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1 Introduction

The recent developments of the quantum information theory and holographic duality show

that some concepts from quantum information are useful in understanding foundations of

gravity and quantum field theory (QFT). One of such concepts is the entanglement entropy,

from which the spacetime geometry may emerge (e.g., see refs. [1–6]). The “complexity”

is another important concept since it may have a relation with physics inside black hole

horizon [7, 8, 8–12].

Note that the deep understandings of the entanglement entropy in the context of

holography was possible because it is well-defined in both gravity and QFT. While there

has been much progress for the complexity in gravity side,1 even the precise definition of

the complexity in QFT is still not complete, which is an essential question.

The complexity is originally defined in quantum computation theory. Suppose a uni-

tary operator Û is simulated by a quantum circuit, which can be constructed by combining

universal elementary gates by many ways. The complexity of Û is defined by the minimal

1For example, see [8–11, 13–22].

– 1 –



J
H
E
P
0
3
(
2
0
1
9
)
0
1
0

number of required gates to build Û . This definition by “counting” is based on the finite

and discrete systems. However, to define the complexity in QFT or quantum mechanics

(QM) we have to deal with infinite and continuous systems: we cannot “count”.

Recently, there have been a few attempts to generalize the concept of complexity

of discrete quantum circuit to continuous systems, e.g., “complexity geometry” [23–25]

based on [26–28], Fubini-study metric [29], and path-integral optimization [30–33]. See

also [34–36]. In particular, the complexity geometry is the most studied idea (for example

see refs. [21, 37–47, 47–52]). In essence, one introduces a certain right-invariant Riemannian

geometry where every points corresponds to a unitary operator. The continuous versions

of quantum circuits of a given Û are identified with various curves connecting the identity

and Û in the geometry. The complexity is defined by the minimal length of those curves.

This idea of the complexity geometry of unitary operators is very attractive but current

studies have two important shortcomings yet. First, the geometry is not determined by

some physical principles, but given by hand. It is acceptable for quantum circuit problems

since we can design the circuit as we want. However, in general QFT/QM, there must be

constraints given by nature not by our hands. Second, it is only valid for SU(n) operators

with finite n. It is enough for finite qubit systems, but to deal with the operators gener-

ated by general QFT/QM systems such as H = p2/2m + V (x, p) we need to develop the

formalism for the Hamiltonian with an infinite dimensional Hilbert space.

In this paper, we propose how to remedy these shortcomings by generalizing the com-

plexity geometry of finite qubit systems to general QFT/QM. In particular, we take into

account the fact that the generating functional in QFT/QM plays a crucial role contrary to

quantum circuits. We also, for the first time, note the importance of the lower boundedness

of the Hamiltonian in QFT/QM, in the context of complexity. As a result, we will uncover

novel interesting results which cannot be simply inferred from finite qubit systems.

2 Complexity of unitary operators generated by Hamiltonians

2.1 Overview on Nielsen’s right-invariant complexity geometry

Let us first review basic ideas of right-invariant complexity geometry for SU(n) groups based

on [26–28]. We consider the space of operators in SU(n) group with finite n. Suppose that

a curve (c(s) ∈SU(n)) is generated by a generator H(s) as follows.

c(s) =
←−
P e

∫ s
0 iH(s̃)ds̃ or ċ(s) = iH(s)c(s) . (2.1)

We assume that the line element of this curve is given by a certain function of a genera-

tor only:

dl = F̃ (H(s))ds :=
√
g̃(H(s), H(s))ds , (2.2)

where g̃(·, ·) is required to be an inner product for the Lie algebra su(n) and a quadratic in

H. In fact, it is possible to consider a more general inner product than a quadratic form.

This will yield a general Finsler geometry rather than a Riemannian one [42]. In this paper

we assume that the complexity geometry is a Riemannian geometry. We call F̃ (H) the
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norm of H. In bases {eI}, H = eIY
I and the metric components can be expressed as

g̃IJ =
1

2
∂2F̃ (H)2/(∂Y I∂Y J)⇔ F̃ (H)2 = g̃IJY

IY J . (2.3)

Note that giving the norm F̃ is equivalent to giving a metric g̃IJ under a bases.

To obtain the metric in the group manifold with the coordinate XI , the metric needs

to be transformed by a coordinate transformation

gIJ(X) = g̃KLM
K
I (X)ML

J (X) , (2.4)

where the transformation matrix is defined as Y I(s)ds = M I
K(X)dXK . (See appendix B

for a concrete example.) The complexity of an operator Ŵ (s) :=
←−
P e

∫ s
0 iH(s̃)ds̃ , denoted by

C(Ŵ (s)), is defined by the minimal length of all curves which connect Ŵ (s) to identity:

C(Ŵ (s))) = min

∫ s

0
F̃ (H(s̃))ds̃ , (2.5)

where H(s̃) satisfy Ŵ (s) =
←−
P e

∫ s
0 iH(s̃)ds̃.

After we obtain the complexity for all operators in the SU(n) group based on eq. (2.5),

the complexity between two pure quantum states in an n-dimensional Hilbert space can

be expressed as the following optimal problem

C(|ψ1〉, |ψ2〉) = min
{
C(U) | ∀ Û ∈ O, |ψ2〉 = Û |ψ1〉

}
, (2.6)

where the unitary operator may belong to some restricted set O, which is a subgroup of

SU(n) group and depends on detailed physical problems. Thus, the norm F̃ plays a central

role when we analyse the complexity in quantum systems. Once we obtain the norm F̃ ,

the metric in the SU(n) group (and its any subgroup) is computed. By this metric, the

minimal geodesic length connecting the identity and the target operator, which is nothing

but the complexity of the operator, is computed. The complexity between two states is the

minimal complexity of the operators shown in eq. (2.6). In this paper, we will only focus

on the complexity of unitary operators.

