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ABSTRACT: Biomass burning (BB) is a large source of
reactive compounds in the atmosphere. While the daytime
photochemistry of BB emissions has been studied in some
detail, there has been little focus on nighttime reactions despite
the potential for substantial oxidative and heterogeneous
chemistry. Here, we present the first analysis of nighttime
aircraft intercepts of agricultural BB plumes using observations
from the NOAA WP-3D aircraft during the 2013 Southeast
Nexus (SENEX) campaign. We use these observations in
conjunction with detailed chemical box modeling to
investigate the formation and fate of oxidants (NO3, N2O5,
O3, and OH) and BB volatile organic compounds (BBVOCs),
using emissions representative of agricultural burns (rice
straw) and western wildfires (ponderosa pine). Field observations suggest NO3 production was approximately 1 ppbv hr−1,
while NO3 and N2O5 were at or below 3 pptv, indicating rapid NO3/N2O5 reactivity. Model analysis shows that >99% of NO3/
N2O5 loss is due to BBVOC + NO3 reactions rather than aerosol uptake of N2O5. Nighttime BBVOC oxidation for rice straw
and ponderosa pine fires is dominated by NO3 (72, 53%, respectively) but O3 oxidation is significant (25, 43%), leading to
roughly 55% overnight depletion of the most reactive BBVOCs and NO2.

■ INTRODUCTION

Wildfire size and frequency in the Western U.S. has increased
over the last 20 years, and these trends are projected to
continue due to factors such as forest management practices,
elevated summer temperatures, earlier snowmelt, and
drought.1,2 Biomass burning (BB), including wildfires,
prescribed burning, and agricultural burning, represents a
large, imperfectly characterized, and chemically complex source
of reactive material to the troposphere. BB releases reactive
species and particulate matter that impact the radiative balance
of the atmosphere, air quality, and human health on local to
global scales.3−7 The gas-phase components of BB plumes
include volatile organic compounds (BBVOCs) as well as
nitrogen oxides (NOx= NO + NO2 and higher oxides such as
peroxyacyl and alkyl nitrates), oxidants, and oxidant
precursors. The air quality and climate effects of BB emissions
are defined in part by the oxidative processes and atmospheric

chemical cycles that occur as the smoke is transported, diluted,
and exposed to oxidants over the hours and weeks following
emission.
The photochemistry of BB plumes has been studied

previously in a number of field and laboratory studies. Daytime
BB plumes can have OH concentrations 5−10 times higher
than background air,8 and daytime reactions of NOx, BBVOCs,
and OH involve complex pathways that generally lead to O3

formation, but in some cases to near-field O3 titration.9−14

Much less is known about nighttime BB plume oxidative
processes, which are expected to be dominated by nitrate
radicals (NO3) and O3.

15 NO3 is formed by O3 oxidation of
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NOx (eq R1 and Figure 1) but is rapidly (τ < 10 s) destroyed
in the daytime by NO and photolysis.15,16 NO3 is a precursor
for N2O5 (eq R2), a NOx reservoir. N2O5 may undergo
heterogeneous uptake to form ClNO2 and HNO3 (eq R3).
The former is a daytime Cl radical precursor affecting both
marine and continental environments and influencing next-day
O3 production.

17−20 NO3 can also be directly taken up onto
aerosol (eq R4).

+ →NO O NO2 3 3 (R1)

+ FNO NO N O3 2 2 5 (R2)

ϕ ϕ+ → + −N O aerosol ClNO (2 )HNO2 5(g) 2 3 (R3)

+ →NO aerosol products3 (R4)

