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Abstract Colloid mobilization is a significant pro-

cess governing colloid-associated transport of heavy

metals in subsurface environments. It has been studied

for the last three decades to understand this process.

However, colloid mobilization and heavy metal

transport in soil solutions have rarely been studied

using soils in South Korea. We investigated the colloid

mobilization in a variety of flow rates during sampling

soil solutions in sand columns. The colloid concen-

trations were increased at low flow rates and in

saturated regimes. Colloid concentrations increased

1000-fold higher at pH 9.2 than at pH 7.3 in the

absence of 10 mM NaCl solution. In addition, those

were fourfold higher in the absence than in the

presence of the NaCl solution at pH 9.2. It was

suggested that the mobility of colloids should be

enhanced in porous media under the basic conditions

and the low ionic strength. In real field soils, the

concentrations of As, Cr, and Pb in soil solutions

increased with the increase in colloid concentrations at

initial momentarily changed soil water pressure,

whereas the concentrations of Cd, Cu, Fe, Ni, Al,

and Co lagged behind the colloid release. Therefore,

physicochemical changes and heavy metal character-

istics have important implications for colloid-facili-

tated transport during sampling soil solutions.
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Introduction

Colloids are the ubiquitous particles in subsurface

environments in the range from 1 nm to 10 lm
(Buddemeier and Hunt 1988; Puls et al. 1992; Dai

et al. 1999) and play an important role in transporting

nutrients and contaminants in subsurface environ-

ments due to their high surface area and charge

intensity (Amrhein et al. 1993; de Jonge et al. 2004). In

particular, colloids facilitate the transport of contam-

inants such as heavy metals (Cr, Cd, Cu, Ni, Pb, and

Zn), radionuclides (Cs, Pu, and Am), and pesticides

(atrazine) (Ryan et al. 1998; Novikov et al. 2006;

Cheng and Saiers 2010; Qi et al. 2014), and therefore,

those may trigger rapid contamination and public

health risks due to viruses, bacteria, and protozoa

(Redman et al. 2001; Klitzke et al. 2015). These

contaminants have been observed with colloids in

saturated (Sprajue et al. 2000; Chen et al. 2005;

Graham et al. 2006; Miller et al. 2011) and unsaturated

porous media (Mills et al. 1991; Ryan et al. 1998;

Sprague et al. 2000; Pawlowska et al. 2017). In

addition, colloid-binding metals have been released

and mobilized over long distances rather than dis-

solved metals in the subsurface (Zhou et al. 2011).

This is because the interactions between these colloids

and contaminants can change their physical and

chemical compositions (Amrhein et al. 1993; Kaplan

et al. 1993; de Jonge et al. 2004).

The mobilization of colloids is significantly

affected by physical perturbations related to the flow

rate and water content (Gamerdinger and Kaplan

2001). Rapid flows such as rainfall infiltration and

sampling for soil solutions and groundwater increase

the colloid concentrations in the subsurface environ-

ment (Backhus et al. 1993; Kaplan et al. 1993; Ryan

and Elimelech 1996). The increase in colloid concen-

trations is due to the fact that high flow velocity forms

a high hydrodynamic shear force between the colloids

and soils leading to an increase in the colloid

concentrations (Puls et al. 1992). However, studies

have reported that colloid concentrations in soil

solutions decreased with increasing flow rate (Biddle

et al. 1995; Ryan et al. 1999). The relationship

between colloid mobilization and flow rate during the

sampling of soil solutions has not been fully

understood.