Note that the complexity is right-invariant, because H itself is invariant under the

right-translation c→ cx̂ for ∀x̂ ∈ SU(n). However, for a left translation c(s) 7→ x̂c(s), the

generator will be transformed as

H(s) 7→ x̂H(s)x̂† ,

which is different from H(s) in general. If there is no additional symmetry, F̃ (H) 6=
F̃ (x̂Hx̂†), the complexity is not left-invariant but only right-invariant.

2.2 Bi-invariant complexity geometry

Nielsen’s (only) right-invariant complexity is a good tool for the studies on quantum com-

putation and quantum circuit systems. Many recent works such as [26–28] and [21, 25,

29, 37, 47] try to generalize this idea to the studies on QFT/QM. These works assume

that the complexity is only right-invariant. However, if the complexity in QFT/QM is only
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right-invariant, we find that there are some issues which cannot be reconciled with basic

principles or symmetries of QFT/QM. These subtleties have been discussed in detail in

refs. [42, 43]. For readers’ convenience, in appendix A, we make a brief review only for two

arguments among various arguments in refs. [42, 43]. See also section 3.2.

A punchline of appendix A and refs. [42, 43] is that the complexity in QFT/QM indeed

needs to have a symmetry

F̃ (H) = F̃ (ÛHÛ †) , (2.7)

which we will call a unitary invariance. The right-invariance and unitary invariance (2.7)

together imply the complexity in QFT/QM should be also left-invariant, so bi-invariant.

One very quick argument to support this unitary invariance is as follows.

As a generator H in (2.1) let us consider a Hamiltonian of QFT/QM. Recall that H

and ÛHÛ † give the same generating functional so they are physically equivalent. Therefore,

if the complexity in QFT/QM is an observable or a physical quantity yielding observables

it is natural that the complexity of the unitary operators generated by H and ÛHÛ † are

also same, which amounts to eq. (2.7). For clarify our point on eq. (2.7), we would like to

emphasize again that the only right-invariance is perfectly fine for quantum circuits. What

we want to highlight is that there is something more to consider for general QFT/QM

systems which are different from quantum circuits.

The bi-invariance plays a very important role in determining a complexity geometry

and a geodesic in there, based on two important mathematical results. First, the theory of

Lie algebra proves that the Riemannian metric g̃(·, ·) is uniquely determined by the Killing

form up to a constant factor λ > 0 [53]

g̃(H,H) = F̃ (H)2 = λ2Tr(HH†) = λ2Tr(H2) . (2.8)

Second, the geodesic in a bi-invariant metric is given by a constant generator [53], say H̄,

so eq. (2.5) yields2

C(Ô) = F̃ (H̄) with exp(iH̄) = Ô . (2.9)

Note that the work of finding geodesic is greatly simplified due to bi-invariance.

In this paper, we will discuss the complexity in the current frameworks of QM and

QFTs and so the complexity is bi-invariant. Let us now consider an operator generated by

a physical Hamiltonian, denoted by H. In general H has a nonzero trace and its Hilbert

space may be infinite dimensional so eq. (2.8) needs to be generalized accordingly.

First, to deal with the Hamiltonian of nonzero trace, we define a “mean value” H̄ by

Tr(H− H̄Î) = 0 , Î = identity , (2.10)

such that (H − H̄Î) ∈ su(n). Because Û(1) is just a phase transformation, (H − H̄Î) and

H generate equivalent transformations and they should give the same complexity. Thus,

we may use eq. (2.8) for the norm of H

F̃ (H) = λ

√
Tr[(H− H̄Î)2] . (2.11)

2For an operator exp(iH̄) with a given H̄, there may be many Hk satisfying exp(iHk) = exp(iH̄). The

complexity is given by the minimal F̃ (Hk) among all Hk. Thus, the complexity of the operator exp(iHt)

may stop growing after large time t [43].
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However, if the Hilbert space of H is infinite dimensional the trace in eq. (2.10)

and (2.11) are divergent3 so we need to renormalize it. We will show how to do it for two

important cases: a quadratic Hamiltonian in one dimensional space and a non-relativistic

particle in compact Riemannian manifolds.

3 AdS3 spacetime as a complexity geometry

Let us consider a general quadratic Hamiltonian in one-dimensional space,

H =
Y +

2
x̂2 +

Y −

2
p̂2 +

Y 0

4
(x̂p̂+ p̂x̂) . (3.1)

Here, we want to emphasize that the {Y I} should satisfy the constraints

4Y +Y − − (Y 0)2 ≥ 0 and Y ± ≥ 0 , (3.2)

so that the Hamiltonian is bounded below. It can be seen from eq. (3.4) and will play

an important role in the comparison of our complexity geometry with AdS spacetime in

eq. (3.20). This boundedness condition is another difference between QFT/QM and quan-

tum circuits. The Hermit operators in quantum circuits have finite number of eigenvalues

so they are always bounded below. However, the Hermit operators in QFT/QM may not

be bounded below in general, so we should be careful in defining parameter ranges.

To compute the norm of H we make a canonical transformation (x, p)→ (x′, p′) as fol-

lows,

H =
c1

2
x̂′2 +

c2

2
p̂′2 , (3.3)

where

c1 + c2 = Y + + Y − , c1c2 = Y +Y − − (Y 0)2/4 . (3.4)

The eigenvalues of H− H̄Î read

En = ω(n+ 1/2)− H̄, n = 0, 1, 2, · · · (3.5)

with ω =
√
Y +Y − − (Y 0)2/4. The norm of H, eq. (2.11), will be divergent and we need

to consider its proper renormalization.

