is given by a function of
the intrinsic parameters of the theory, k0 and v. However,
the resulting δ in Fig. 3(d) shows an almost constant value
with a small deviation for v > 0.3. In this case, the small
deviation seems to be caused by a numerical error. If so,
the result in Fig. 3(d) indicates that the first correction to
the IR EE is suppressed by a critical exponent δ which is
independent of v.
There are several remarks before closing this section.

First, the critical exponent δ seems to be universal as it
depends only very weakly on the amplitude of the
disordered fluctuation which is one of the intrinsic param-
eters of the UV microscopic field theory. Second, this result
is obtained by taking into account just v2 order disorder
deformation, so that if one further considers higher order
corrections like v4, the critical exponent we found can be
modified. Lastly, although we obtained a critical exponent
of the EE in a small v region, it is not clear whether such a
well-defined critical exponent for the long-range EE always
appears in the IR critical point, e.g., even in the large v
limit. When we applied our numerical program to the case
with a large value of v, our program crashed similar to the
previous work in [31]. Therefore, it remains as an interest-
ing and important issue to check whether there still exists a
universal critical exponent in the IR EE even for a large v.

IV. RG FLOW OF HOLOGRAPHIC
ENTANGLEMENT ENTROPY

In this section, we encapsulate the results of Secs. III A
and III B in terms of RG flow of the EE with the subsystem
size l acting as the flow-parameter. This description in the
language of the RG flow allows us to define the notion of
an effective central charge ceff which helps to place our
results in context of the well known c-theorem [54–56] for
the even dimensional theories and the so-called F-theorem
which is its generalization to its odd dimensional counter-
parts [55,57].
In Sec. III A, we have shown in (22) that near the UV

fixed point, the disorder corrections to EE starts to decrease
linearly as the subsystem size increases. In Sec. III B, we
have shown in (29) that the disorder effect near the IR fixed
point behaves as ∼l−δ in which the exponent does not

(a)

(b)

(c)

(d)

FIG. 3. Coefficients of the fitting function in Eq. (29) with
l ¼ 200, c ¼ 1 and k0 varies from 0.1 to 0.5. S∞ðvÞ < 0 in (a) but
SLðvÞ > 0 in (b), which implies that the disorder weakens the
long-range correlation. (b) SLðvÞ and (c) CðvÞ show continuous
functions, whereas (d) gives an almost constant δðvÞ around 2,
which may be interpreted as a critical exponent of the EE near the
IR fixed point. The small jumps of δ around v ¼ 0.15 seems to be
a numerical error for k0 > 0.3.
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crucially depend on the strength of the disordered source.
In Fig. 2. we list the numerical data of SD depending on l in
the solid curve and plot the fitted function by Eq. (29) with
dashed line. In the following, we will study how the EE of
the dual QFT changes along the RG flow [58–61].
As explained in Appendix, the scale invariance is

indispensable in the study of critical behavior. Now, let
us deform a UV CFT with a specific relevant operator.
Denoting its source (or coupling constant) as μ and its
conformal dimension as Δs, the modified EE near the UV
fixed point has the following form

SE ¼ c
3
ln
l
ϵ
þ SDðμlΔsÞ; ð30Þ

where SD denotes the contribution caused by the deforma-
tion. The nontrivial l dependence of the last term usually
breaks the scale symmetry and causes a nontrivial RG flow.
In the holographic EE context, when ϵ is fixed, 1=l can be
regarded as an RG scale. However, due to the ambiguity
associated with the regularization scheme, it is not clear what
value one should assign to the UV cutoff and how it is related
to the traditional regularization scheme of a QFT. Although
SE relies on the regularization scheme, its derivative does not.
This is because the renormalization scheme must be

independent of the choice of an UV cutoff. This fact
becomes manifest when we take into account the RG flow
of the EE

dSE
d ln l

¼ c
3
þ dSDðμlΔsÞ

d ln l
: ð31Þ

In this case, the scaling behavior of the dimensionful
coupling μ is determined by the subsystem size l. Since
the value of μ generally depends on the energy scale
detecting the theory, we can identify the inverse of the
subsystem size as the energy scale. Then, the above RG
equation describes how the EE is modified under the
change of the coupling.
There exists another interesting and physical interpreta-

tion for this RG flow. Let us decompose the EE into

SE ≡ −
cA
6

ln ϵþ SLðμlΔsÞ; ð32Þ

with

SLðμlΔsÞ ¼ cA
6

ln lþ SDðμlΔsÞ: ð33Þ

Here the first term including ln ϵ represents a short distance
correlation across the entangling surface which gives rise to
the area law, A ¼ 2. On the other hand, SL is independent
of the UV cutoff ϵ, which corresponds to the shortest length
scale, and can be interpreted as the long-range quantum
correlation between the subsystem and its complement.