Mixing of background or smoke-derived14 O3 with NOx in a
BB plume leads to the production of NO3, which may be rapid
(>0.5 ppbv h−1). Recent laboratory measurements conducted
during both the Fire Lab at Missoula Experiment (FLAME-4)
and the ongoing Fire Influence on Regional and Global
Environments Experiment (FIREX) have provided detailed
identification and quantification of emissions for a range of
BBVOCs.4,5,21−23 Emissions inventories from these experi-
ments indicate that the compounds emitted and their relative
concentrations depend on the fuel type (e.g., pine vs grass),
combustion process (e.g., smoldering or flaming), ignition
procedure (e.g., fast or slow), and pyrolysis temperature (e.g.,
high or low).4,21,24,25 Generally, primary BBVOC emissions
include oxygenated hydrocarbons and aromatics (e.g., phenols)
as well as unsaturated hydrocarbons, biogenic and hetero-
aromatic species.4,5,21 Many such compounds are very reactive
toward NO3

26−33 and may significantly limit its lifetime,
promote secondary organic aerosol formation (SOA),34,35 and
alter nighttime oxidative budgets.
The coemission of NOx, highly reactive VOCs, and aerosol

particles leads to the potential for significant nighttime
chemical transformations. Despite this potential, there has

been only one aircraft campaign to date from which sampling
of nighttime biomass burning plumes has been reported.36,37

The Southeast Nexus (SENEX) campaign in 2013 included 20
research flights of an instrumented NOAA WP-3D aircraft, and
one of the goals was to study the interactions between
anthropogenic and biogenic emissions.38 A night flight on July
2−3 targeted the emissions and nighttime chemistry from a
power plant plume near the Mississippi river. During this flight,
the WP-3D also targeted and intercepted agricultural BB
plumes yielding the first airborne study of nighttime smoke
that included NO3 and N2O5 measurements.36 Even so, there
has been no previous analysis of BB NO3 chemistry using
nighttime aircraft intercepts.
Here, we present the first analysis of nighttime smoke

oxidation based on aircraft intercepts of fire plumes using data
from this flight. With these observations, we initiate a detailed
chemical box model to understand the chemical evolution of
oxidants (NO3, N2O5, O3, and OH) and BBVOCs over one
night (10 h) using emissions for rice straw to model a generic
agricultural burning plume. We then use this analysis to model
nighttime chemistry in western wildfires using emissions for a
ponderosa pine fire.

Field and Laboratory Measurements. Field data for this
study were taken from multiple instruments deployed on the
NOAA WP-3D aircraft during the SENEX 201338 flight on
July 2−3, 2013 (20:00−03:00 CDT). Our analysis utilizes data
from the NOAA nitrogen oxide cavity ring-down spectrometer
(CRDS) for NO2, NO3, N2O5, and O3

39−42 as well as the
NOyO3 chemiluminescence instrument (CL) for NO, NO2,
O3, and NOy

43 with 1 Hz acquisition resolution. Within the
plume regions we study, the measurements of NO2 and O3
from the CRDS and CL instruments agree within 7%. We also
use data from an ultrahigh sensitivity aerosol spectrometer
(UHSAS) for aerosol size measurements (1 Hz)44,45 and a
proton-transfer-reaction mass spectrometer (PTR-MS) for
VOC measurements (1 s every 17 s).46

BB intercepts were identified by the enhancement above
background of four species: black carbon (BC), glyoxal
(CHOCHO), CO, and acryloyl peroxynitrate (APAN).36,47

BB identifier data were provided by the NOAA airborne cavity
enhanced spectrometer (ACES)48 for glyoxal, iodide chemical
ionization mass spectrometer (I− CIMS) for APAN,49 single
particle soot photometer (SP2) for black carbon,50 and
vacuum ultraviolet fluorimeter for CO.51 Power plant plumes
were identified by the above background enhancements of
NOx and N2O5. While CO is also present in the power plant
plumes, the three other BB identifiers were not. Information on
background and plume measurements is included in the
Supporting Information (SI) (Tables S1 and S2).
Five VOCs (toluene, isoprene + furan, methylvinylketone +

methacrolein (MVK + MACR), and methylethylketone
(MEK)) as well as acetonitrile were measured by the PTR-
MS during SENEX and overlap with our inventory. However,
we explain in the SI that we do not use these observations
because we do not know the fire source, number of fires, or
fuel, and plume age estimates are highly uncertain (Figure S5).
Our detailed chemical box model uses emission inventories

from Hatch et al.5 and Koss et al.4 for the ponderosa pine and
rice straw fuels. The BBVOC emissions from Hatch et al.5,21

were measured during FLAME-4 using the following instru-
ments: two-dimensional gas chromatography−time-of-flight
mass spectrometry, open-path Fourier-transform infrared
spectroscopy,22 whole-air sampling with one-dimensional gas