In general, we can define the ζ-function for a positive definite Hermit operator O with

eigenvalues {En} as analytic continuation of the following sum

ζO(s) :=

∞∑
n=0

1

Esn
. (3.6)

In particular, for the operator O = H− H̄Î with H in (3.3), we have

ζH−H̄Î(s) =
∞∑
n=0

ω−s

(n+ 1/2− H̄/ω)s
= ω−sζ(s, 1/2− H̄/ω) , (3.7)

3In a mathematical jargon, the Hamiltonian may not be in the trace class.
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where ζ(s, q) is the Hurwitz-ζ function, which is defined as the analytic continuation of the

following sum [54]

ζ(s, q) =

∞∑
n=0

1

(n+ q)s
. (3.8)

We may define the renormalized trace as

Trre(H− H̄Î) = ζH−H̄Î(−1) , (3.9)

and the renormalized norm squared as

F̃ 2
re(H) = λ2Trre[(H− H̄Î)2] = λ2ζH−H̄Î(−2) . (3.10)

First, by eq. (2.10), eq. (3.9) determines H̄:

ζ(−1,−H̄/ω + 1/2) = 0 ⇒ H̄2

ω2
− 1

12
= 0 , (3.11)

which gives two solutions H̄ = ±ω/(2
√

3). Thus, the eq. (3.10) becomes

F̃ 2
re(H) = λ2ω2ζ

(
−2,± 1

2
√

3
+

1

2

)
= ±
√

3λ2

108
ω2 . (3.12)

Because F̃ 2
re(H) should be nonnegative when coefficients Y I satisfy eq. (3.2), we have to

choose H̄ = −ω/(2
√

3). Defining the parameter λ2 = 108λ2
0/
√

3 we obtain

F 2
re(H) = λ2

0ω
2 = λ2

0

(
Y +Y − − (Y 0)2/4

)
. (3.13)

Indeed, our result (3.13) is consistent with the group theoretic consideration. The

Hamiltonian (3.1) is written as H = Y IeI with

e+ =
1

2
x̂2 , e− =

1

2
p̂2 , e0 =

1

4
(x̂p̂+ p̂x̂) , (3.14)

where {ieI} consists of the su(1, 1) Lie algebra4,5

[ie0, ie±] = ±ie± , [ie−, ie+] = 2ie0 . (3.15)

As the su(1, 1) is simple, its bi-invariant metric g̃(·, ·) is proportional to the Killing form [53].

In other words, g̃ can be computed simply by the structure constants of the Lie algebra.

As a result

g̃IJY
IY J ∼ 4Y +Y − − (Y 0)2 , (3.16)

which serves as a nice consistent check for our method. Even more interestingly, in sec-

tion 3.1, we provide an alternative independent method to obtain metric (3.16) without

4This is also the symplectic Lie algebra sp(2,R), the special linear Lie algebra sl(2,R) and Lorentz Lie

algebra so(2, 1).
5The complexity related to su(1, 1) algebra has been studied in refs. [21, 29, 37, 47], in only right-invariant

geometry and without the restriction (3.2).
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Identity

Realizable unitary 

evolution

Norm is 

nonnegative

H

1Ô

2Ô

Set of physically 

realizable operators

Complexity 

geometry

Original point 

Time-like 

trajectory 

Time-like 

tangent vector 

T 

1O

2O

Future-toward 

light-cone 

AdS spacetime 

Figure 1. Schematic diagram on the similarities between the complexity geometry of the quadratic

Hamiltonian (left panel) and the spacetime geometry of AdS3 (right panel).

Complexity geometry Spacetime geometry

Unitary operators generated
Points in AdS3 spacetime

by quadratic Hamiltonian

Norm is nonnegative Speed of particle cannot be superluminal

Curves with positive complexity
Trajectories with future-toward

time-like tangent vectors

Set of physically realizable unitary operators Future-toward light-cone

Table 1. Comparison between the complexity geometry of SU(1,1) group and spacetime geometry

of AdS3.

assuming the symmetry (2.7). This is important because it also justifies the unitary sym-

metry eq. (2.7) or the bi-invariance in a nontrivial way.

Let us consider the case, Y + = Y 0 = 0 and Y − > 0, which corresponds to the free

particle case. From (3.13) we find that

F̃re(H) = 0 , (3.17)

which is the first explicit realization of the fact [11] (the section VIII B 4) that the com-

plexity of the operator generated by a free Hamiltonian is zero because a free Hamiltonian

cannot mix information across its degrees of freedom.

By parameterizing the SU(1,1) group as

Û(y, z, u) = exp(iye0) exp(ize+) exp(iue−) , (3.18)

we obtain the metric in the group manifold (see eq. (2.4) and appendix B for details)

dl2 = λ2
0(−dy2/4 + zdydu+ dzdu) . (3.19)

As the signature of this metric is (−,−,+), it is interesting to define a “spacetime interval”

ds2 = −dl2 < 0

ds2 = g
(st)
IJ dxIdxJ := λ2

0(dy2/4− zdydu− dzdu) , (3.20)
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which yields the Riemann tensor R
(st)
IJKL

R
(st)
IJKL = − 1

λ2
0

(
g

(st)
IK g

(st)
JL − g

(st)
IL g

(st)
JK

)
. (3.21)

This means that the AdS3 spacetime with the AdS radius `AdS = λ0 emerges as our

complexity geometry! We find some interesting correspondences between the complexity

geometry of SU(1,1) group and AdS3 spacetime. For examples, the physical Hamiltonians

with (3.2) correspond to the time-like or null tangent vectors in AdS3 spacetime. In fig-

ure 1 and table 1, we make more comparisons between the complexity geometry of SU(1,1)

generated by quadratic Hamiltonian and spacetime geometry of AdS3. It is interesting that

three basic requirements in physics, i) the complexity should be nonnegative, ii) the Hamil-

tonian should be bounded below and iii) the speed of particles cannot be superluminal, are

three different facets of the same in this model.

3.1 Alternative method to obtain the complexity geometry for quadratic

Hamiltonians

In this subsection, we provide alternative method to obtain the complexity geometry (3.16)

for quadratic Hamiltonians. Here, we do not assume the complexity geometry is bi-invariant

but only assume right-invariant. Just by using Û(1) gauge symmetry and canonical trans-

formation, we can determine the unique complexity geometry. Furthermore, the result

shows that the complexity geometry of general quadratic Hamiltonians must be bi-invariant

and satisfy a symmetry F̃ (H) = F̃ (ÛHÛ †). We also provide another example to show why

symmetry F̃ (H) = F̃ (ÛHÛ †) is necessary.

