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a b s t r a c t

This paper considers the economic dispatch problem for a network of power generators and customers. In
particular, our aim is to minimize the total generation cost under the power supply–demand balance and
the individual generation capacity constraints. This problem is solved in a distributed manner, i.e., a dual
gradient-based continuous-time distributed algorithm is proposed in which only a single dual variable
is communicated with the neighbors and no private information of the node is disclosed. The proposed
algorithm is simple and no specific initialization is necessary, and this in turn allows on-line change of
network structure, demand, generation constraints, and even the participating nodes. The algorithm also
exhibits a special behavior when the problem becomes infeasible so that each node can detect over-
demand or under-demand situation of the power network. Simulation results on IEEE 118 bus system
confirm robustness against variations in power grids.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The smart grid will become more decentralized with the in-
tegration of distributed energy resources (DER), storage devices,
and customers. The three important key features of the smart grid
are large scale of components, highly variable nature of DER, and
dynamic network topology. In view of optimization, these three
features make the traditional centralized optimization techniques
impractical, and pose a need to develop distributed methods in
grid optimization problems. These observations lead us to design
distributed solutions for the economic dispatch problem (EDP),
where a group of power generators attempts to achieve power
supply–demand balance while minimizing the total generation
cost (i.e., sum of the individual costs) and complying with individ-
ual generation capacity constraints.

Early solutions for the EDP have been developed in a central-
ized manner such as lambda-iteration (Zhu, 2009), Lagrangian
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relaxation (Guo, Henwood, & van Ooijen, 1996), genetic algo-
rithm (Bakirtzis, Petridis, & Kazarlis, 1994), and so on. Then, a lot of
research effort has been devoted to obtain distributed algorithmic
solutions for the EDP due to the distributed nature of the fu-
ture smart grid. In particular, discrete-time consensus-based algo-
rithms have been the majority of the distributed strategies for the
EDP reported in the literature. Many works have considered con-
vex quadratic objective functions for the power generation cost (El-
sayed & El-Saadany, 2015; Kar, Hug, Mohammadi, & Moura, 2014;
Yang, Tan, & Xu, 2013), but most of them require an initialization
process because of the usage of decaying stepsizes (Kar et al., 2014;
Yang, Lu, Wu, Wu, Shi, Meng, & Johansson, 2017), sequential algo-
rithmic steps (Xing,Mou, Fu, & Lin, 2015), or a reset rule (Yang et al.,
2013). Meanwhile, some recent works have proposed continuous-
time consensus-based solutions, which allow to use the classical
stability analysis for the convergence of the proposed algorithms.
Ahn, Kim, Lim, and Oh (2018) have considered optimal power
generation and distribution, but need an initialization process and
do not consider capacity constraints. Cherukuri and Cortés (2015)
proposed algorithms which use Laplacian-nonsmooth-gradient
dynamics with dynamic average consensus, and the requirement
of initialization is overcome by Cherukuri and Cortés (2016). Yi,
Hong, and Liu (2016) also presented initialization-free algorithms
which combine the concept of projected gradient dynamics with
dynamic average consensus.

The purpose of this paper is to propose a new continuous-
time distributed algorithm to solve the EDP. The features of the
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proposed algorithm can be stated as follows. When we formulate
the dual problem from the primal one (as in Simonetto and Jamali-
Rad (2016)), only the single equality constraint is contained in the
Lagrangian while the other constraints are considered when the
distributed dual function is constructed. As a result, solving the
dual problem becomes as simple as integrating just a first-order
differential equation. It will be seen that the first-order differential
equation is decentralized in the sense that it is a simple sum
of different vector fields. Then, inspired by the recent result on
practical synchronization based on an average of vector fields,
studied byKim, Yang, Shim, Kim, and Seo (2016),we develop a fully
distributed continuous-time algorithm, which does not require
exchange of private information such as power generation cost,
generation capacity, and power demand.Moreover, the distributed
algorithm does not need any initialization process, which allows
on-line changes of DER, loads, network topology and so on. The
cost to pay for these benefits is that the optimal solution is ob-
tained approximately but not exactly. However, we will show that
the power supply–demand balance is always satisfied even if the
solution is approximately optimal, and that the approximation
error can be made arbitrarily small to satisfy desired precision by
taking sufficiently large coupling gain. Another advantage of the
proposed algorithm is that, when the EDP is infeasible, the solution
of the proposed algorithm shows a special divergent behavior,
from which each node can detect infeasibility and figure out the
amount of shortage or surplus of the total demand. This may be an
interesting observation since handling infeasible situation is rare
in the literature to the authors’ knowledge.

The proposed algorithm is presented in Section 4 based on some
basics reviewed in Section 3. The algorithm is tested in Section 6
for IEEE 118 bus system, and more discussions about the proposed
method will follow in Section 5.

Notation: We denote 1N = [1, . . . , 1]T ∈ RN . For a vector x and
a matrix A, |x| and |A| denote the Euclidean norm and its induced
matrix norm, respectively. A function f : R → R is monotonically
increasing (decreasing) if f (x) ≤ f (y) (f (x) ≥ f (y)) for all x and
y such that x ≤ y. Now we present basic notions and results
from algebraic graph theory (Bullo, Cortés, & Matrińez, 2009). An
undirected graph used in this paper is a pair G = (N , E), where
N = {1, 2, . . . ,N} is a node set and E ⊆ N ×N is an edge set such
that (i, j) ∈ E if and only if (j, i) ∈ E . The (symmetric) Laplacian
matrix L = [lij] ∈ RN×N is defined as lij = −1 if there is an
edge between the nodes i and j (i ̸= j), lij = 0 otherwise, and
lii := −

∑
j̸=i lij. If G is connected, then 0 is a simple eigenvalue

of L.