Figure 1. Schematic of nighttime NO3 and N2O5 chemical processing
in a biomass burning plume.
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chromatography−mass spectrometry, and PTR time-of-flight
mass spectrometry (PTR-ToF).52 BBVOC emissions from
Koss et al.4 were measured by PTR-ToF during FIREX. Details
regarding how the two inventories were merged are included in
the SI. In general, for compounds shared between both
inventories, the emission ratios (E1) agree within an order of
magnitude with some exceptions (Figure S6). We propagate
this variability into our model results (SI).
Analysis and Modeling Methods. We report our

emissions in the form of laboratory-derived emission ratios
(ER), which is the background subtracted emitted compound
(x) normalized to background subtracted CO.4,21

=
x

ER
(ppbv)

CO(ppmv)x
(E1)

These emissions are integrated over the entirety of the
laboratory fires and therefore contain emissions from all stages
of the fire.
The modified combustion efficiency (MCE) was calculated

for each plume.

=
−

− + −
MCE

CO CO

(CO CO ) (CO CO )
2 2bkg

2 2bkg bkg (E2)

During plume intercepts, the average MCE was 95 ± 6%,
which is consistent with previous MCE calculations of the July
2−3 night flight.36

The total NO3 reactivity toward BBVOCs is given by

∑= [ ]+k k BBVOCiNO
BBVOC

NO BBVOCi3 3 (E3)

where kNO3+BBVOCi
is the bimolecular rate coefficient for NO3 +

BBVOCi and kNO
BBVOC

3
is the pseudo-first order rate coefficient.

The bimolecular rate coefficients for NO3, O3, or OH +
BBVOC were taken from literature where available and
estimated by structure−activity relationships31,53 or structural
similarity where unavailable (SI).
Due to limited literature on NO3 + BBVOC rate coefficients,

our inventory excludes many nitriles, amines, alkynes, acids,
and other compounds whose rate coefficients were unavailable
and could not be estimated. We also removed saturated
hydrocarbons because they are generally unreactive toward
NO3.

28 Despite this, our merged inventory retains about 87%
of the total inventory carbon mass, or 96% by mass, with 235
compounds from Hatch et al.5 and 171 compounds from Koss
et al.4 with 103 compounds shared in both inventories for a
total of 303 unique compounds.
To calculate the observed NO3 reactivity during SENEX BB

plume intercepts we determined BBVOC concentration using
background corrected CO measured on the WP-3D.

= −BBVOC(ppbv) ER (CO CO )BBVOC bkg (E4)

As shown below, BBVOC is likely the main sink of NO3;
therefore, the extent of BBVOC oxidation by NO3 will be
limited by the NOx/BBVOC ratio as NOx is the source for
NO3 (eq R1). Furthermore, the relative oxidative importance
between O3 and NO3 depends on the NOx/BBVOC ratio as
explained by Edwards et al.54 Therefore, in contrast to the
method used for calculating BBVOC concentration in SENEX
fire plume intercepts described above, we initiate our box
model with fire emissions scaled to NOx in order to preserve

the NOx/BBVOC ratio observed during the fire lab experi-
ments.
To estimate the emitted NOx at the fire source, we assume

that the total reactive nitrogen (NOy, which does not include
NH3) is equivalent to the emitted NOx. The NOx/NOy ratio as
measured during SENEX fire plume intercepts in Figure 2 was
0.84. We calculated the observed NOy emission ratio using
NOy (13.2 ± 3.1 ppbv) and CO (543.4 ± 87.7 ppbv)
enhancements above background. The calculated NOy