Let us consider a Hamiltonian of a non-relativistic particle with potential V (~̂x) = k~̂x2/2

and a magnetic vector potential ~A(~̂x),

H =
1

2m
[~̂p− q ~A(~̂x)]2 +

k

2
~̂x2 , (3.22)

where q is the charge carried by the particle. If we take a pure gauge, ~A(~̂x) = ∇φ(~̂x) for

an arbitrary scalar function φ(~̂x), the Hamiltonian

Hφ =
1

2m
[~̂p− q∇φ(~̂x)]2 +

k

2
~̂x2 , (3.23)

and the harmonic oscillator Hamiltonian

H0 =
1

2m
~̂p2 +

k

2
~̂x2 , (3.24)

describe the same physical system. Thus, they should give the same complexity and

F̃ (H0) = F̃ (Hφ) , (3.25)

for all φ(~̂x). For the Hamiltonian (3.24), we can take a canonical transformation (~̂x, ~̂p)→
(γ~̂x, γ−1~̂p), which leads to

H0(γ) =
1

2mγ2
~̂p2 +

kγ2

2
~̂x2 . (3.26)
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Because this transformation is canonical, H0(γ) and H0 describe the same physical sys-

tem so

F̃ (H0) = F̃ (H0(γ)) , (3.27)

for all γ 6= 0.

Let us first consider what we can obtain from the symmetry (3.25). For φ(~̂x) =

−aq−1m~̂x2 with an arbitrary real number a we obtain

Hφ = H(a, k,m)

: =
3∑
i=1

1

m

p̂2
i

2
+ 4a

x̂ip̂i + p̂ix̂i
4

+ (4a2m+ k)
x̂2
i

2
.

(3.28)

Comparing with the bases defined in eq. (3.14), we find that this Hamiltonian contains the

triple copies of su(1, 1) Lie algebra. The symmetry (3.25) implies

F̃ (H(a, k,m)) = F̃ (H(0, k,m)) , (3.29)

for arbitrary a, k and m. In general, F̃ 2(H) = g̃IJY
IY J , where g̃IJ is a general metric for

su(1, 1) Lie algebra. In our case,

F̃ 2(H(a, k,m)) = 3

[
g̃−−

1

m2
+ g̃0016a2 + g̃++(4a2m+ k)2

+g̃+−2
4a2m+ k

m
+ g̃+08a(4a2m+ k) + g̃−0

8a

m

]
.

(3.30)

The overall coefficient 3 comes from the fact that H(a, k,m) contains triple copies of su(1, 1)

Lie algebra. If k = 0 eq. (3.29) implies

g̃−−
1

m2
=

[
g̃−−

1

m2
+ (2g̃00 + g̃+−)8a2

+g̃++16m2a4 + g̃+032ma3 + g̃−0
8a

m

]
,

(3.31)

for all a. This means that g̃++ = g̃+0 = g̃−0 = 0 and

g̃+− = −2g̃00 . (3.32)

Thus, eq. (3.30) boils down to

F̃ 2(H(a, k,m)) = 3

[
g̃−−

1

m2
+ 2g̃+−

k

m

]
. (3.33)

We see that the gauge symmetry gives us very strong restriction on the metric for quadratic

Hamiltonians.

Now let us consider what we can obtain from the symmetry (3.27), which means

F̃ 2(H(0, k,m) = F̃ 2(H(0, kγ2,mγ2) . (3.34)

– 9 –
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By using eq. (3.33), we have

g̃−−
m2

+ 2g̃+−
k

m
=

g̃−−
(mγ2)2

+ 2g̃+−
k

m
, (3.35)

for all γ 6= 0. This implies g̃−− = 0.

Thus, respecting the symmetries (3.25) and (3.27) we find that the nonzero components

of the metric g̃IJ are only {g̃+−, g̃00} and they satisfy eq. (3.32). As a result, for a quadratic

Hamiltonian H = Y IeI with {eI} defined in eq. (3.14),

F̃ 2(H) = −g00[4Y +Y − − (Y 0)2] , (3.36)

which is the same as eq. (3.13).

3.2 Another argument for the unitary invariance

Section 3.1 also shows that the complexity metric of quadratic Hamiltonians must be bi-

invariant! In this subsection, we will offer more concrete examples to support that the

bi-invariance is natural and necessary when we consider the “complexity” in QFT/QM.

Let us consider the following Hamiltonian:

H(~w) =
~̂p2

2m
+
k

2
~̂x2 + k ~w · ~̂x+

k ~w2

2
. (3.37)

The Hamiltonians H(~w) and H0 look different if ~w 6= 0 and one may think that H(~w) and

H0 give different complexities since some additional “gates” may be required to realize the

additional operator k ~w · ~̂x in the Hamiltonian H(~w). However, eq. (3.37) is nothing but

H(~w) =
~̂p2

2m
+
k

2
(~̂x+ ~w)2 , (3.38)

which just shifts the coordinate compared to H0 and does not change physics. Because

H(~w) and H0 describe the same physical system we should have

∀~w ∈ R3, F̃ (H0) = F̃ (H(~w)) . (3.39)

In fact, four Hamiltonians {H0,Hφ,H0(γ),H(~w)} describe the same dynamics so

we have

F̃ (H0) = F̃ (Hφ) = F̃ (H0(γ)) = F̃ (H(~w)) , (3.40)

for all scalar function φ(~̂x), positive number γ and vector ~w. Note that the Hamiltoni-

ans (3.23), (3.26) and (3.37) can be expressed as

Hφ = Û †φH0Ûφ ,

H0(γ) = Ŵ (γ)†H0Ŵ (γ) ,

H(~w) = X̂†(~w)H0X̂(~w) ,

(3.41)
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with

Ûφ = exp[iqφ(~̂x)] ,

Ŵ (γ) = exp

[
i

2
(ln γ)(~̂x · ~̂p+ ~̂p · ~̂x)

]
,

X̂(~w) = exp(i ~w · ~̂p ) .