For a two-dimensional LFT, the RG flow of the EE can be
well described by the long-range correlation defined above
due to the following relation

dSE
d ln l

¼ dSL
d ln l

¼ ceff
3

: ð34Þ

In this case, the EE SL caused by the long-range correlation
is regularization scheme independent up to a constant term
which does not affect the RG flow. When regarding a
higher dimensional theory, however, we must be careful
[42]. Since the power-law divergence of a higher dimen-
sional theory prohibits us from decomposing the EE
naively into short and long-range quantum correlations,
an appropriate renormalization procedure is required before
extracting a long-range quantum correlation [58].
When the RG flow of the deformed QFT meets a critical

point at a certain IR energy scale, what happens? Generally
the scaling symmetry is restored at such a critical point, so
the QFT again becomes a scale invariant theory. Due to this
fact, we can expect that the EE is again described by
Eq. (A4) at the IR fixed point. In the following, we will
show that the disordered source causes a nontrivial RG flow
from a CFT at UV to a LFTat an IR fixed point and that the
corresponding holographic EE has the same form at those
two fixed points. We will also show that difference in the
EE at the two fixed points is encoded into a subleading term
that is controlled by an exponent that is universal at least in
the limit of weak disorder.
The change of the long-range quantum correlation along

the RG flow is depicted in Fig. 4. It shows that the long-
range quantum correlation at the IR Lifshitz fixed point is
still proportional to ln l as a two-dimensional scale invariant
theory should do. Notice that it can also be considered as
the RG running of the effective change ceff in (34).

FIG. 4. The change of the long-range quantum correlation SL in
terms of the disorder system relying on the subsystem size l, for
k0 ¼ 0.1 and c ¼ 1, as well as for v ¼ 0.1 (dotted), 0.2 (dashed),
and 0.3 (solid). They can be considered as the RG running of the
effective central charge ceff ≡ 3dSL

d ln l. The dot-dashed line is a guide
to the eye and depicts a case where ceff ¼ 1 does not run.
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At UV CFT and IR Lifshitz fixed points, the theory
becomes scale invariant. Due to this scale invariance, the
EE at those critical points shows a simple logarithmic
behavior relying on the subsystem size. In the EE context,
the RG flow can be parametrized by the subsystem size.
Using this parametrization, the EE near the UV fixed point
decreases linearly along the RG flow. Near the IR fixed
point, it still decreases but slowly along the RG flow. In this
case, the rate of decrease approaches to zero as the
subsystem size goes to the infinity or in the IR limit. In
this case, the long-range correlation can be parametrized by
the subsystem size by means of an exponent. Intriguingly,
via numerical analysis we find that this exponent control-
ling the vanishing of the long-range correlation near the IR
fixed point is universal for weak disorder. In other words,
the critical Lifshitz exponent z ¼ 1þ v2=2 is very weakly
dependent on the disorder strength. It would be interesting
to study the IR behavior of the long-range correlation for
other models and to find the similar universal critical
exponent.

V. HOLOGRAPHIC MUTUAL INFORMATION
IN THE RANDOMLY DISORDERED SYSTEM

In order to understand the IR physics of the randomly
disordered system, let us further investigate themutual infor-
mation. The mutual information is defined as [54,62–66]

IðA;BÞ ¼ SEðAÞ þ SEðBÞ − SEðA ∪ BÞ: ð35Þ

By definition the mutual information has no UV cutoff
dependence, so it can measure the long-range quantum
correlation. For more details, let us define an operator OA
which is in a subsystem A. Then, a two point correlation
function between two operators living in different subsys-
tems, A and B, can be denoted by

CðOA;OBÞ ¼ hOAOBi − hOAihOBi: ð36Þ

Interestingly, it was known that these two concepts are
related to each other [66–68]

IðA; BÞ ≥ ðhOAOBi − hOAihOBiÞ2
2jOAj2jOBj2

≥ 0: ð37Þ

This relation shows that themutual information is larger than
the square of the two point correlation function. Thus, the
mutual information plays a role as the upper bound of a two
point correlation function. In addition, the last inequality
implies a non-negativity of themutual information. From this
relation, we can see that the vanishing mutual information
indicates the absenceof thequantumcorrelationbetween two
disjoint subsystems. Due to this reason, together with the EE,
the mutual information was used as an indicator of the phase
transition in the holographic setup (see eg. [69–73]).