emission ratio, which we assume to be the NOx emission
ratio at the fire source, was determined to be 24.3 ± 6.4 ppbv
NOy/ppmv CO for the plume intercept. We compared the
estimated observed NOx emission ratio to the NOx emission
ratios reported by Selimovic et al. for rice straw (43.9 ppbv
NOx/ppmv CO) and ponderosa pine (26.9 ± 4.3 ppbv NOx/
ppmv CO).23 We then scaled the BBVOC emissions by this
ratio (E5), effectively scaling the fire emissions to the NOx of
the observed fire plume.

[ ] = [ ]
ER

ER
BBVOC BBVOCmodel inventory NO

obsd

NO
inventory

y

x (E5)

The NOx emission ratio observed during the SENEX fire
plume intercepts in Figure 2 was 45% and 11% lower than the
laboratory-derived NOx emission ratio for rice straw and
ponderosa pine fires, respectively. To correctly model the NO3

Figure 2. Time traces during representative sections of BB (red) and
power plant (blue) plume intercepts made 104 min after sundown
(SZA = 90°): (A) BB tracers, (B) NO3 N2O5, NO2, and O3 mixing
ratio, (C) production rate of NO3 and the percentage of NO3
reactivity toward BBVOCs, (D) lifetime of NO3 and N2O5.
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oxidation of these fires we reduced our BBVOC emissions by a
factor of 55% for rice straw and 89% for ponderosa pine.
Model background and initial concentrations of NOx, CO,

and O3 were taken from the SENEX observations shown in
Figure 2. We estimate the NO/NO2 ratio at the fire source
using the NO and NO2 emission ratios from FIREX for each
fuel. The NO/NO2 ratios used are 5.3 and 2.8 for rice straw
and ponderosa pine, respectively.23 The background NO2
mixing ratio was taken to be 0.9 ppbv. The background O3
mixing ratio, 43.9 ppbv, was used as the starting O3 mixing
ratio and is representative of the background O3 in the region
where BB plumes were intercepted (Figure S3).
Box modeling was performed using the Framework for 0-D

Atmospheric Modeling (F0AM)55 to investigate the evolution
of oxidized mass and oxidant fractions over 10 h (the
approximate duration of one night in July in the Southeastern
U.S.). Chemical mechanisms were adopted from the MCM
(v3.3.1,56−60 via http://mcm.york.ac.uk), and published
mechanisms for methylguaiacol, syringol, o-guaiacol, and 3-
methylfuran were added (Table S4).61−63 Compounds not
included in the above references were modeled as a one-step
reaction of BBVOC + NO3, BBVOC + O3, or BBVOC + OH
to form a single oxidation product.
All models were run at 298 K, typical experimental

conditions for most published rate coefficients. Temperatures
during flight ranged between 288 and 290 K (SI). In order to
account for dilution processes, as well as entrainment of O3, we
apply a first order dilution of kdil = 1.16 × 10−5 s−1 or a 24 h
lifetime. The sensitivity of this assumption is shown in Figure

S2 and discussed in the SI. We report a base case model result
with upper and lower bound uncertainties based on the
emission and rate coefficient uncertainties, although, as
discussed in the SI, the bounds do not provide information
on the error distribution.