The symmetry F̃ (H) = F̃ (ÛHÛ †) is the simplest and natural way to satisfy physical

requirements (3.40).

4 Complexity in a compact Riemannian manifold

Let us consider a non-relativistic particle with mass m in an n-dimensional compact Rie-

mannian manifold M (∂M = 0) with arbitrary positive definite metric Gµν . The Hamilto-

nian H is given by

H = −∇
2

2m
+ V (x) , (4.1)

where ∇ is the covariant derivative associated with a metric Gµν and V (x) is a potential

bounded below.

As the eigenvalues of such a Hamiltonian cannot be computed analytically in general,

we cannot use the ζ-function method. In order to regularize the trace of this Hamiltonian,

we define the regularized trace of any function of H, say f(H), as

Trτ [f(H)] :=
1

KH(τ)
Tr
[
f(H)e−τH

]
, (4.2)

where

KH(τ) := Tr(e−τH) and τ → 0+ . (4.3)

The operator e−τH is usually called the “heat kernel” [55, 56]. Here, we take τ > 0 so that

eq. (4.2) is finite for the Hamiltonian bounded from below.

First, we compute H̄ by using eq. (2.10) with the regularized trace (4.2)

H̄ = Trτ (H)/Trτ (Î) = Trτ (H) = − d

dτ
lnKH(τ) . (4.4)

Thus, we generalize eq. (2.11) as

F̃ 2(H) = λ2{Trτ (H2)− [Trτ (H)]2}

= λ2 d2

dτ2
lnKH(τ) .

(4.5)

For finite dimensional cases, eq. (4.5) agrees with eq. (2.11) after we take limit τ → 0+.

Without loss of generality, we may set m = 1/2. For a general Gµν , it is difficult to

find even the ground state and the first eigenvalue of H. However, in the case of τ → 0+,

the trace of the heat kernel can be computed in terms of a serie of τ [56],

KH(τ) =
1

(4πτ)n/2

∞∑
n=0

anτ
n , (4.6)
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where a0 =
∫
M

√
Gdnx, a1 =

∫
M (R/6 + V )

√
Gdnx and a2 = b+ c with

b :=
1

2

∫
M

√
G(V +R/6)2dnx , (4.7)

c :=
1

180

∫
M

√
G(RµνσρR

µνσρ −RµνRµν)dnx . (4.8)

Here G is the determinant of Gµν , Rµνσρ is the Riemann tensor, Rµν is the Ricci tensor and

R is the scalar curvature. Plugging eq. (4.6) into eq. (4.5) and setting τ → 0+, we obtain

λ−2F̃ 2(H) =
n

2τ2
+

2a2a0 − a2
1

a2
0

+O(τ) . (4.9)

The divergent term does not contribute to the metric defined by eq. (2.3), so it can be

removed without changing the complexity geometry. Thus we obtain the renormalized

norm squared

F̃ 2
re(H) := lim

τ→0+
F̃ 2(H)− λ2n

2τ2
= λ2 2a2a0 − a2

1

a2
0

. (4.10)

For a “free particle”, i.e., a flat metric Gµν = δµν with a constant potential V (x) = V0, we

obtain F̃ 2
re(H) = 0, which is consistent with (3.17).

For the complexity to be well-defined F̃ 2
re(H) must be nonnegative but the right hand

side of (4.10) may not be nonnegative in general. Let us find the condition for this to be

nonnegative. First, the numerator of eq. (4.10), can be rewritten as

2a2a0 − a2
1 =

(
2ba0 − a2

1

)
+ 2ca0 . (4.11)

Thanks to the Cauchy-Schwarz inequality

2ba0 =

(∫
M

(V +R/6)2
√
Gdnx

)∫
M

12
√
Gdnx

≥
(∫

M
(V +R/6)× 1

√
Gdnx

)2

= a2
1 ,

(4.12)

the term in the parenthesis in eq. (4.11) is nonnegative so we focus on the last term, 2ca0.

For a flat space, c = 0 so eq. (4.11) is always nonnegative in arbitrary dimension. It can

be zero only for free particles, i.e., V (x) is constant. It is consistent with eq. (3.17). For a

curved space, as a0 is positive, we only need to consider the sign of c. For n = 1, Rµνσρ = 0

so c = 0. For n = 2, Rµνσρ has only one independent term. Under a local orthonormalized

frame {ei} the metric components read Gij = δij and the nonzero curvature component is

R1212 =: K. Thus, RµνσρR
µνσρ − RµνRµν = 2K2 ≥ 0 and c ≥ 0. For n ≥ 3, we rewrite

c as

c = cGB +
1

180

∫
M

√
G(3RµνR

µν −R2)d3x , (4.13)

where the Gauss-Bonnet term is introduced:

cGB :=
1

180

∫
M

√
G(RµνσρR

µνσρ − 4RµνR
µν +R2)dnx . (4.14)
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For n = 3, cGB = 0. In the local orthonormalized frame {ei}, we can diagonalize the Ricci

tensor and obtain three eigenvalues {k1, k2, k3}. Thus, 3RµνR
µν −R2 = 3(k2

1 + k2
2 + k2

3)−
(k1 + k2 + k3)2 ≥ 0 and c ≥ 0. However, for n ≥ 4, 3RµνR

µν −R2 and cGB can be negative

for some geometries, so c and eq. (4.11) can be negative.

The Hamiltonian (4.1) can be used in low energy limit of quantum field theory. If the

spacetime dimension in low energy limit is 3+1 or less, eq. (4.10) is always nonnegative.

This is compatible with the spacetime of our world in low energy limit. It can be also

understood as follows. If we assume that a physical Hamiltonian should give a nonnegative

complexity, it gives some restriction on the dimension and geometry of spacetime.