2. Problem formulation

The economic dispatch problem (EDP) of interest in this paper
is formulated as a convex optimization problem with equality and
inequality constraints as follows:

min
x1,x2,...,xN

N∑
i=1

Ji(xi) (1a)

subject to
N∑
i=1

xi =

N∑
i=1

di, (1b)

xi ≤ xi ≤ x̄i, ∀i = 1, . . . ,N. (1c)

In the above, it is supposed that there are N nodes, and each
node has its own power generation xi, local objective function
Ji : R → R representing the cost of power generation, di is the
local power demand, and x̄i and xi are the upper and the lower
limits of node i’s power generation, respectively. The task is to
minimize the total cost (1a) by determining x1, . . . , xN under two
constraints; the supply–demand balance equation (1b) and the

generation capacity inequality (1c) (for details, refer to, e.g., Kar
et al. (2014) and Wood and Wollenberg (2012)). In particular, we
assume that the information of Ji(·), di, x̄i, and xi are private for the
node i so that each node does not want to disclose them to other
nodes.

Assumption 1. The local objective function Ji : R → R is
C2 (twice continuously differentiable) and strictly convex for all
i = 1, . . . ,N .

When node i has no generator (e.g., a customer node that has
demand only), we take xi = x̄i = 0, and choose an arbitrary local
objective function Ji(·) satisfying Assumption 1 such that Ji(0) = 0.
For the node that has no load, simply take di = 0with suitable Ji(·),
x̄i, and xi. We say that the EDP (1) is feasible if

∑N
i=1 xi ≤

∑N
i=1 di ≤∑N

i=1 x̄i, otherwise it is infeasible. We also say that the EDP is of
over-demand if

∑N
i=1 x̄i <

∑N
i=1 di and is of under-demand if∑N

i=1 di <
∑N

i=1 xi.

3. Preliminary: a centralized solution

In this section, we review the standard (centralized) procedure
to solve the EDP with emphasis on a few key ingredients that will
be used in the distributed solution of the next section.

Let x := [x1, x2, . . . , xN ]
T , Xi := {xi ∈ R : xi ≤ xi ≤ x̄i}, and

X := X1×· · ·×XN . From the optimizationproblem (1),we consider
the following Lagrangian

L(x, λ) =

N∑
i=1

Ji(xi) + λ

(
N∑
i=1

di −
N∑
i=1

xi

)
(2)

where λ ∈ R is the Lagrange multiplier associated with (1b). Then,
the Lagrange dual function g : R → R is obtained as

g(λ) = inf
x∈X

L(x, λ) = inf
x∈X

N∑
i=1

(Ji(xi) + λ(di − xi))

=

N∑
i=1

inf
xi∈Xi

(Ji(xi) + λ(di − xi)) =:

N∑
i=1

gi(λ)

where the third equality holds thanks to the distributed nature of
the problem. Let us call gi : R → R a distributed dual function.
Note that the inequality constraints (1c) are not included in the
Lagrangian (2) and instead the dual function g (and thus, the
distributed dual functions gi as well) is obtained in consideration
of the constraints (1c).

The analytic form of gi(λ) = infxi≤xi≤x̄i Ji(xi) + λ(di − xi) can be
obtained as follows. First, note that, for a given λ, the derivative of
the cost with respect to xi, (dJi/dxi)(xi) − λ, is a strictly increasing
function of xi by Assumption 1. Hence, if (dJi/dxi)(x̄i)− λ < 0, then
the cost is decreasing on the interval [xi, x̄i] and thus, achieves its
minimum at xi = x̄i. Similarly, if (dJi/dxi)(xi)−λ > 0, then the cost
is increasing on [xi, x̄i] and the minimum occurs at xi = xi. Finally,
if (dJi/dxi)(xi) ≤ λ ≤ (dJi/dxi)(x̄i), then the minimum is achieved
on [xi, x̄i] where it holds that

dJi
dxi

(xi) = λ. (3)

Let the solution of (3) be vi(λ) where vi(·) is the inverse function
of (dJi/dxi)(·) which is well-defined, C1, and strictly increasing
because of Assumption 1. Therefore, the explicit form of the dis-
tributed dual function gi is given by

gi(λ) = Ji(θi(λ)) + λ(di − θi(λ)) (4)
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where θi : R → R is defined as

θi(λ) =

⎧⎪⎪⎨⎪⎪⎩
xi, λ <

dJi
dxi

(xi),

vi(λ),
dJi
dxi

(xi) ≤ λ ≤
dJi
dxi

(x̄i),

x̄i,
dJi
dxi

(x̄i) < λ.

(5)

Note that these θi(λ)’s minimize L for the given λ. Moreover,
the concave and C1 property of the dual function gi(λ) follows
from Bertsekas (1999, Prop 6.1.1).