■ RESULTS AND DISCUSSION

In panel A of Figure 2 the power plant plume intercepts (blue
background) are distinguished from the fire plume intercepts
(red background) by CO, black carbon, APAN, and glyoxal.
Intercepts shown in Figure 2 were at an altitude between 700
and 900 m. Relative to the BB plume intercepts, the power
plant plume intercepts exhibited elevated levels of NO3 and
N2O5 (Figure 2B). Figure 3A shows a flight map of the July 2−
3 flight colored red during BB plume intercepts and sized by
the APAN mixing ratio. Roughly 97% of the indicated BB
plumes do not show signs of power plant plume mixing (SI).
Green dashed boxes indicate sections of data shown in Figure
2.
The flight covered the intersection of Missouri, Kentucky,

Tennessee, and Arkansas at the Mississippi river. According to
the USDA CropScape database, this land is mainly agricultural,
and therefore, the fire plume is most likely the result of burning
crop residue and stubble.36,64 Plume intercepts occurred near
winter wheat crops and rice straw crops are situated roughly 70
km northwest. Still, rice straw is the best available fuel proxy
for agricultural burning emissions. The wind direction was
roughly northwesterly with most BB plume intercepts
occurring in the northwest corner of Tennessee.

Figure 3. Flight maps of the SENEX July 2−3, 2013, night flight. (A) BB intercepts colored by red markers, sized by APAN (0.01−0.1 ppbv), and
green dashes indicate sections shown in Figure 2. (B) Production rate of NO3. (C, D) Comparisons of NO3 reactivity toward BBVOCs (C) and
toward aerosol (D) on the same color and log scale.
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To illustrate the NO3 chemistry within a BB plume, we use
previously published NO3 and N2O5 analysis metrics. The NO3
production rate, P(NO3), is the instantaneous source of NO3
from the reaction of NO2 with O3 and is given in (E6).15 The
NO3 + N2O5 lifetime (τ) is the ratio of NO3 and N2O5
concentration to the NO3 production rate (E7).65 The
summed lifetime is useful because NO3 and N2O5 reach an
equilibrium state that is typically more rapid than the
individual sink reactions for either, such that they can be
regarded as a sum.

= [ ][ ]kP(NO ) NO O3 NO 2 33 (E6)

τ + =
+

(NO N O )
NO N O

P(NO )3 2 5
3 2 5

3 (E7)

P(NO3) was large and of similar magnitude in both the
power plant plume and BB plume (Figure 2C). Figure 3B is
colored by NO3 production during BB intercepts only, and
shows that large NO3 production rates, near 1 ppbv hr−1, were
observed during multiple BB plume intercepts. Despite the
large NO3 radical production, the NO3 and N2O5 concen-
trations within the BB plume were below the 3 pptv38 stated
detection limit of the instrument (Figure 2B), yielding short
NO3 + N2O5 lifetimes. Indeed, as shown in Figure 2D, τ is
roughly a factor of 100 lower within the BB plume as

compared to the power plant plume and background air.
Because the NO3 and N2O5 were below stated detection limits
in the BB plumes, the corresponding lifetimes shown in Figure
2D are upper limits, and the actual lifetimes may be
considerably shorter.
The high production rate and short lifetime of NO3 + N2O5

within the BB plume is evidence for rapid NO3 or N2O5 loss
pathways. BB plumes contain large quantities of both aerosol
and BBVOCs, which provide two efficient NO3/N2O5 loss
pathways. To understand the competition between these loss
processes, we calculated an instantaneous NO3 reactivity
toward aerosol and toward BBVOCs. The total NO3 loss to
BBVOC is calculated using the sum of BBVOC reactivity
normalized to CO (E3). The total NO3 loss to aerosol uptake
is given as the sum of both NO3 and N2O5 uptake rate
coefficients. By assuming a steady state66 for both NO3 and
N2O5, we estimate the total aerosol uptake, and therefore NO3
reactivity toward aerosol, as

= [ ] ++ +k K k kNONO
aerosol

eq 2 N O aerosol NO aerosol3 2 5 3 (E8)

where kNO
aerosol

3
is a first-order rate coefficient, Keq is the

equilibrium constant between NO3 and N2O5 (R2), and
kx+aerosol is the first order rate coefficient for N2O5 or NO3
aerosol uptake expressed below.