Now we set two subsystems A and B to have the same
size l and h indicates the distance between two closest
boundaries of the two subsystems. From the dual geometry
of the randomly disordered system and (22), we can easily
derive the mutual information which in the UV limit
(l ∼ h ≪ 1) is written as the following perturbative form

IðA;BÞ ¼ c
3
ln

l2

hð2lþ hÞ þ
cπ
12

v2k0hþ � � � ; ð38Þ

Then, the critical distance hc when the phase transition
occurs at IðA;BÞ ¼ 0 is given by

hc ¼ ð
ffiffiffi
2

p
− 1Þl

�
1þ

ffiffiffi
2

p
π

16
v2k0l

�
þOðl3Þ: ð39Þ

Below the critical distance (h < hc), the mutual informa-
tion becomes positive. This implies that the two subsystems
have nontrivial quantum correlations. In other words, the
union of the subsystems has a lower EE than the EE sum
of the subsystems. At the critical distance (h ¼ hc), the
mutual information vanishes [see Fig. 5(a)] and the
quantum correlation between the subsystems also disap-
pear. Above the critical distance (h > hc), since there is no

(a)

(b)

FIG. 5. (a) The mutual information in terms of the internal
distance h and (b) the critical distance hc in terms of l between
two subsystems where we have taken k ¼ 0.1 and v ¼ 0.1. In (b),
the critical distance has a small deviation from the CFT result (the
detail is depicted in Fig. 6).
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quantum correlation between the subsystem, the EE of the
union of the subsystem, SEðA ∪ BÞ, must be the same as the
EE sum of each subsystem, SEðAÞ þ SEðBÞ. For the CFT
without the disorder (v ¼ 0), the critical distance is linearly
proportional to the subsystem size. On the other hand, the
existence of the disorder increases the mutual information
and the critical distance slightly in the UV regime. For a
CFT, the critical distance is linearly proportional to the
subsystem size in the entire RG scale. In the UV regime of
the randomly disordered system, the similar behavior also
happens with small higher order corrections [see Eq. (39)].
This is because the UV regime of the randomly disordered
system can be regarded as a small deformation of the
UV CFT.
In Fig. 5(a), we depict the mutual information relying on

h at a given subsystem size and plot how the critical
distance depends on the subsystem size in Fig. 5(b).
Interestingly, the numerical result in Fig. 5(b) shows a
linearly increasing behavior, which can be well fitted by

hc ∼ 0.41l − 0.004; ð40Þ

where we take c ¼ 1, v ¼ 0.1, k0 ¼ 0.1, and δ ¼ 2.034.
Can we understand the critical distance relying on the
subsystem size linearly even in the IR regime? In order to
discuss the mutual information in the IR limit, let us first
take into account the fitting function in Eq. (29) which
explains the IR EE of the disordered system well. Using
this fitting function, the mutual information in the IR limit
(l ∼ h ≫ 1) can be represented as

IðA;BÞ ¼ c
3
ln

l2

hð2lþ hÞ þ C

�
2

lδ
−

1

hδ
−

1

ð2lþ hÞδ
�
þ � � � ;

ð41Þ
where we set the subsystem sizes to be l. In this result, the
UV cutoff dependence and the constant part, S∞, of the EE
do not appear because they are exactly cancelled. Since
these terms are associated with the short distance correla-
tion of the quantum entanglement, the mutual information
can be regarded as the measure observing the long-range
correlation, as mentioned before.
The mutual information in Eq. (41) has a critical distance

of hc where the mutual information vanishes. Above this
critical distance, the long-range quantum correlation
between two disjoint systems disappears. In the IR region,
the second term in Eq. (41) is relatively small. Thus, the
critical distance satisfying IðA;BÞ ¼ 0 can be expressed as

hc ¼ alþ blλ þ � � � ; ð42Þ
where λ < 1. The leading term linearly proportional to l is
required to make the logarithmic term of the mutual
information in Eq. (41) vanish. After substituting this
ansatz into Eq. (41) and expanding it, we can determine
the critical distance as

hc ¼ ð
ffiffiffi
2

p
− 1Þl− 3½ð ffiffiffi

2
p þ 1Þδ þ ð ffiffiffi

2
p

− 1Þδ − 2�
2

ffiffiffi
2

p
c

C
lδ−1

þ � � � :