Chemical perturbations such as pH and ionic

strength play an important role in colloid mobilization

in saturated and unsaturated regimes (Grolimund and

Borkovec 1999; Saiers and Lenhart 2003). A high pH

and low ionic strength typically enhance the colloid

mobilization in subsurface environments (McDowell-

Boyer 1992; Ryan and Gschwend 1994; Grolimund

and Borkovec 1999) with a further increase in pH

([ point of zero charge, PZC) resulting in the

enhancement of repulsion and detachment energy

(Ryan and Gschwend 1994; Seta and Karathanasis

1997; Mohanty et al. 2016). Infiltration events (e.g.,

rainfall, snow melting, and irrigation) are known to

decrease the ionic strength, leading to the electrostatic

repulsion of negatively charged colloids and soil

(Saiers and Lenhart 2003). However, Karathanasis and

Johnson (2006) reported that colloid mobilization and

stability were not significantly affected by the pH

value. Many studies have reported the colloid mobi-

lization on the effect of physical and chemical

perturbations under infiltration systems; however, it

is not unclear during sampling soil solutions. The

objectives of this study are to: (1) investigate the

colloid mobilization at a variety of flow rates and the

effect of pH and ionic strength during sampling soil

solutions and (2) examine that colloids facilitate heavy

metal transport in real field soils during the sampling

of soil solutions.

Materials and methods

Experimental setup

The experimental column was made from a clear acryl

plastic pipe having a 14 cm inside diameter and

55.5 cm height (Fig. 1). The tensionic sampler con-

sisted of a ceramic cup, capillary tube, and needle

sensor (Model STCP 850, SDEC, France). The

ceramic cup had a porous structure, with a pore size

of approximately 2 lm. The tensionic sampler col-

lected soil solutions using a capillary tube, and a

needle sensor was used to measure the SWP. The

capillary tube was connected using Tygon lab tubing

(Model 064, Masterflex) for pumping the soil solu-

tions, which was then transferred to the fraction

collector using a peristaltic pump. A portable mi-

crologger (ML, Model EC600, Fourier Systems Inc.,

USA) was used to record physical parameters such as

temperature (�C), SWP, and humidity; measurements
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were made over a 21 h, with SWP measured every

10 s.

Column experiments

Sand produced in Joomoonjin, Gangwon province,

South Korea, was air-dried at room temperature

(24 ± 1 �C), and disturbed surface materials were

removed. The sample was then passed through a 2 mm

sieve to obtain the uniform sand less than 2 mm

particle diameter. To saturate air-dried sands,

Joomoonjin sand was packed into a 10 mM NaCl

solution prepared using ultrapure Milli-Q water

(18.2 MX�cm, Millipore,). Briefly, the sand was

poured slowly in 1 cm increments into the electrolyte

solution while being gently tapped to avoid air bubbles

and to establish uniformly packing. The tensionic

sampler was installed at 24.5 cm from the bottom of a

column. 9878 g of sand and 2400 mL of electrolyte

solution were added into the column. The average bulk

density and porosity were 1.63 ± 0.01 kg L-1 and

0.38 ± 0.004, respectively, assuming an average

particle density of 2.65 kg L-1 (Table 1). After

packing, the needle sensor was connected onto the

top of the tensionic sampler and linked to the

micrologger. The top of the column was covered by

a punctured para film membrane to prevent evapora-

tion of the soil solutions. Tygon tubing was connected

to the capillary tube of the tensionic sampler, and to

investigate the relationship between colloids and flow

rate a peristaltic pump was operated at a variety of

flow rates. The soil solutions were collected through

the capillary tube using a peristaltic pump, after

equilibration of the SWP. The effluent was collected in

15 mL high-density polyethylene (HDPE) tubes at

regular intervals. Simultaneously, the SWP was auto-

matically measured every 10 s and recorded by the

micrologger. 6 mM of NaOH and 10 mM of NaCl

were prepared in order to investigate the effect of pH

and ionic strength on the colloid mobilization in

saturated and unsaturated sand regimes. The sand was

packed, with NaOH and NaCl solution added while

measuring the pH and electrical conductivity as

described above. After packing the sand and solution,

the soil solutions were left to equilibrate for about

24 h.

Real field soils were collected from near the

abandoned Duckum mine tailings, a gold-mine area

in South Korea (34�5700000N, 126�3500000E) (Fig. 5a).
The column experiment was conducted to evaluate the

colloid and heavy metal concentrations, SWP, and

colloid shapes during sampling the soil solutions.