Figure 4. Rice straw fuel. The top panel shows the ranked order of the compounds that account for 99% of the rice straw initial NO3 reactivity. The
color scale describes the origin of the mechanisms or rate coefficient used. The middle panel is the relative BBVOC emission ratio normalized to
the total BBVOC emission ratio, and the color scale describes the origin of the emissions data. The bottom panel is the relative nighttime reacted
mass (10 h) normalized to total reacted mass. While the bar height is on a log scale, the color scale is linear and indicates the fraction of oxidation
by NO3 (blue), O3 (gold), and OH (gray). The center pie chart shows the fraction of reacted mass in the base case with the maximum NO3
oxidation case to the left and maximum O3 oxidation case to the right. All panels sum to 100%.
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γ= ̅
+k

c SA
4x aerosol (E9)

Here, γ is the aerosol uptake coefficient, c ̅ is the mean
molecular speed, and SA is the aerosol surface area.
Calculations use uptake coefficients of γN2O5

= 10−2 for

N2O5
19 and γNO3

= 10−3 for NO3. However, γNO3
values have a

wide range; therefore, we include calculations with γNO3
= 1 in

the SI but find similar results.15

Parts C and D of Figure 3 compare the NO3 reactivity
toward BBVOCs and aerosol uptake during BB plume
intercepts, respectively. In all BB intercepts, the calculated
NO3 reactivity toward BBVOCs is a factor of 100−1000
greater than aerosol uptake. Figure 2C shows the percentage of
NO3 reactivity dominated by BBVOC with a median >99%.
To understand which BBVOCs may be responsible for the

rapid initial loss of NO3, we calculated the relative NO3
reactivity for 303 compounds in rice straw and ponderosa
pine burning emissions. The top panel of Figure 4 shows the
ranked order of the compounds that account for 99% of the
rice straw initial NO3 reactivity. Eight furan or phenol
compounds are responsible for 75% of the initial NO3
reactivity. Most of, the initial NO3 reactivity for a rice straw
fire is accounted for by phenols (60−14

+20%) and furans (23−6
+20%),

as well as pyrroles and furfurals (8−3
+9% combined).

The top panel of Figure 5 shows the ranked order of the
compounds that account for 97% of the ponderosa pine initial
NO3 reactivity. The top 75% of initial NO3 reactivity is
distributed among 13 compounds with phenols (62−23

+27%),
furans (18−4

+12%), and pyrrole and furfural (8−3
+8% combined)

again dominating the total reactivity. Unlike rice straw, a

ponderosa pine fire plume has significant reactivity toward
terpenes (8−1

+2%). The initial NO3 reactivity toward terpenes
and unsaturated hydrocarbons in a rice straw plume is <1%.
These differences in reactivity are due to differences in
emissions between the two fuels as explained below.5

The middle panels of Figures 4 and 5 show the emission
ratios for each compound normalized to total emissions. The
color indicates the origin of the emission ratio. The rice straw
fire emissions for compounds included in Figure 4 are mainly
furans (33 ± 8%), phenols (27 ± 4%), and furfurals (24 ±
6%), while unsaturated hydrocarbon and terpene emissions
account for only 3 ± 1%. In contrast, the ponderosa pine fire
emissions have a larger representation of terpenes (18 ± 4%)
and unsaturated hydrocarbons (10 ± 2%), but phenols (33 ±
10%), furans (17 ± 4%), and furfurals (18 ± 6%) are all still
significant.
To better understand smoke plume evolution and to

determine the amount of BBVOC mass oxidized during one
night (10 h), we ran a 0-D box model for both rice straw and
ponderosa pine fire emissions. NO3 and N2O5 remained below
3 pptv (Figure S1), consistent with field observations (Figure
2B). Figure S1 illustrates that the summed concentrations of
the most reactive BBVOCs are comparable to NO2, suggesting
there is approximately as much NO3 precursor available as
there is BBVOC to be oxidized. For both fuels, roughly 50−
60% of NO2 and the BBVOC compounds listed in Figure 4
and Figure 5 are depleted by chemistry (excluding dilution) in
one night. Our box-model suggests several abundant BBVOCs
survive the night with more than 50% of their initial starting
concentration, such as phenol, furan, furfural, and hydrox-
ymethylfurfural (SI).