Remark 1. When xi = x̄i for the node i (i.e., the node i produces
fixed amount of power or has no generator if xi = x̄i = 0), it is seen
that gi(λ) = infxi∈Xi Ji(xi) + λ(di − xi) = Ji(x̄i) + λ(di − x̄i) for all
λ ∈ R, which confirms (5) as well.

With the dual function g , the Lagrange dual problem (Boyd
& Vandenberghe, 2004) of the EDP (1) is obtained as a form of
unconstrained optimization problem:

max
λ

g(λ) =

N∑
i=1

gi(λ). (6)

Here, it is noted that each gi has its derivative as
dgi
dλ

(λ) = di − θi(λ) (7)

which is continuous, monotonically decreasing, and uniformly
bounded. In case that xi = x̄i, we have (dgi/dλ)(λ) = di − x̄i.
Hereafter, we investigate the property of the dual problem (6). Let
us define

λ := min
i∈N

dJi
dxi

(xi) ≤ max
i∈N

dJi
dxi

(x̄i) =: λ̄. (8)

Then, the function (dg/dλ)(λ), which is also continuous andmono-
tonically decreasing, satisfies

dg
dλ

(λ) =

{
dg
dλ (λ) =

∑N
i=1 di −

∑N
i=1 xi, ∀λ ≤ λ,

dg
dλ (λ̄) =

∑N
i=1 di −

∑N
i=1 x̄i, ∀λ ≥ λ̄.

(9)

Suppose that the EDP (1) is feasible. Then, (dg/dλ)(λ) ≥ 0, ∀λ ≤ λ,
and (dg/dλ)(λ) ≤ 0, ∀λ̄ ≤ λ. Hence, there exists a nonempty
connected closed interval Λ∗

⊂ R (that is possibly unbounded
or a point) such that (dg/dλ)(λ) = 0, ∀λ ∈ Λ∗. Therefore, the
Lagrangian dual problem (6) achieves its maximum at all points
λ∗

∈ Λ∗. Moreover, the optimal solution x∗

i of the primal problem
(1) is obtained through (5) from any dual optimal solution λ∗

∈ Λ∗

of the dual problem (6) as

x∗

i = θi(λ∗), ∀i ∈ N . (10)

This is because each cost function Ji is convex, the equality con-
straint (1b) is affine, and the set X1 × · · · × XN is polyhedral, so
that there is no duality gap between the primal problem (1) and
the dual problem (6)when the EDP (1) is feasible (Bertsekas, Nedić,
& Ozdaglar, 2003). Note that x∗

i is uniquely defined for all λ∗
∈ Λ∗

because, ifΛ∗ is not a single point so that λ∗ is not unique, it means
that λ∗

̸∈ {λ : ∃i s.t. (dJi/dxi)(xi) < λ < (dJi/dxi)(x̄i)} by the
construction of (7) through (5), and therefore, again by (5), θi(λ∗)
has the same value on Λ∗.

Oneway to compute an optimal solution λ∗
∈ Λ∗ of (6) is to use

a classical approach of the gradient descent algorithm. For this, let
us denote by λ(t) the (time-varying) estimate of λ∗ which obeys

λ̇(t) =
dg
dλ

(λ(t)) =

N∑
i=1

dgi
dλ

(λ(t)). (11)

If the EDP is feasible, it is obvious that λ(t) converges to the set
Λ∗ as time tends to infinity from any initial condition λ(0) ∈

R, because (dg/dλ)(λ) > 0 if λ is less than the minimum (if
exists) of the interval Λ∗, and (dg/dλ)(λ) < 0 if λ is greater
than the maximum (if exists) of Λ∗. If the EDP is not feasible, for
example, if it is of over-demand, then by (9) and by the fact that
(dg/dλ)(·) is monotonically decreasing, we have that (dg/dλ)(λ) ≥

(dg/dλ)(λ̄) =
∑N

i=1 di −
∑N

i=1 x̄i > 0, ∀λ ∈ R. This means that λ(t)
diverges to+∞. On the other hand, if the EDP is of under-demand,
one can similarly show that λ(t) diverges to −∞.

4. A distributed solution

In this section, we present a distributed solution for the EDP
(1). The idea is inspired by the observation that (dg/dλ) in (11) is
decomposed as a sum of (dgi/dλ), and by the recent result of Kim
et al. (2016) that can estimate a solution to the average of different
vector fields in amulti-agent system. The proposed solution is that
each node i ∈ N runs the following dynamics

λ̇i(t) =
dgi
dλ

(λi(t)) + k
∑
j∈Ni

(λj(t) − λi(t)) (12)

with a common coupling gain k > 0. Here, λi(t) ∈ R is the
internal state of the individual node i and Ni is the index set of
neighboring nodes of the node i. It will be shown that we canmake
λi(t) converge to arbitrarily small neighborhood of Λ∗ (so that
θi(λi(t)) will become a sufficiently rich approximate of the optimal
solution x∗

i ) under the following assumption:

Assumption 2. The graph G is undirected and connected.

In the assumption, the graph G implies the communication
graph over the power network, which may be different from the
power transmission lines. Since it is a communication network, it
is not unrealistic to assume it is ‘undirected.’

It is noted from (12) that there is no centralized server and
each node just communicates their own λi with its neighboring
nodes. No private information such as Ji, xi, x̄i, and di are exchanged,
and the function θi as well as the function gi (both of which are
computed from Ji, xi, x̄i, and di) are kept within the node i.