Duckum soil was sieved (\ 0.2 mm) and packed into

the column. Overall, 9378 g of Duckum soil was used

with 2300 mL of 10 mM NaCl solution and mixed to

ensure saturation. The packing of the Duckum soil was

Fig. 1 Experimental setup

for sampling soil solutions

and measuring the

concentration and

morphology of colloids in

soil solutions
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performed using same methods as for the Joomoonjin

sand.

Analytical methods

Ten milliliters of the collected soil solutions was

required in order to analyze the colloid size, morphol-

ogy, and colloid concentration. The cumulative vol-

ume and flow rate were determined by weighting and

measuring the collected soil solution. The pH and

electrical conductivity of the effluent were measured

during sampling soil solutions using a multi-parameter

instrument (W20 model, Horiba, Japan). Colloid

concentrations were determined using the gravimetri-

cal method, as previously described (El-Farhan et al.

2000; Karathanasis and Johnson 2006). In brief, soil

samples (5 g) were added to centrifuge Teflon bottles

that contained Milli-Q water (25 mL). The samples

were then shaken at 150 rpm for 24 h, followed by

being centrifuged at 750 rpm for 20 min. A known

volume of the supernatant solution was passed through

a preweighed 0.2 lm filter, which was dried at 100 �C
for 24 h. The mass of particles retained on the filter

was calculated by the mass of the preweighed and

dried filters. Then colloid stock solutions (* 2000 mg

L-1) were obtained. The colloid concentrations in the

soil solutions were determined by the following

calibration procedures (Seta and Karathanasis 1997;

Nunana et al. 1998-Ultraviolet absorbance (280 nm)

of compounds released from Karathanasis and John-

son 2006; Liu et al. 2013). The calibration curve was

prepared by diluting the supernatant solution, and the

absorbance values of the diluted solutions were

measured at 280 nm by an UV spectrophotometer

(UV 1601PC, Shimadzu, Japan). The soil solutions

collected from the soil column were sonicated for

15 min to prevent the aggregation and then measured

to obtain the absorbance which was converted to

colloid concentration using the calibration curve. For

transmission electron microscopy (TEM), soil solu-

tions were collected and prepared on 200 mesh copper

grids. The morphology and size of colloidal particles

were analyzed by TEM (JEM-2100, JEOL, Japan).

Parallel blanks were prepared using Milli-Q water

(18.2 MX cm) to examine the particulate

contamination.

The soil solutions from the Duckum soil column

were collected, and then prepared as for the Joomoon-

jin sand procedures described above, in order to

analyze the concentration, size, and morphology of the

colloids. The collected soil solutions were filtered

using a 0.22-lm cellulose acetate filter and then

amended with HNO3 at * 2% (v/v). Finally, the

heavy metal concentrations were determined using an

inductively coupled plasma mass spectrometer (ICP/

MS, Agilent 7500CE, USA).

Results and discussion

Effect of flow rate on colloid mobilization

In order to examine the relationship among colloid

mobilization, flow rate, and SWP, we measured the

Table 1 Summary of the colloid mobilization experiments in Joomoonjin sand columns

Flow rate

(mL min-1)

Saturated regime Unsaturated regime Bulk density

(kg L-1)

Porosityb EC (mS

cm-1)

pH

SWP

(kPa)

IMC

(%)

SWP

(kPa)

MCa (%)/starting time

(min)

2.3 - 11.2 21.3 - 35.0 12.7/461 1.62 0.388 2.45 4.5

3.7 - 15.0 - 81.2 11.8/299 1.63 0.385 2.68 4.9

5.3 - 18.7 - 61.2 12.2/201 1.64 0.380 2.61 4.7

6.5 - 21.9 - 77.4 12.3/186 1.64 0.380 2.62 4.8

9.4 - 32.5 - 83.7 13.6/120 1.64 0.380 2.75 4.2

15.6 - 42.5 - 89.9 13.4/90 1.62 0.388 2.70 4.3

SWP soil water pressure, IMC initial moisture content, EC electrical conductivity
aMC moisture content (calculation by mass basis)
bPorosity is calculated using particle density (2.65 g cm-3)
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colloid concentrations, volumetric flow rate, and SWP