Figure 5. Same as Figure 4 but for ponderosa pine fuel. In the bottom panel the bar height is on a log scale, but the color scale is linear and
indicates the fraction of oxidation by NO3 (blue), O3 (gold), and OH (gray).
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HNO3 production is complex within the model, and both
maximum and minimum uncertainty bounds on HNO3
concentrations are the result of higher bound BBVOC
emissions, but lower and higher bound BBVOC rate
coefficients, respectively. HNO3 is the product of reactions
of phenolic compounds with NO3, which proceeds by H-
abstraction. HNO3 production is dominated by catechol +
NO3 (∼60%) within the first few hours, but as the more
reactive compounds are depleted, the lesser reactive com-
pounds like methyl guaiacol, guaiacol, and syringol react with
NO3 and dominate in the last 2 h. HNO3 may be lost to the
particle phase with concurrent NH3 emission or other nitrogen
species; however, this loss mechanism is not included in our
model.
For both fuels, catechol is the most reactive compound, and

accounts for 32 ± 9% and 26 ± 13% of initial NO3 reactivity at
the start of the simulation for rice straw and ponderosa pine
plumes, respectively. However, Koss et al.4 were unable to
distinguish between catechol and methylfurfural at m/z =
110.1 We assume a 50/50 contribution here, which yields
catechol emission ratios of 2.5 ± 0.8 ppbv ppmv−1 CO for rice
straw and 1.5 ± 0.6 ppbv ppmv−1 CO for ponderosa pine. Still,
the high reactivity is mainly due to the large catechol rate
coefficient (9.9 × 10−11 cm3 molecule−1 s−1),67 which is the
third greatest among the emitted compounds. Catechol is
known to react with NO3 by H-abstraction, with subsequent
addition of NO2 to the aromatic peroxy radical to form 4-
nitrocatechol with a near-unity molar yield of 0.91 ± 0.06.68

Further, 4-nitrocatechol is expected to almost completely
(96%) partition to the particle phase.68 Recently, Hartikainen
et al.25 investigated dark oxidation of residential wood
combustion and found strong correlations between the
depletion of phenolic compounds and the formation of NO3-
initiated SOA. In wintertime BB events, 4-nitrocatechol and
other derivatives have been detected in aerosol and are
considered important light-absorbing components of brown
carbon (BrC).35,69−76

SOA yields are a function of mass loadings.77 Using a
catechol mass loading of 300 μg m−3 from Finewax et al.68 as
well as a total observed aerosol plume measurement of 58.7 μg
m−3, we estimate a 4-nitrocatechol SOA mass yield of 120%.
Assuming 0.6 ppbv of catechol in ponderosa pine and 0.8 ppbv
in rice straw (initial model conditions) with 44 ppbv O3, 13
ppbv of NOx and kdil = 1.16 × 10−5 s−1, we estimate the SOA
produced from catechol to be 3.8 ± 1.0 μg m−3 in 8 h and
4.0−1.0

+1.1 μg m−3 in 8.5 h for a rice straw and ponderosa pine
plume, respectively. Further, there is evidence to suggest furans
and furfurals may also be a source of SOA precursors.5,25

The bottom panel of Figure 4 shows the reacted mass per
compound normalized to the total reacted mass. The bar
height is on a log scale, but the bar color is linearly scaled and
indicates the fraction of nighttime oxidation by NO3 (blue), O3
(gold), and OH (gray) after 10 h for each compound. The
center pie chart in Figure 4 and 5 represents the base case
fraction of reactant mass oxidized by each oxidant. The left and
right pie charts show results for the estimated maximum
possible NO3 and maximum possible O3 oxidation, respec-
tively. Uncertainty in the fraction of oxidized mass is calculated
from the uncertainties in individual compound emissions and
rate coefficients. For the compounds comprising a rice straw
BB plume, the majority of mass is oxidized by NO3 (72−11