ð43Þ

Noting that
ffiffiffi
2

p
− 1 ≈ 0.41 and λ ¼ −ðδ − 1Þ. Similar to the

UV case in (39), the critical distance is still linearly
proportional to the subsystem size with a small negative
correction. In Fig. 6, we depict the deviation of the critical
distance from the CFT case with Δhc ¼ 0. In the limits
having a small and large subsystem sizes, the analytic
forms of the critical distance in Eqs. (39) and (43) are well
matched to the numerical data in Fig. 6. This result shows
that the critical distance is almost linearly proportional to
the subsystem size with a small corrections caused by the
disordered source.
Now, let us consider the mutual information in the IR

region with a large l. The short range correlation can be
represented by a small distance between two subsystems
(h ≪ 1 ≪ l). In this case, the mutual information reduces to

IðA;BÞ ¼ c
3
ln

l2

hð2lþ hÞ þ
�
S∞ −

c
6
γv2

�

þ C

�
2

lδ
−

1

ð2lþ hÞδ
�
þ πc

24
v2k0hþ � � �

≈
c
3
ln

l
2h

þ S∞ −
c
6
γv2: ð44Þ

Note that the leading contribution to the mutual information
is independent of the parameters describing the disorder.
Since S∞ decreases as v increases in Fig. 3(a), the above
result indicates that the short range quantum correlation
decreases as the amplitude of the disorder becomes large.
When h increases, the mutual information decreases loga-
rithmically. For the long-range correlation with l≳ h ≫ 1,
the h dependence of the mutual information at a given l
reduces to

FIG. 6. The numerical result for relative critical distance Δhc ≡
hc − ð ffiffiffi

2
p

− 1Þl in terms of the internal distance l (Blue curve).
The purple dashed line is from the analytical result of UV limit
(39), and the red dashed line is from the analytical result of IR
limit (43).
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IðA;BÞ ∼ ICFT þ C

�
2

lδ
−

1

hδ
−

1

ð2lþ hÞδ
�
; ð45Þ

where ICFT indicates the mutual information of the unde-
formed CFT. For CFT, the long-range mutual information
also decreases logarithmically by − ln ½hð2lþ hÞ�. The
second term above shows the effect of the disordered source
in the IR limit.

VI. CONCLUSION AND DISCUSSION

In this work, we have holographically investigated the
EE of a two-dimensional CFT deformed by a disordered
source. In the AdS=CFT contexts, the dual geometry of this
disordered CFT has been constructed in [31]. There are
several noticeable points in this dual geometry. The dual
scalar field of a disordered source has a finite gravitational
backreaction in the entire regime, so that the perturbative
expansion in terms of the strength of the disorder is possible
even in the IR regime. Since the disorder is relevant, the UV
CFT flows to another theory in the IR regime. Intriguingly,
the disorder considered here allows a Lifshitz fixed point in
the IR regime. This Lifshitz fixed point is usually classified
by the dynamical critical exponent z ¼ 1þ v2=2, which in
this model is determined by the strength v of the disorder.
In this context, we have shown that effect of these long-

range correlations at the IR fixed point can be encoded in a
power-law subleading term in Eq. (29), where the holo-
graphic EE vanishes in the limit of infinite subsystem size
l. From Fig. 3, the vanishing of the power-law term is
controlled by an exponent that numerically seems to be
universal at least in the limit of weak-disorder. Furthermore,
since the scaling symmetry is restored at the IR fixed point
l ≫ 1, we recover the leading logarithmic dependence on
the subsystem size for the holographic EE in Eq. (28). Notice
that the constant SDjl→∞ ¼ S∞ in Fig. 3(a), which is
independent of k0, but monotonically decrease with v.
These behaviors match well with the IR Lifshitz fixed
point with the dynamical critical exponent in Eq. (8) that
z ¼ 1þ v2

2
.