It will turn out that the distributed solution θi(λi(t)) is a sub-
optimal solution because it approximates x∗

i but may not be the
same. However, even in this case, the following theorem shows
that the supply–demand balance (1b) is satisfied, which is of ut-
most important in practice.

Theorem 1. Suppose that the EDP (1) under Assumptions 1 and 2 is
feasible. Then, for any k > 0 and any λi(0) ∈ R, the solution λi(t) of
(12) satisfies limt→∞ λ̇i(t) = 0 for all i ∈ N , and

lim
t→∞

N∑
i=1

θi(λi(t)) =

N∑
i=1

di. (13)

Before presenting a proof of Theorem 1, let us develop a repre-
sentation of (12) in other coordinate, on which all the forthcom-
ing analyses are based on. Let λ := [λ1, . . . , λN ]

T and f (λ) :=

[(dg1/dλ)(λ1), . . . , (dgN/dλ)(λN )]T . Then, the system (12) can be
written simply as

λ̇ = f (λ) − kLλ =: F (λ) (14)

where L is the Laplacian matrix representing the graph G. Choose
any orthonormal matrix U ∈ RN×N whose first row is (1/

√
N)1T

N .
LetW := (1/

√
N)U , then

W =

[
1
N 1

T
N

RT

]
, W−1

=
√
NUT

=
[
1N Q

]
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where R ∈ RN×(N−1) and Q ∈ RN×(N−1). By construction, we have
that Q = NR, Q TQ = NIN−1, and RTQ = IN−1. Now, by the
coordinate transformation[

ξ1
ξe

]
= Wλ =

[
1
N 1

T
Nλ

RTλ

]
(15)

where ξe ∈ RN−1, it is seen that λ = W−1
[ξ1, ξ

T
e ]

T , or, λi =

ξ1 +Qiξe where Qi is the ith row of Q . Moreover, the system (12) is
transformed into

ξ̇1 =
1
N
1T
N f (1Nξ1 + Q ξe) =

1
N

N∑
i=1

dgi
dλ

(ξ1 + Qiξe)

=
1
N

dg
dλ

(ξ1) +
1
N
f̃ (ξe; ξ1), (16a)

ξ̇e = −kRTLQ ξe + RT f (1Nξ1 + Q ξe) (16b)

where

f̃ (ξe; ξ1) :=

N∑
i=1

(
dgi
dλ

(ξ1 + Qiξe) −
dgi
dλ

(ξ1)
)

.

It should be noted that the matrix RTLQ is symmetric and all
its eigenvalues are positive real numbers, whose smallest one is
denoted by σ2. Moreover, from the definitions of R and Q , it can
be shown that σ2 is actually the smallest non-zero eigenvalue of
L under Assumption 2 (Bullo et al., 2009, Theorem 1.37). Note
also that the vector field f is uniformly bounded, and thus, define
bf := maxλ∈RN |f (λ)|.

Proof. First of all, we claim that the solution of (16) is bounded
for any initial condition and for any k > 0. Boundedness of ξe(t)
of (16b) follows from the facts that −RTLQ is Hurwitz and that f
is uniformly bounded. It can be also seen that ξ1(t) of (16a) cannot
becomeunbounded because, by (5), (7), and the feasibility assump-
tion, we have, for sufficiently large ξ1, ξ̇1 = (1/N)

∑N
i=1(di − x̄i) is

non-positive and, for sufficiently small ξ1, ξ̇1 = (1/N)
∑N

i=1(di−xi)
is non-negative.

Now, with boundedness of ξ1(t) and ξe(t), we apply LaSalle’s
invariance principle (Khalil, 2002) for their convergence. Define a
C1 function Y (λ) = −

∑N
i=1 gi(λi) +

1
2kλ

TLλ. Then, from (14), its
time derivative becomes

Ẏ (λ) = −F T (λ) · λ̇ = −|F (λ)|2 ≤ 0.

Therefore, LaSalle’s invariance principle asserts that ξ1(t) and ξe(t)
converge to (the largest invariance set in) the set E := {λ :

F (λ) = 0}. Since λ̇ = 0 on the set E, we have limt→∞ λ̇(t) =

limt→∞ F (λ(t)) = 0. Moreover, since limt→∞ 1T
NF (λ(t)) = 0, it

follows that

lim
t→∞

1T
NF (λ(t)) = lim

t→∞

(
1T
N f (λ(t)) − k1T

NLλ(t)
)

= lim
t→∞

N∑
i=1

dgi
dλ

(λi(t)) = lim
t→∞

N∑
i=1

(di − θi(λi(t))) = 0

which concludes the proof. □

The following theorem asserts that the optimal solution x∗

i can
be approximated by θi(λi(t)) with arbitrarily small error within a
finite time when k is large.