5 Conclusions

For the complexity to be a useful tool for gravity and QFT/QM, we first have to fill up the

conceptual gap between the quantum circuits and QFT/QM in defining complexity. By

noting that the generating functional plays a central role in QFT/QM contrary to quantum

circuits we propose an additional symmetry (2.7) for the complexity in QFT/QM. It gives

a simple and unique formula for the complexity of SU(n) operators, eqs. (2.8) and (2.9).

Even though the formula is unique, its result is still rich when it is generalized for

physical Hamiltonians. In particular, for the complexity of the operators generated by

Hamiltonians in an infinite dimensional Hilbert space, our complexity formula gives novel

results which can not be obtained from finite qubit systems. Interestingly enough, the

complexity geometry corresponding to a general quadratic Hamiltonian in one-dimension

is equivalent to AdS3 space. Here, we pointed out the lower boundedness of the Hamiltonian

gives a constraint for the non-negativity of the complexity, which has not been appreciated

before. We want to stress that three basic physics, non-negative complexity, bounded-

below Hamiltonian and sub-luminal speed of particles are three aspects of the same thing

in our proposal.

Our formula proves that the complexity of the operator generated by free Hamiltonians

vanishes, which was intuitively plausible. We uncovered the connection between the com-

plexity and the background geometry. In particular, the fact that the critical dimension

to ensure a nonnegative complexity in low energy limit is just 3+1 dimension is worthy of

more investigations.

We want to stress that the non-negativity of complexity in infinite dimensional Hilbert

spaces is not trivial, while it is trivial in finite dimensional cases for all Hermitian Hamil-

tonians. When we generalize our formula (2.11) to infinite dimensional Hilbert spaces,

the results are still nonnegative but divergent, so regularization and renormalization are

needed. Then we find that the renormalized complexity is no longer always non-negative

if we do not make any restriction on the Hamiltonian. For two models considered in this

paper, we found that the requirement of non-negativity can lead to some requirements so

that the underlying models are physically correct. For quadratic Hamiltonians, it implies

that the Hamiltonian should be bounded below; for a non-relativistic particle, it implies

that the dimension in low energy limit should be less than 3+1. These results seem to
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propose a new universal principle: the Hamiltonian of a physically correct theory should

give us nonnegative complexity.

This paper focused on a few quantum mechanical systems in order to simplify technical

details. We think that our proposal can be applied to QFT in principle and may result in

more novel properties in QFT, especially at strong interactions or in the curved spacetime.

However, we would like to mention that this generalization may not be simple technically.

For example, for a free scalar field theory, there are two kinds of infinity: the infinite degrees

of freedom and the infinite Hilbert space of every single degree of freedom. The methods

in this paper can deal with the latter but cannot cover the former, especially, when we

consider some non-perturbative field theories. Thus, some new renormalization techniques

may be necessary, which we would like to address in future.

Acknowledgments

We would like to thank Yu-Sen An for helpful discussions during this work. The work

of K.-Y. Kim was supported by Basic Science Research Program through the National

Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future

Planning (NRF- 2017R1A2B4004810) and GIST Research Institute (GRI) grant funded

by the GIST in 2019. We also would like to thank the APCTP (Asia-Pacific Center for

Theoretical Physics) focus program,“Holography and geometry of quantum entanglement”

in Seoul, Korea for the hospitality during our visit, where part of this work was done.

A Importance of bi-invariance for the complexity in QFT/QM

In this appendix, we explain why the bi-invariance is important for the complexity

in QFT/QM. There are various arguments to support eq. (2.7) and bi-invariacne in

refs. [42, 43] and section 3.2. Among many discussion in refs. [42, 43], here we introduce

only two arguments briefly.

Before starting, we would like to emphasize again that the only right-invariance is

perfectly fine for quantum circuits. What we want to highlight is that there is something

more to consider for general QFT/QM systems which are different from quantum circuits.

A.1 Right-invariance or left-invariance?

In Nielsen’s and many other related works, the complexity is claimed to be right-invariant

based on the following argument [25]. Let us consider the construction of Û from Ŵ by a

series of gates {g1, g2, · · · , gN} in a time order (right to left):

Û = gNgN−1 · · · g2g1Ŵ . (A.1)

One may define the “relative complexity” dr(Û , Ŵ ) by the minimal number of gates to

construct the operator Û from the operator Ŵ . Here, we added the index “r” to express

that the old operator will appear at the right-side of the product (i.e. ‘r’ight to left). For
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the initial operator Ŵ = Î the relative complexity becomes just the complexity. For a

right-translation: Û → Û x̂ and Ŵ → Ŵ x̂,

Û x̂ = gNgN−1 · · · g2g1Ŵ x̂ , (A.2)

it is obvious

dr(Û , Ŵ ) = dr(Û x̂, Ŵ x̂) , (A.3)

which means that the (relative) complexity should be right-invariant.

If the product order in eq. (A.1) is the only way for the time order this argument works.

However, there is no physical, mathematical or logical reason to forbid us from choosing

the ‘left to right’ product order as a time order

Û = Ŵg′1g
′
2 · · · g′K−1g

′
K . (A.4)

In this case, it is also obvious that

dl(Û , Ŵ ) = dl(x̂Û , x̂Ŵ ) , (A.5)

where the index “l” means that the old operator will appear at the left-side of the product

(i.e. ‘l’eft to right). Thus, the complexity should be left-invariant.

Indeed, this kind of ordering choice is familiar also in quantum mechanics. The

Schrödinger’s equation is written as

d

dt
|ψ(t)〉 = iH(t)|ψ(t)〉 , (A.6)

which implies that the time evolution operator is

←−
P exp

[∫ t

0
iH(s)ds

]
. (A.7)

With this ket |·〉 ‘representation’ the product order (A.1) stands for the time order. How-

ever, equivalently, we may use a bra 〈·| to represent a quantum state without changing any

physics. In this case, the Schrödinger’s equation reads

d

dt
〈ψ(t)| = −i〈ψ(t)|H(t) , (A.8)

which implies that the time evolution operator is

−→
P exp

[
−
∫ t

0
iH(s)ds

]
, (A.9)

and the product order (A.4) stands for the time order.