+6 %).
This is expected because the rice straw fuel emissions are rich
in oxygenated aromatic and heteroaromatic emissions, which

are generally less reactive toward O3. Terpenes and
unsaturated hydrocarbons, which are a small fraction of
emissions in Figure 4, are relatively more reactive toward O3.
Even so, O3 still has a significant oxidative impact and is
responsible for 26−6

+11% of oxidized BBVOC mass.
The relative amount of oxidized mass for ponderosa pine is

shown in the bottom panel of Figure 5. Almost half of the
oxidized mass for compounds included in Figure 5 is due to O3
(43−6

+21%) for our base case. The phenolic compounds mainly
undergo NO3 oxidation while terpenes and unsaturated
hydrocarbons are mainly oxidized by O3. Furans and the
heteroaromatics are oxidized approximately evenly by O3 and
NO3. The increased fraction of O3 oxidation is the result of the
increased fraction of unsaturated hydrocarbon and terpenes in
the ponderosa pine emissions when compared to rice straw.
The nighttime chemical evolution and oxidation products of

a biomass burning plume will depend on the relative NO3 and
O3 reactivity. Neglecting the small contribution from OH
oxidation, Edwards et al.54 show the competition between NO3
and O3 oxidation of biogenic VOCs (BVOC) is dependent on
the NOx/BVOC ratio. We scaled our BBVOC emissions to
maintain the NOx/BBVOC ratio expected for rice straw (0.4 ±
0.1) or ponderosa pine (0.3 ± 0.1) emissions. However,
because fires are highly variable, the NOx/BBVOC ratio for
any given fuel may vary from fire to fire. For rice straw, a factor
of 2 increase in NOx increases the fraction of NO3 oxidation
from 72% to 84%, while a factor of 2 decrease in NOx
decreases relative NO3 oxidation to 55%. Similarly, for
ponderosa pine, doubling NOx increases the fraction of NO3
oxidation from 53% to 66%, while halving NOx decreases
relative NO3 oxidation to 37% and increases O3 to 57%.
Furthermore, we find that a factor of 2 change in ambient O3
concentration has little effect on the relative NO3 and O3
reactivity (see the SI).
Our reactivity calculations and box-model results are most

limited by a lack of kinetic and mechanistic studies for O3,
NO3, and OH + BBVOCs reactions. Kinetic and mechanistic
studies of furan, furfural, phenol, and pyrrole analogues
reacting with NO3 will be most critical to understanding
nighttime BB processes, which we highlight in the SI.
The time of day in which a fire is active will determine the

fate of its emissions. This paper presents the first nighttime
aircraft intercepts of a BB plume combined with an inventory
of 303 BBVOC emissions and an oxidation model to predict
the lifetime and fate of BB emissions in the dark. Fire
emissions at times near sunset will undergo the chemistry we
have detailed here, which suggests a roughly 60% depletion
(for both rice straw and ponderosa pine) of fire-derived NOx.
We find that nighttime chemistry is likely to proceed by NO3,
rather than N2O5, further slowing the loss of NOx (eqs R1 and
R2). Our model applies to chemistry at the center of a plume
and does not include dispersion. Dispersion mixes NOx with
background O3 at the edges of the plume leading to faster
depletion, and therefore, the values we report are likely lower
limits. Even so, 18−19% of BBVOC mass, out of the total
BBVOC mass that we model, will be oxidized in one night.
That is roughly a 55% depletion of the BBVOCs that are
reactive toward NO3. There is evidence that many of these
NO3 reactive compounds can form secondary BrC aero-
sol,35,69−76 suggesting nighttime oxidation may be a significant
source of BB derived BrC. Furthermore, future BB photo-
chemical models should consider that these reactive phenolic-,
furan-, and furfural-like compounds are not only reactive
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toward NO3, but also O3 and OH, thus affecting next-day BB
photochemistry.
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