Theorem 2. Suppose that the EDP (1) under Assumptions 1 and 2
is feasible. Then, for any ϵ > 0, there exists k̄ > 0 such that for all
k ≥ k̄, each solution λi(t) of (12), with λi(0) ∈ R, ∀i ∈ N , satisfies
lim supt→∞ |θi(λi(t)) − x∗

i | ≤ ϵ. In particular, if the initial conditions
satisfy λ ≤ λi(0) ≤ λ̄, ∀i ∈ N , then there is a non-increasing function

T (·) such that⏐⏐θi(λi(t)) − x∗

i

⏐⏐ ≤ ϵ, ∀t ≥ T (k). (17)

Proof. Let us first suppose that λ ≤ λi(0) ≤ λ̄, ∀i ∈ N . It is
noted that the continuous function (dgi/dλ)(λ) in (7) is uniformly
continuous because θi(·) is constant except on the compact interval[
(dJi/dxi)(xi), (dJi/dxi)(x̄i)

]
where θi is continuous. Therefore, one

can choose δ > 0 such that, ∀a, b ∈ R,

|a − b| ≤ δ ⇒

⏐⏐⏐⏐dgidλ
(a) −

dgi
dλ

(b)
⏐⏐⏐⏐ ≤

ϵ

3N
, ∀i ∈ N . (18)

Define

k̄ :=
2bf
σ2δ

. (19)

Let Ve(ξe) = (1/2)|ξe|2. Then, it follows from (16b) and |R| = 1/
√
N

that, for k ≥ k̄,

V̇e ≤ −kξ T
e R

TLQ ξe + ξ T
e R

T f (1Nξ1 + Q ξe)

≤ −kσ2|ξe|
2
+

bf
√
N

|ξe|

≤ −
kσ2

2
|ξe|

2
−

k̄σ2

2
|ξe|

(
|ξe| −

2bf
k̄σ2

√
N

)
.

This implies that V̇e ≤ −kσ2Ve if |ξe| ≥ δ/
√
N; that is, |ξe(t)| ≤

exp(−(kσ2/2)t)|ξe(0)| as long as |ξe(t)| ≥ δ/
√
N . Since |ξe(0)| ≤

|RT
||λ(0)| ≤ (1/

√
N)

√
N max{|λ|, |λ̄|} =: Mλ, we have

|ξe(t)| ≤
δ

√
N

, ∀t ≥ T1(k) :=
2

kσ2
ln

√
NMλ

δ
(20)

(take T1(k) = 0 if
√
NMλ < δ). Moreover, for t ≥ T1(k), we have

that |Qiξe(t)| ≤ |Qi||ξe(t)| ≤
√
N(δ/

√
N) = δ. With (18), we then

have

|f̃ (ξe; ξ1)| =

⏐⏐⏐⏐⏐
N∑
i=1

(
dgi
dλ

(ξ1 + Qiξe) −
dgi
dλ

(ξ1)
)⏐⏐⏐⏐⏐

≤ N
ϵ

3N
=

ϵ

3
. (21)

Now, define

Λ∗

ϵ :=

{
λ ∈ R :

⏐⏐⏐⏐dgdλ (λ)
⏐⏐⏐⏐ ≤

2ϵ
3

}
which includes the set Λ∗. We will show that there exists T2(k) ≥

0 such that the solution ξ1(t) of (16a) belongs to the set Λ∗
ϵ

for t ≥ T1(k) + T2(k). For this, we claim that, after the time
T1(k), the state ξ1(t), if located outside of the set Λ∗

ϵ , approaches
Λ∗

ϵ with the speed at least ϵ/(3N). Indeed, since (dg/dλ)(λ) is
monotonically decreasing, (dg/dλ)(λ) < −2ϵ/3 outside of Λ∗

ϵ

to the right in R, and (dg/dλ)(λ) > 2ϵ/3 outside of Λ∗
ϵ to the

left (while there may be the cases where no outside of Λ∗
ϵ to

the left/right exists if Λ∗
ϵ is unbounded). With (16a) and (21),

this justifies the claim. On the other hand, under the feasibil-
ity condition, it follows from (5), (7), and (16a) that |ξ̇1(t)| =

|(1/N)
∑N

i=1(di − θi(ξ1(t) + Qiξe(t)))| ≤ (1/N)
∑N

i=1(x̄i − xi) for
any t . Thus, even if ξ1(0) = (1/N)

∑N
i=1 λi(0) ∈ [λ, λ̄], the state

ξ1(T1(k)) may be located outside of [λ, λ̄] up to the distance of
(T1(k)/N)

∑N
i=1(x̄i − xi). Then, since Λ∗

ϵ ∩ [λ, λ̄] is not empty by the
feasibility (see (9)), the state ξ1(t), started from ξ1(T1(k)), arrives at
the set Λ∗

ϵ within the time

T2(k) :=
3N
ϵ

(
λ̄ − λ +

T1(k)
N

N∑
i=1

(x̄i − xi)

)
.
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Since λi = ξ1 + Qiξe, for all t ≥ T1(k) + T2(k) =: T (k),⏐⏐⏐⏐dgdλ (λi(t))
⏐⏐⏐⏐ ≤

⏐⏐⏐⏐dgdλ (ξ1(t))
⏐⏐⏐⏐

+

⏐⏐⏐⏐dgdλ (ξ1(t) + Qiξe(t)) −
dg
dλ

(ξ1(t))
⏐⏐⏐⏐ ≤

2ϵ
3

+
ϵ

3
≤ ϵ

for all i ∈ N by similar reasoning to (21). Therefore,

|θi(λi(t)) − θi(λ∗)| ≤

N∑
j=1

|θj(λi(t)) − θj(λ∗)|

=

⏐⏐⏐⏐⏐⏐
N∑
j=1

(θj(λi(t)) − θj(λ∗))

⏐⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐−dg
dλ

(λi(t))
⏐⏐⏐⏐ ≤ ϵ

where the first equality holds by the fact that θj(·) is monotonically
increasing for all j ∈ N , and the second equality holds from (7),
(10), and the supply–demand balance.