We have also taken account of the quantum EE and its
RG flow in Sec. IV in order to figure out quantum aspects
of the IR physics. To do so, we have decomposed the EE
into two parts in Eq. (32), short distance and long-range
correlations. The short distance correlation occurs due to
the entanglement across the entangling surface, so it is
usually associated with the UV divergence of the EE. On
the other hand, the UV finite term accounts for the long-
range quantum correlation between the subsystem and its
complement. As a consequence, the quantum IR physics
can be well described by the long-range correlation which
is the main point of interest in this study.
We now turn our attention and place our results in the

context of earlier results in the holographic study of EE. In
the context of holographic EE, it has been proven that the

a-type anomaly of an even dimensional theory monoton-
ically decreases along the RG flow due to the unitarity and
strong subadditivity of the EE [54–56]. In addition, it has
been further generalized to an odd dimensional theory
where there is no a-type anomaly. The F-theorem has been
conjectured as an odd dimensional c-theorem in which the
free energy of an odd dimensional QFT decreases mono-
tonically along the RG flow [55,57]. In contrast, the
effective central charge ceff as defined in Eq. (34) shows
a non-monotonic behavior, (see Fig. 4). It first decreases
along the RG flow and then increases with increasing
subsystem size to saturate back to the value of the central
charge of the disorder free theory.
The results for the behavior of the EE and concomitantly

of the central charge ceff in Eq. (34) that we have obtained
near the Lifshitz fixed point is also at odds with that
obtained in the context of studying EE in the context of
many-body systems that are controlled by an infinite
disorder fixed point [19,23,26]. In these works, as dis-
cussed in the introduction, the EE conforms to a form
SðlÞ ¼ ðceff=3Þ lnlþ const with an effective central
charge ceff that decreases along the RG flow. This behavior
of the EE at the infinite disorder fixed point is explained via
the SDRG [26] wherein the error of the order of lattice
spacing in the placement of effective spins during the RG
process contributes corrections to the const term thus
rendering the ceff universal. This is of course directly in
contradiction to our results wherein the ceff shows the non-
monotonic behavior encapsulated in Fig. 4. However, at
this juncture, we point out that our results for the holo-
graphic EE were done for a conventional IR fixed point
with a finite value of disorder [27–30], whereas the results
highlighted in Ref. [19,23,26] have been obtained for an
infinite disorder fixed point.
We finally turn our attention to the limits of validity of

our approach for the calculation of the EE by using the
disordered metric derived in [31]. Our approach is valid as
long as we are in the weak disorder limit (v ≪ 1). Thus, in
philosophy, our approach is very similar to the effective
field theory approaches of disordered systems wherein one
integrates out the randomness and work with a disorder
averaged field theory from the very outset [27,30]. Once we
leave the limit of small disorder, then atypical or rare events
become important and it would not be appropriate to work
with the disorder averaged metric of [31]. In the strong
disorder regime, it would be more appropriate to calculate
the EE for each realization of the disorder and then perform
an average over the disordered ensembles. This is a much
more difficult problem whose resolution we hope to report
on in future work. For quantum disordered many body
systems a numerical efficient implementation of the SDRG
in higher dimensions, allows for the evaluation of the EE at
the at the infinite disorder critical point in the 2D RTFIM. It
is seen that the EE is given by the area law modified by a
logarithmic correction that diverges logarithmically at the
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critical point [74]. It was further shown that the pre-factor
of this logarithmic divergence was a universal number that
is independent of the disorder. This result also successfully
put to rest conflicting earlier results on the EE in the 2D
RTFIM [75,76]. Now, for higher dimensional disordered
system controlled by a conventional disordered fixed point
it is possible to calculate the EE by generalizing the
disordered metric [31] following the methodology high-
lighted in this paper. We leave this interesting problem as a
future endeavour that can be pursued.
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APPENDIX: HOLOGRAPHIC ENTANGLEMENT
ENTROPY OF A SCALE INVARIANT THEORY

Let us reiterate several important features of a scale
invariant QFT and its dual geometry: The most well-known
scale invariant theory is a conformal field theory (CFT).
Another scale invariant theory with reduced symmetry is a
Lifshitz field theory (LFT), which is generally classified by
the dynamical critical exponent denoted by z. In particular,
the conformal symmetry is restored at z ¼ 1. A LFT shows
a specific dispersion relation with ω ∼ pz. The same scale
symmetry can be realized in a Lifshitz geometry. For
example, the metric of a three-dimensional Lifshitz geom-
etry is given by

ds2 ¼ −
dt2

u2z
þ dx2

u2
þ du2

u2
; ðA1Þ

where u indicates a radial coordinate of the Lifshitz
geometry. The above metric is invariant under the scale
transformation:

u → λu; t → λzt and x → λx; ðA2Þ

From the point of view of symmetry, this Lifshitz geometry
can be considered as the dual of a two-dimensional LFT.
In the AdS=CFT context, the radial coordinate of the
AdS space is identified with the energy scale probing
the dual CFT. This identification is useful to connect the
RG flow of the condensed matter system to the dual

geometry [61,77–79]. Especially, the u → 0 limit corre-
sponds to the UV region. The identification of the radial
coordinate of the Lifshitz geometry with the RG scale of the
dual LFT entails that the Lifshitz geometry appears in the
IR regime after deforming an AdS space with a specific
relevant operator, as will be seen.
Now, let us discuss the holographic EE of such scale

invariant theories. As explained before, the scale invariant
theories have the well-defined dual geometries. In such
dual geometries the EE can be holographically calculated
by applying the Ryu-Takayanagi formula [39,40]. In the
holographic setup, the EE corresponds to the area of a
minimal surface which is extended to the dual geometry. In
the Lifshitz geometry the holographic EE is expressed as