during sampling soil solutions from the Joomoonjin

sand column (Fig. 2). The colloid concentrations and

absolute SWP increased at a 40 min of extraction time

after the equilibrium state of SWP (* - 5 kPa). The

colloid concentrations were 0.23, 0.003, 0.002,

0.0035, 0.0023, and 0.0006 mg L-1 at flow rates of

2.3, 3.7, 5.3, 6.5, 9.4, and 15.6 mL min-1, respec-

tively. This is because hydrodynamic shear stress

between colloids and soils causes colloid mobilization

in subsurface environments (Hubbe 1985; Ryan and

Elimelech 1996). Upon the initial sampling of soil

solutions, the momentarily changed SWP may be

related to the colloid mobilization in saturated

regimes. These results were consistent with

observations in previous studies, in which the initial

transient flow was deemed to be significantly impor-

tant for improving the mobilization of colloids (Ka-

plan et al. 1993; El-Farhan et al. 2000; Mohanty et al.

2015, 2016). The colloid concentrations and mass

fluxes increased with the rising and falling moments of

the water flow, or at the inflow after its interruption

(El-Farhan et al. 2000; Zhu et al. 2014). The colloid

concentrations were much higher at the flow rate of

2.3 mL min-1 than at high flow rates

([ 2.3 mL min-1), indicating that the colloid mobi-

lization did not increase with an increase in the steady

flow rates or SWP in saturated regimes or near the

boundary between saturated and unsaturated regimes

(Fig. 2). Previous studies similarly reported that
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Fig. 2 Effect of flow rate on colloid mobilizations in Joomoon-

jin sand columns during sampling soil solutions. Flow rates in

saturated regimes that reflect the SWP were: a 2.3 mL min-1,

b 3.7 mL min-1, c 5.3 mL min-1, d 6.5 mL min-1,

e 9.4 mL min-1, and f 15.6 mL min-1. The vertical dashed

lines indicate the boundary between saturated and unsaturated

regimes
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colloids were smaller and more mobile at low flow

rates than those at high flow rates, thereby facilitating

colloid mobilization (Kapplan et al. 1993; Ryan and

Elimelech 1996; Ryan et al. 1998; Mishurov et al.

2008).

The colloid concentrations in the saturated regime

were higher than in the unsaturated regime (Fig. 2).

The water content was * 21.3% in the saturated

regimes, whereas it decreased to the range of * 11.8

to 13.6% in the unsaturated regimes (Table 1). The

low water content increased the colloid deposition rate

via film straining and air–water interfaces (AWI)

attachment (Chen and Mao 2007; Zhang et al. 2010;

Knappenberger et al. 2015), indicating that the

decrease in water content inhibits colloid mobilization

in unsaturated regimes (Kaplan et al. 1993; Keller and

Sirivithayapakorn 2004). The colloid deposition rates

were higher in the unsaturated regimes due to the

additional retention at the air–water-solid (AWS)

interfaces and the formation of low flow rate regimes

in the presence of air, even though the infiltration rates

in the unsaturated regimes were three times higher

than in the saturated regimes (Sang et al. 2013). In

addition, TEM images showed that colloids

(* 40–60 nm) in saturated regimes (Fig. 3a, b) were

smaller and more spherical than those ([* 300 nm)

in unsaturated regimes (Fig. 3c, d). In particular, the

overall sizes of colloids became large in unsaturated

regimes due to the aggregation, leading to the

deposition and then reduction in porosity (Jassby

et al. 2012; Roth et al. 2015). The presence of

positively charged metals such as aluminum oxide

nanoparticles neutralizes the negatively charged sur-

face of colloids, resulting in the formation of amor-

phous aggregates, induced by reducing the

electrostatic repulsive forces (Kretzschmar and Schae-

fer 2005; Thompson et al. 2006;Wang et al. 2013; Mui

et al. 2016).