For the case that λi(0) ∈ R, ∀i ∈ N , the proof is similarly done
taking into account that the value of Mλ in (20) can be arbitrarily
large. □

On top of Theorem 2, the following corollary specifies the be-
havior of the proposed algorithm (12) in the case that the EDP (1)
is infeasible.

Corollary 3. Suppose that the EDP (1) under Assumptions 1 and 2 is
infeasible. Then, there exists T † > 0 such that each solution λi(t) of
(12) with k ≥ k̄, initiated as λ ≤ λi(0) ≤ λ̄, ∀i ∈ N , satisfies{

λi(t) > λ̄, (over-demand)
λi(t) < λ, (under-demand)

for t > T †, and (22)

lim
t→∞

λ̇i(t) =

{
1
N

∑N
i=1(di − x̄i), (over-demand)

1
N

∑N
i=1(di − xi), (under-demand).

(23)

In fact, λi(t) → ∞ (over-demand), or λi(t) → −∞ (under-demand)
as t → ∞. If λi(0) ∈ R, ∀i ∈ N , then the same holds but the time T †

can be arbitrarily large.

Proof. This continues the proof of Theorem 2. From (5), (7) and
(16a), it is obvious that ξ̇1(t) ≤ (1/N)

∑N
i=1(di − xi) =: Mu < 0

in the case of under-demand, or ξ̇1(t) ≥ (1/N)
∑N

i=1(di − x̄i) =:

Mo > 0 in the case of over-demand. Since ξ1(0) ∈ [λ, λ̄], after
the time T †

:= max{(λ̄ − λ + δ)/min{Mo, −Mu}, T1(k̄)}, the state
ξ1(t) for t > T † is either less than λ − δ or greater than λ̄ + δ.
Since λi(t) = ξ1(t) + Qiξe(t) and |Qiξe(t)| ≤ δ for t > T †, ∀i ∈ N ,
the statement (22) follows. Also, the last statement follows since
ξ1(t) → ±∞ as t → ∞, depending on the cases. Finally, if
λi(t) ̸∈ [λ, λ̄], then θi(λi(t)) is either x̄i or xi depending on the cases.
Then, it is seen from (16b) that ξe(t) converges to an equilibrium
because f (1Nξ1(t) + Q ξe(t)) becomes a constant vector for t ≥ T †,
so that limt→∞ ξ̇e(t) = 0. Therefore, the statement (23) follows
from (16a) because limt→∞ λ̇i(t) = limt→∞(ξ̇1(t) + Qiξ̇e(t)). For
the case that λi(0) ∈ R, ∀i ∈ N , the proof is the same except that
T1(k̄) is arbitrarily large, so that the claim follows. □

Amessage from Theorem 2 and Corollary 3 is that the selection
of the gain k in (12) has much freedom as long as it is sufficiently
large. However, too large k is not desirable since it makes the
algorithm sensitive to communication noise and makes the dis-
cretization finer when (12) is implemented in a digital computer.
We illustrate a way to choose k (and k̄ as well) in Section 5.

Remark 2. The dynamics (12) corresponds to the update rule
presented by Nedić and Ozdaglar (2009) if (12) is discretized.

Indeed, by forward difference method with the sampling period τ ,
the dynamic equation (12) becomes

λd
i (n + 1) = λd

i (n) + τk
∑
j∈Ni

(λd
j (n) − λd

i (n)) + τ
dgi
dλ

(λd
i (n))

where λd
i (n) = λi(nτ ), which corresponds to the form of Nedić and

Ozdaglar (2009, eq. (3)). It is clearly seen that we use a constant
stepsizewhile there aremany results that use decaying stepsizes in
the literature. Since the algorithmswith decaying stepsizes exhibit
different behavior in response to on-line changes in the network
as time goes on, they are not initialization-free algorithms (see
Section 5). Finally, we recall that, by resorting to continuous-time
dynamics (12), it was possible to employ well-known classical
stability results such as LaSalle’s invariance principle in the proof
of Theorem 1.

5. Discussions

In order to be applied in real applications, a distributed al-
gorithm to solve EDP should have a few desirable properties as
follows.

Decentralized design and initialization-free operation: In practice,
a power network is time-varying one in the sense that the demand
di, or the individual generation cost Ji can be changed from time
to time depending on the owner’s decision of node i. The number
of node N can also be changed if a new node joins the network or
a node leaves it. Since these changes are not able to be detected
by all nodes in the network at a time, it is not desirable to ask
each node to do something in response to the local change in the
network. Instead, it is better for the algorithm to run continuously
without any special treatment even if such changes occur (which
we call initialization-free property). In addition, when a new node
is joining the network for example, it is desirable that the design
of the algorithm in the new node does not need much global
information (i.e., information about the network topology and/or
all other nodes), which we call decentralized design. The proposed
algorithm (12) achieves both properties to some extent because
the only global information is the gain k (which encapsulates all
other global information). We illustrate an idea of computing k
at the end of this section, from which it is supposed that the
network operator announces the value of k in public a priori. Then,
a newcomer to the network just computes two functions gi and
θi from its own local information (by (5) and (7)) and joins the
networkwith its owndynamics (12). Also,when any changes occur
in the node i during operation, the node can simply re-compute gi
and θi and continue its operation seamlessly.