However, there is an important difference between the above two examples: the com-

plexity and quantum mechanics. For quantum mechanics, it does not matter if we choose

‘left to right’ product or ‘right to left’ product; this choice is completely a convention

and all physics are the same regardless of this choice. For complexity, it matters because

in general

dr(Û , Ŵ ) 6= dl(Û , Ŵ ) . (A.10)

Is this ‘ordering-dependence’ for complexity problematic? The answer is no and yes.
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For the complexity in quantum circuit the ‘ordering-dependence’ is perfectly fine and

even natural. In this case, the rules to construct circuits are made by human and one can

choose either eq. (A.1) or eq. (A.4). The complexity is defined based on this choice, so there

is nothing wrong with eq. (A.10). Nielsen simply chose eq. (A.1) for his quantum circuit

construction so his complexity must be right-invariant. If Nielsen have chosen eq. (A.4) all

of his results are still valid now with a left-invariant complexity.

However, when we generalize the concept of complexity in quantum circuit to

QFT/QM, we (human) are not the one to construct unitary operations (the counterpart

of the quantum circuit); there is no reason to favor between eq. (A.7) and eq. (A.9). Fur-

thermore, eq. (A.10) is not satisfactory because it means a physical quantity depends on

convention. Therefore, it will be natural to impose both right and left invariance at the

same time (bi-invariance). Furthermore, it turns out that this bi-invariance implies [42, 43]

dr(Û , Ŵ ) = dl(Û , Ŵ ) , (A.11)

which is more natural from the QFT/QM perspective.

A.2 Compatibility with the QFT/QM framework

There is another issue with the only right or left complexity; it may not be compatible

with the framework of QFT/QM.

Let us first recall that a physical Hamiltonian H and UHU † (with a unitary operator

U) are equivalent in QFT in the sense that their generating functionals and relevant physics

are the same. The question now is if the complexity generated by H and UHU † are the same

or not. As we have shown at the end of section 2.1, if the complexity is only right (or left)-

invariant, it implies F̃ (H) 6= F̃ (ÛHÛ †) in general. Thus, the complexities of two evolutions

generated by H and ÛHÛ † may be different. Does this mean that the complexity is an

observable which can distinguish the system of H from UHU †? In principle, the answer can

be ‘yes’; it is possible that the generating functional may not have complete information

on the complexity (for example, quantum circuits). However, in our current framework

of QFT, it is assumed the generating functional contains all the observable information of

the QFT so it will be more natural to impose F̃ (H) = F̃ (ÛHÛ †) if the complexity is an

observable. This amounts to the bi-invariance of the complexity.

The compatibility of F̃ (H) = F̃ (ÛHÛ †) with QFT/QM can be shown more explicitly

if we recall that there are infinitely many different Hamiltonians describing the same system

in QFT/QM. For example, let us consider a following Lagrangian of a particle.

L = L(x, ẋ, t) . (A.12)

The Hamiltonian is given by a Lagendre transformation

H = H(x, p, t) := ẋ
∂L

∂ẋ
− L(x, ẋ, t), (A.13)

with ẋ is a function of x, p and t. However, for a given physical system, the Lagrangian is

not unique. We can define an new but physically equivalent Lagrangian L̃ such that

L̃ = L(x, ẋ, t) + φ′(x)ẋ , (A.14)
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where φ′(x) := dφ(x)
dx and φ(x) is arbitrary smooth function of x. It can give us a new

Hamiltonian

H̃ = ẋ
∂L̃

∂ẋ
− L̃(x, ẋ, t) = H(x, p− φ′, t) = eiφ(x)He−iφ(x) , (A.15)

where ẋ is a function of x, p and t by p = ∂L̃/∂ẋ = ∂L/∂ẋ+ φ′.6

We now may ask the following interesting question. Are the complexities of the op-

erators generated by H and H̃ the same or not? In other words, is F̃ (H) the same as

F̃ (eiφ(x)He−iφ(x)) or not? If the complexity is bi-invariant F̃ (H) = F̃ (eiφ(x)He−iφ(x)),

while if the complexity is only right (or left)-invariant, F̃ (H) 6= F̃ (eiφ(x)He−iφ(x)) in gen-

eral. However, F̃ (H) 6= F̃ (eiφ(x)He−iφ(x)) implies that two Lagrangians (A.12) and (A.14)

are not physically equivalent, which challenges the current frameworks of QFT/QM. Thus,

it is very natural to impose the condition F̃ (H) = F̃ (ÛHÛ †). This issue has been ad-

dressed in ref. [43] in more detail and it has been shown that for arbitrary Hermit operator

H(x, p), which is smooth and have a Taylor’s expansion with respective to p at p = 0, the

equivalence of L and L̃ implies

F̃ (H) = F̃ (eiH(x,p)He−iH(x,p)) . (A.16)

Here, we would like to emphasize again that such a compatibility issue appears only

when we develop the Nielsen’s complexity theory in QFT/QM not in quantum circuits.

Quantum circuits are not Lagrangian or Hamiltonian dynamical systems so the arguments

between eq. (A.12) and eq. (A.16) do not make sense for quantum circuits. In quan-

tum circuits, the generating functional does not play a crucial role and the symmetry

F̃ (H) = F̃ (ÛHÛ †) may not be necessary from this perspective. In fact, in a quantum

circuit, the “gate” is a real physical object realizing abstract unitary operation. The uni-

tary transformation of the gate yields a different gate or a product of gates. Thus, it is

possible that the cost (number of gates) of a given operator is not invariant under a unitary

transformation, i.e. F̃ (H) 6= F̃ (ÛHÛ †).

A.3 More technical details for the unitary invariance

What if the complexity is not an observable but a physical quantity yielding observ-

ables? For example, a wavefunction of the Shrödinger’s equation and the gauge poten-

tial in electromagnetism are such quantities. Here, even in this case, we will show that

F̃ (H) = F̃ (ÛHÛ †) is still required.