Effect of pH and ionic strength on colloid

mobilization

To examine the effect of pH and ionic strength on

colloid mobilization, colloid concentrations and SWP

in soil solutions were analyzed under a variety of pH

and ionic strength conditions. The colloid concentra-

tions and SWP increased with increasing pH at the

range from pH 4.7 to 9.3 (Fig. 4). The colloid

concentrations were two orders magnitude higher in

a neutral solution (pH 7.3–7.6) than an acidic solution

(pH 4.7–5.0) (Fig. 4a–d). In addition, the colloid

concentration was 10.3 mg L-1 in a basic solution (pH

9.2) and without adding NaCl, which was the highest

colloid concentration extracted from the Joomoonjin

sand column (Fig. 4e, f). This result was consistent

with previous findings, in which the mobility and

stability of colloids were found to be increased in

porous media when the pH of the soil solution was

higher than the PZC due to an increase in the repulsion

and detachment energy (Ryan and Gschwend 1994;

Seta and Karathanasis 1997; Mohanty et al. 2016).

Hydrogen from colloids dissociates into the soil

solution, and the surface of colloids forms a negatively

charged hydroxyl (OH) group (Brady and Weil 2008).

Thus, the electrostatic repulsion between colloids and

soils occurs, thereby increasing the colloid mobiliza-

tion under subsurface soil conditions.

The colloid mobilization increased with a decrease

in the ionic strength of the soil solutions, particularly,

in the basic solution where colloids are abundant in

soil solutions (Fig. 4e, f). This is consistent with

previous findings, in which a decrease in the ionic

strength due to infiltrations such as rainfall, snow

melting, and irrigation increased the absolute values

for the zeta (f) potential (DeNovio et al. 2004; Haliena
et al. 2016) and the electrostatic repulsion of nega-

tively charged colloids and soil, which thus enhanced

the colloid mobilization (Saiers and Lenhart 2003).

This suggestion is supported by the Derjaguin–Lan-

dau–Verwey–Overbeek (DLVO) theory, in which a

lower ionic strength leads to an increase in the diffuse

double layer thickness, followed by an increase in the

repulsive force (Torkzaban et al. 2007; Zhang and

Selim 2007; Mesticou et al. 2014; Mohanty et al.

2016). Conversely, the increase in the ionic strength

results in the increase in the deposition rate coeffi-

cients, and subsequently the colloid retention (Cheng

and Saiers 2010; Zhang et al. 2010). Overall, the

colloid mobilization and deposition were found to be

dominantly dependent on the chemical perturbation of

the soil solution (i.e., pH and ionic strength) in porous

media.

Colloid mobilization and heavy metal transport

in real field soils

To investigate the colloid mobilization and heavy

metal transport in real field soils (Duckum soil) during
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sampling soil solutions, colloid and heavy metal

concentrations were measured at the time intervals

(Fig. 5). The concentrations of heavy metals (As, Cr,

and Pb) increased with an increase in the colloid

concentration (* 15.4 mg L-1) at 40 min (Fig. 5b,

c). These results indicate that organic matter in the

colloids could adsorb heavy metal ions, as effective

carriers in porous media (Grolimund et al. 1998;

Graham et al. 2006; Hartland et al. 2015). Colloidal

particles showed correlations with colloidal As, rather

than truly dissolved As, in the groundwater between

streams and aquifers (Hartland et al. 2015). On the

other hand, the concentrations of Cd, Cu, Fe, Ni, Al,

and Co were high at 53 and 100 min, and did not

increase with increases in the colloid concentrations

(Fig. 5c). It has been posited that truly dissolved

organic carbons could be significantly correlated with

heavy metals such as Cd, Cu, and Ni, predominant

fractions in the total dissolved fractions, indicating

that these heavy metals may not be correlated with

colloids (Dai et al. 1995; Oursel et al. 2013). Over the

range from 120 to 240 min, the Mn and Zn concen-

trations increased in the absence of colloids, which

was consistent with the observation in previous

literature (Miller et al. 2011; Kim and Kim 2015).

This result suggests that the colloid-facilitated trans-

port can be affected by the characteristics of the

colloids and heavy metals in subsurface environments.