Privacy-guaranteed: Since the information such as Ji, di, x̄i, and
xi may be private, it is not desirable to send them to other nodes or
the center. The proposed algorithm (12) exchanges only the single
variable λi and keeps the privacy.

Time for trustful solution: Since the optimization is solved by
iteration, it is desirable to know a priori how long it takes to
obtain a reasonable solution after the transient caused by an on-
line change. Theorem 2 and Corollary 3 suggest the worst case of
required time as T (k) and T †, as long as the initial conditions λi(0)
belong to the finite interval [λ, λ̄] of (8). (To enjoy this property,
the network operator needs to announce in public the values of
λ and λ̄ as well so that a newcomer can set its initial condition
accordingly.) From the proof of Theorem 2, it is clear that λi(t)
belongs to this interval in most time of normal operation except
for the short time period of T1(k) after a change. So, if the changes
of the network are not too frequent, the proposed times are valid.
However, the suggested values of T (k) and T † are conservative, and
it is the future work to find tighter upper bounds of them. On the
other hand, since the change can happen at any time and it is not
easy for each node to detect the abrupt change, a question arises:
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when can one trust the value of λi(t)? An idea is to synchronize the
changes in time over the network; for example, any changes in the
cost, demand, or the network can only occur at themultiple of Tsync,
where Tsync > max{T (k), T †

}. Then, one can use the value λi(t) at
every multiple of Tsync to determine the power generation.

Fast convergence: It is desired to obtain a reasonable solution
quickly. Related to this, it is noted that the time t in the algorithm
(12) is not the real world time but the computer time in the com-
munication network. Therefore, with sufficiently fast computers
and communications, the times T (k) and T † can be reached faster in
real world time. Moreover, if one introduces a scaling factor α > 1
to (12) like (dλi/dt) = α(dgi/dλ)(λi)+ αk

∑
j∈Ni

(λj − λi), then the
operation is accelerated (without changing the proofs in this paper;
that is, by dividing both sides by α, the time index t now becomes
(αt)).

Exact solution: It is desirable for a distributed algorithm to
find the solution of (1) exactly, but the proposed algorithm just
approximates it (although arbitrary small error of the solution is
achieved in finite time by increasing k). To solve this problem, the
approaches of, e.g., Hatanaka, Chopra, Ishizaki, and Li (2018), Qu
and Li (2018) and Shi, Ling, Wu, and Yin (2015) may be helpful,
which is our future work.

Supply–demand balance: The balance constraint (1b) is a key
constraint in power networks, and the proposed algorithm always
guarantees it (by Theorem 1) even if the solution is approximate
one. While some error in the equality of (13) of Theorem 1 is
inevitable in finite time, the maximum of the error is simply given
by ϵN at the finite time T (k) of Theorem2, due to (17), and the error
goes to zero as time tends to infinity.

Simplicity: Computational burden in each node should not be
high. Compared from the algorithms by Cherukuri and Cortés
(2016) and Yi et al. (2016) which require three-dimensional
dynamics for each node, the proposed algorithm only requires
one-dimensional dynamics (12) and a static map (10), which is
relatively simple to be implemented.

Communication delay: In practice, communication incurs a de-
lay. If λj of other nodes are delayed in (12), then too large k may
lead to instability in general. Robustifying the algorithmagainst the
delay is beyond the scope of this paper, and is left as a future work.

Choosing a suitable k: In order to implement the proposed
algorithm (12) at each node, suitable k needs to be chosen. The
problem is that, while it is enough to choose k ≥ k̄, the value
of k̄ depends on global information as seen in (19) and the global
information may vary as time goes on. One heuristic solution is to
choose k̄ by repeated simulations for various scenarios, based on
the reasoning that sufficiently large k always does the job. Another
way is to pick the worst case value of k̄ under the assumptions
that (a) the network has maximum capacity (that is, there is an
upper bound Nmax of the number N of participating nodes), (b) the
cost function Ji belongs to a finite collection (that is, there is a pre-
determined set of candidate functions {Ĵ1, Ĵ2, . . . , Ĵn} and eachnode
simply chooses one of them), (c) there are lower/upper bounds
for the generation capacity and the demand (that is, ∃x̄max ≥ x̄i,
xmin ≤ xi, dmin ≤ di ≤ dmax for all i), and (d) the desired precision ϵ
is pre-determined. Under these assumptions, the network operator
can determine the worst cases of bf , σ2, and δ in (19) as follows,
so that k̄ is computed and let k = k̄ which is announced in
public. First, it follows that bf ≤

√
Nmax maxi,λi |(dgi/dλ)(λi)| ≤

√
Nmax max{|dmin − x̄max|, |dmax − xmin|}. Also, by Mohar (1991,

Theorem 4.2), any graph with unit weight on edges satisfying
Assumption 2 has the property that σ2 ≥ 4/N2

max. Now, define

dĝl
dλ

(λ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−xmin, λ <

dĴl
dxl

(xmin),

−v̂l(λ),
dĴl
dxl

(xmin) ≤ λ ≤
dĴl
dxl

(x̄max),

−x̄max,
dĴl
dxl

(x̄max) < λ.