SE ¼ 1

4G

Z
l=2

−l=2
dx

1

uðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u0ðxÞ2

q
; ðA3Þ

where l denotes the size of a subsystem and the prime
means a derivative with respect to x. The configuration of
the minimal surface is determined by uðxÞ. Note that this
formula accounts for the ground state EE. Another point we
should note is that the above EE does not depend on the
dynamical critical exponent. This is because we do not
consider the time evolution of the EE. When time is fixed,
the minimal surface representing the holographic EE lives
in a spatial section of the dual geometry and the resulting
EE becomes independent of the time component of the
metric. Since the dual geometries of a CFT and a LFT are
distinguishable only in the time direction, their entangle-
ment entropies have no distinction without considering the
time evolution of the EE. On the other hand, if we take into
account the time evolution of the EE, we must exploit the
covariant formalism instead of the Ryu-Takayanagi for-
mula [80]. Since the covariant formulation usually includes
information about the time component of the metric, it can
distinguish a LFT from a CFT. In this work, we focus only
on the time independent case where the scaling behavior of
the holographic EE is governed by the scale transformation
of spatial coordinates, u → λu and x → λx. One can easily
see that the above holographic EE is invariant under this
spatial scale transformation.
Through an explicit calculation, it can be shown that the

minimal surface describes a geodesic curve represented as
uðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2=4 − x2

p
. Substituting it into theRyu-Takayanagi

formula, the resulting EE reproduces the known two-dimen-
sional CFT result

SE ∼
c
3
ln
l
ϵ
þ const; ðA4Þ

where c ¼ 3R
2G indicates the central charge and ϵ indicates a

UV cutoff (or the lattice spacing), respectively. G is the
Newton constant in three dimensional gravity and R is the
radius of AdS3. This result can also be understood by
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the previous spatial scale symmetry. Since the dimensionful
parameters scaled under the spatial scaling are ϵ and l, only
possible scale invariant combination is given by l=ϵ. After the
dimension counting, the allowed terms are the result in
Eq. (A4) and terms having the form of ðϵ=lÞα with a positive
power (α > 0). Since the UV cutoff is taken to be ϵ → 0,
the terms ∼ðϵ=lÞα automatically vanish. Note that above the
constant term is not uniquely determined because of the
regularization scheme dependence. Anyway, the lesson from
the scale symmetry is that the EE of a scale invariant two-
dimensional theory has no nontrivial dependence on l except
the logarithmic term.
Although information about the dynamical critical

exponent is not involved in the ground state EE, it is not
the case for the EE of the excited state. The EE change
between the ground and excited states can be described by a
relative entropy which is independent a regularization
scheme and generally leads to the EE bound [81]. It has
been shown that the positivity of the relative entropy leads
to the EE bound, and the thermodynamics-like law appears
when the EE bound is saturated [81,82]. The thermody-
namics-like law of the EE allows us to reconstruct the AdS

dual geometry from data of the boundary conformal field
theory (CFT) [83–87].
Especially, when the EE bound is saturated, it gives rise

to the thermodynamics-like law, ΔE ¼ TEΔSE. In this
case, the increased EE is directly related to the excitation
energy, so that the scaling behavior of the time direction
becomes important. For a LFT, the entanglement temper-
ature TE crucially relies on the dynamical critical exponent

TE ∼
1

lz
: ðA5Þ

In order to understand z-dependence of the entanglement
temperature, we need to recall the scaling behavior in
Eq. (A2). The EE is invariant under the scale transforma-
tion as mentioned before, and the energy scales as
E → λ−zE. Thus, the entanglement temperature must scale
as TE → λ−zTE. Since the above thermodynamics-like law
is regularization scheme independent, the scaling behavior
of the entanglement temperature should be explained by the
remaining parameter, l. As a result, the result in Eq. (A5)
naturally appears because of the scale invariance of a LFT.
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