TEM images revealed the independent and spherical

shapes of colloids (Fig. 6). These shapes may be

attributed to the high pH value (pH 7.8) of the soil

solution which increased the electrostatic repulsive

force. Large-sized colloids (* 310 nm) were released

and mobilized at 40 min (momentarily changed SWP)

due to the shear stress between the colloids and soil

surface. In addition, the presence of Si, Al, and Fe

indicated the existence of silicates, aluminosilicates,

and iron (or –oxy hydroxide) oxides (Liu et al. 2013).

Therefore, individual colloids at the momentarily

changed SWP may adsorb heavy metals and facilitate

the transport of toxic heavy metals in the subsurface

environments (Amrhein et al. 1993; Grolimund and

Borkovec 1999; Kim and Kim 2015).

Conclusions

This study investigated the variation of colloid con-

centrations, flow rate, and SWP during the sampling of

soil solutions in soils of South Korea. Colloid

Fig. 3 TEM images of

colloidal particles released

from soil solutions in

Joomoonjin sand at the

sampling time: a 49 min,

b 61 min, c 440 min, and

d 1060 min. Electrical

conductivity of soil

solutions was * 0.94 mS

cm-1 (pH 4.97 and flow rate

15. 6 mL min-1)
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Time (min)

0 200 400 600 800 1000

)L/g
m(

noita rtnec noc
diollo

C

0.0

0.1

0.2

0.3
(d) pH 7.6 and 10 mM NaCl

Time (min)

0 200 400 600 800 1000

)L/g
m(

noitart ne cnoc
diollo

C

0.0

0.1

0.2

0.3

(e) pH 9.2 and 0 mM NaCl

Time (min)

0 200 400 600 800 1000

)L/g
m(

noita rtnecnoc
diollo

C

0

5

10

15

20
(f) pH 9.3 and 10 mM NaCl
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Fig. 4 Effect of pH and ionic strength on colloid mobilization

during sampling soil solutions: a low pH (pH 4.97) without

adding NaCl (EC 0.94 mS cm-1), b low pH (pH 4.69) and

10 mM NaCl (EC 2.61 mS cm-1), c neutral pH (pH 7.31)

without adding NaCl (EC 0.91 mS cm-1), d neutral pH (pH

7.64) and 10 mMNaCl (EC 2.21mS cm-1), e high pH (pH 9.23)

without adding NaCl (EC 0.89 mS cm-1); and f high pH (pH

9.33) and 10 mM NaCl (EC 1.86 mS cm-1)
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concentrations increased with decreasing flow rates

corresponding to SWP in the soil solution, while those

remained low at high flow rates. Colloid concentra-

tions were higher in saturated regimes than in unsat-

urated regimes in sand column. The decrease in the

water content in the unsaturated regime may result in

an increase in the colloid deposition rate due to film

straining, AWI attachment, and additional retention at

the AWS interfaces. The colloid concentrations sig-

nificantly increased with increasing pH in suggesting
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Fig. 5 Colloid mobilization and heavy metal transport during

sampling soil solutions in real field soils (Duckum soil):

a sampling site of Duckum soil in South Korea b flow rate,

cumulative volume, soil water pressure, colloid concentrations,

and c heavy metal concentrations during sampling soil solutions
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that the mobility of colloids was enhanced in the basic

solution. In addition, the colloid concentrations

increased with a decrease in the ionic strength.

Infiltrations such as rainfall, snow melting, and

irrigation decrease the ionic strength and thereby

may increase the colloid mobilization in subsurface

environments.

The concentrations of As, Cr, and Pb increased with

an increase in the colloid concentrations during

momentarily changed SWP in real field soil, indicating

that colloids could adsorb positively charged heavy

metal ions as effective carriers. However, the mobi-

lization of Cd, Cu, Fe, Ni, Al, and Co lagged behind

the colloid mobilization, suggesting that colloid-

facilitated transport could be affected by the charac-

teristics of heavy metals. Therefore, physicochemical

perturbations and heavymetal properties were deemed

to play a significant role in accelerating or inhibiting

the colloid mobilization in subsurface environments.
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