for l = 1, . . . , n, where v̂l is the inverse function of (dĴl/dxl) on the
corresponding interval. Then, one can find δ̂, like in (18), such that

|a − b| ≤ δ̂ ⇒

⏐⏐⏐⏐dĝldλ
(a) −

dĝl
dλ

(b)
⏐⏐⏐⏐ ≤

ϵ

3Nmax
,

for all l = 1, . . . , n. Since Ji is one of Ĵl, l = 1, . . . , n, it can be shown
by the definitions of (dgi/dλ) and (dĝl/dλ) that⏐⏐⏐⏐dgidλ

(a) −
dgi
dλ

(b)
⏐⏐⏐⏐ ≤ max

l=1,...,n

⏐⏐⏐⏐dĝldλ
(a) −

dĝl
dλ

(b)
⏐⏐⏐⏐ .

It then follows from (18) that δ̂ ≤ δ. From the discussions so far,
one can take

k = k̄ =
max{|dmin − x̄max|, |dmax − xmin|}N

5/2
max

2δ̂
≥

2bf
σ2δ

.

6. Simulation: IEEE 118 bus system

We consider the IEEE 118 bus system1 which consists of 118
nodes, 54 generators, 91 loads, and 186 branches. The local objec-
tive functions having generators are given by Ji(xi) = ai+bixi+cix2i
whose coefficients have their values as ai ∈ [6.78, 74.33], bi ∈

[8.3391, 37.6968], and ci ∈ [0.0024, 0.0697]. The power demand
of each node satisfies di ∈ [0, 277] and the total demand

∑N
i=1 di

is 3733.07(MW). We assume that two nodes (i, j) connected by a
branch can communicate with each other in both directions. By
repeated simulations, we select the coupling gain k = 200 for the
distributed algorithm (12). The initial conditions λi(0) are set, in
this simulation, as λi(0) = ci(x̄i+xi)+bi ∈ [λ, λ̄] in view of the fact
that θi(λi(0)) = (x̄i+xi)/2 is at the center of the possible generation
range. For those 64 nodes that have no generators, (dgi/dλ)(λi)
of (12) becomes di, and (5) reduces to θi(·) ≡ 0 as discussed in
Remark 1.

We consider the following scenarios to illustrate how the pro-
posed algorithm works against the changes of DER, loads, and
network topology:

(S1) Change of DERs: At t = 5 s, ten generators change their
upper limits of power generation by −20%.

(S2) Change of loads: At t = 10 s, ten nodes increase their loads
(i.e., power demands) by +40% so that the total demand
becomes 4161.41(MW).

(S3) Change of networks: At t = 15 s, nodes 10, 26, 65, and 99
stop generating power and the edges adjacent to them are
removed. We selected these four nodes since they have sig-
nificant roles in power generation and/or network topology.

(S4) Change of networks: At t = 20 s, nodes 10 and 99 restart
generating power, and the edges adjacent to them are re-
stored.

Fig. 1 shows that the proposed algorithm can successfully ob-
tain solutions of the EDP (1) in a distributed manner. In particular,
it can be seen from Fig. 1(d) that the proposed algorithmmaintains
the power supply–demand balance even if the solution θi(λi(t)) is
sub-optimal approximation of x∗

i (t) as seen in Fig. 1(c).
Now, let us consider the following infeasibility cases to show

that the proposed algorithm may allow to detect infeasibility in a
distributed manner.

(S1) Change of loads: At t = 5 s, node 1 increases its power de-
mand by +4500 so that the total demand becomes
8233.07(MW).

1 For more details about Ji , di , x̄i , xi , and the graph G, refer to http://motor.ece.iit.
edu/data/JEAS_IEEE118.doc.

http://motor.ece.iit.edu/data/JEAS_IEEE118.doc
http://motor.ece.iit.edu/data/JEAS_IEEE118.doc
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Fig. 1. Simulation result: Feasible case.

(S2) Change of loads: At t = 15 s, node 1 decreases its power de-
mand by −4500 so that the total demand recovers
3733.07(MW).

Fig. 2. Simulation result: Infeasible case.

Fig. 2(a) shows that λi(t) tends to diverge to ∞ during t ∈

[5, 15] when the total demand
∑N

i=1 di = 8233.07 exceeds the
maximumof power generation capacity

∑N
i=1 x̄i = 7220. In partic-

ular, it is noted from Fig. 2(b)–(c) that λ̇i(t) converges to the value



H. Yun, H. Shim and H.-S. Ahn / Automatica 102 (2019) 86–93 93

8.5853 after t = 9, which is exactly the value of Mo = (
∑N

i=1 di −∑N
i=1 x̄i)/N = 8.5853, as stated in Corollary 3. Therefore, eachnode

can figure out whether the infeasibility occurs and the amount
of infeasibility. Note from Fig. 2(d)–(e) that all θi(λi(t)) hit their
maximum x̄i during t ∈ [5, 15] which is within their generation
capacities. After the time t = 15 s, all nodes recover their feasible
solutions even though the time to recover takes longer than in the
normal operation. Simulations are performed by the forward Euler
discretization of (12) with the sampling period of 1 ms.
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