Let us first consider the case that the complexity itself leads to an observable. This

means that the norm F̃ can lead to an observable, i.e., an observable O(F̃ ) as a function

of F̃ . Indeed, this one variable case is trivial. In order for O to be an observable F̃ must

be an observable since F̃ is a scalar. Notwithstanding, we describe it for completeness. We

assume that O(x) is a non-constant and smooth function, which means

∀x, ∃k ∈ N+ , such that
dkO(x)

dxk
6= 0 . (A.17)

6For example, let us consider a harmonic oscillator L = 1
2
mẋ2− 1

2
kx2 and H(x, p, t) = p2/(2m) +kx2/2.

This harmonic oscillator can be described also by a Lagrangian L̃ = 1
2
mẋ2− 1

2
kx2+φ′ẋ, and the Hamiltonian

reads H̃(x, p, t) = (p− φ′)2/(2m) + kx2/2 = H(x, p− φ′, t).
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Because O is an observable, for arbitrary H and Û(s),

O(F̃ (H)) = O(F̃ (Û(s)HÛ †(s))) ⇔ dO

ds
= 0 , (A.18)

where s is a continuous parameter for Û(s). If dO(x)/dx 6= 0 eq. (A.18) implies

d

ds
F̃ (Û(s)HÛ(s)†) = 0 , (A.19)

because
dO

ds
=

dO(x)

dx

d

ds
F̃ (Û(s)HÛ(s)†) = 0 . (A.20)

If dO(x)/dx = 0, we can find a k ≥ 2 such that dkO(x)/dxk 6= 0 (eq. (A.17)) and obtain

the same result eq. (A.19). This shows F̃ (H) = F̃ (ÛHÛ †) for arbitrary Û .

In more general cases, one complexity itself may not be an observable but we can obtain

an observable by several complexities. For example, one may think that the complexity

is not a direct observable but the difference between two complexities is an observable,

which implies that neither F̃ (H1) nor F̃ (H2) is an observable but F̃ (H1) − F̃ (H2) is an

observable. Thus we have F̃ (H1) − F̃ (H2) = F̃ (ÛH1Û
†) − F̃ (ÛH2Û

†). Then we can

choose O := O(x1, x2) = x1 − x2 and so O(F̃ (H1), F̃ (H2)) = O(F̃ (ÛH1Û
†), F̃ (ÛH2Û

†)).

In general an observable O may have more than two arguments.

IfO(x1, x2, · · · , xn) is a non-constant smooth function, we can find that ∀x1, x2, · · · , xn,

∃k ∈ N+ and ∃l such that ∂kO/∂xkl 6= 0. Without loss of generality, we take l = 1

and obtain

∃k ∈ N+, ∂kO/∂xk1 6= 0, ∀x1, x2, · · · , xn . (A.21)

Next, as O(F̃ (H1), F̃ (H2), · · · , F̃ (Hn)) is an observable, we require:

O(F̃ (H1), F̃ (H2), · · · , F̃ (Hn))

=O(F̃ (ÛH1Û
†), F̃ (ÛH2Û

†), · · · , F̃ (ÛHnÛ
†)) ,

(A.22)

for arbitrary Hj and Û . i.e. Hj and ÛHjÛ
† gives the same observables. The basic idea of

the proof is to reduce eq. (A.22) to the trivial one variable case.

O(F̃ (H), F̃ (H ′), · · · , F̃ (H ′))

=O(F̃ (Û(s)HÛ(s)†), F̃ (H ′), · · · , F̃ (H ′)) .
(A.23)

It can be done by choosing H1 = H,H2 = H3 = · · ·Hn = H ′ and U(s) = exp(iH ′s) with

Û(s)HÛ(s)† 6= H. By the essentially same procedure as the one variable case, we conclude

F̃ (H) = F̃ (ÛHÛ †).

B Complexity metric for SU(1,1) group

We will explain how to obtain eq. (3.19). Let us start with eq. (2.1),

dÛ(XI)Û †(XI) = ieIY
I(s)ds , (B.1)
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where U(XI) is an element of the group G parameterized by the coordinate XI and the

Lie algebra g is spanned by the bases {ieI}.
For any representation of G, i.e. a map π : G 7→GL(n,K) with K = R or C, and its

induced representation in the Lie algebra, i.e. π∗ : g 7→GL(n,K) eq. (B.1) reads

d[π(Û)][π(Û)]−1 = π∗(ieI)Y
I(s)ds . (B.2)

Because the coefficient Y Ids is independent of the choice of faithful representations we may

choose any faithful representation for our convenience.

For example, we may parameterize SU(1,1) group as

Û(XI) = Û(y, z, u) = exp(iye0) exp(ize+) exp(iue−) , (B.3)

and choose a 2× 2 matrix representation for e0 and e± as follows. π∗(ieI) = KI with

K0 =
1

2

(
1 0

0 −1

)
, K+ =

(
0 −1

0 0

)
, K− :=

(
0 0

1 0

)
.

In this representation the group element eq. (B.3) is expressed as

π(Û(y, z, u)) =

(
ey/2(1− zu), −ey/2z
e−y/2u, e−y/2

)
, (B.4)

which yields

d[π(Û)]π(Û)−1 = (dy − 2zdu)K0 + ey(dz + z2du)K+

+ e−yduK− .
(B.5)

Thus, by eq. (B.2) we find

Y Ids =
(
dy − 2zdu, ey(dz + z2du), e−ydu

)
. (B.6)

Finally, the line element reads

dl2 = g̃IJY
IY Jds2 = λ2

0(Y +Y − − (Y 0)2/4)ds2 , (B.7)

where g̃IJ is given by eq. (3.13) and (2.3). By eq. (B.6) we obtain the metric in the

group manifold

dl2 = λ2
0(−dy2/4 + zdydu+ dzdu) . (B.8)
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