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Abstract: We report the enhanced optical and electrical properties of InGaN/GaN multiple 
quantum well (MQW) light-emitting diodes (LEDs) with strain-relaxing Ga-doped ZnO 
transparent conducting layers (TCLs). Ga-doped ZnO was epitaxially grown on p-GaN by 
metal–organic chemical vapor deposition. The optical output power of a LED with a 500-nm- 
thick-Ga-doped ZnO TCL increased by 30.9% at 100 mA, compared with that of an LED 
with an indium tin oxide (ITO) TCL. Raman spectroscopy measurement and the simulation of 
wavefunction overlap of electron and hole in MQWs revealed that the enhanced optical 
output power was attributed to the increased internal quantum efficiency due to the decreased 
compressive strain in the active region. The increase of optical output was also attributed to 
the increased optical transmittance of the Ga-doped ZnO TCL owing to its higher refractive 
index compared to that of ITO TCL. Furthermore, the forward voltage of LED with a Ga-
doped ZnO TCL was lower than that of LED with an ITO TCL because of the increased 
carrier concentration and mobility in the Ga-doped ZnO TCL. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
The development of high-efficiency InGaN/GaN multiple quantum well (MQW) light-
emitting diodes (LEDs) has progressed markedly and they have been used extensively in 
many applications such as backlight units, full color displays, automotive lighting, and 
general illumination [1,2]. Although InGaN/GaN MQW LEDs are commercially available, 
their internal quantum efficiency (IQE) and light extraction efficiency (LEE) require further 
improvement to realize high-efficiency and high-power LEDs. IQE is strongly influenced by 
threading dislocations originated from the mismatch of the lattice constants and thermal 
expansion coefficients of GaN and the underlying sapphire substrate. These threading 
dislocations act as nonradiative recombination centers, suppressing emission from nearby 
quantum wells (QWs). IQE is also lowered by the separation of the electron and hole wave 
functions driven by the polarization-induced internal electrostatic field [3]. According to 
Snell’s law, LEE is limited by the total internal reflection caused by the large difference in the 
refractive index (n) of GaN (n = 2.4) and air (n = 1). In addition, the light within the escape 
cone of GaN-based LEDs undergoes Fresnel reflection [4]. Extensive investigations have 
been performed to improve both the IQE and LEE of LEDs using epitaxial lateral 
overgrowth, surface plasmons, bandgap engineering, photonic crystals, and surface texturing 
[5–9]. 

Indium tin oxide (ITO) has emerged as one of the most promising materials for use as the 
transparent conducting layer (TCL) in GaN-based LEDs because of its low resistivity and 
high transparency in the visible wavelength region. However, indium is an expensive rare 
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metal and the limited thermal stability of ITO raises concerns about its use in high power 
LED chips. ZnO has been investigated as an alternative to ITO for use as the TCL material in 
GaN-based LEDs. Compared with ITO, ZnO boasts the advantages of higher transmittance, 
lower resistivity, improved temperature stability, lower cost, and non-toxicity [10]. And the 
high refractive index of ZnO-based TCLs enhances LEE [11,12]. One of the important merits 
of ZnO is its epitaxial growth on p-GaN [13]. In particular, Ga-doped ZnO was found to be 
more appropriate to develop TCLs for GaN-based LEDs compared to Al- and In-doped ZnO 
because of the lower oxidation reactivity of Ga than those of Al and In and the smaller 
difference between the bond lengths of Ga-O and Zn-O than those between Zn-O and Al-O or 
In-O [14]. In addition, ZnO nanorods (NRs) were used as additional structures to improve the 
light extraction in GaN-based LED. Leem et al. reported that the light extraction of LED was 
improved by reducing the difference in refractive index between n-GaN and air in vertical 
LEDs by using ZnO NRs [15]. And it was also reported that the light extraction of LEDs was 
improved by using SiO2-coated ZnO NR arrays on ITO TCL due to the reduced Fresnel 
reflection [16]. Although ZnO-based TCLs have been shown that the light extraction is 
improved, the influence of ZnO TCLs on IQE has not yet been studied. Recently, Park et al. 
reported that an Sb-doped p-ZnO layer epitaxially grown on an InGaN/GaN MQW layer 
using metal–organic chemical vapor deposition (MOCVD) relaxed the compressive strain in 
the LED active region [17]. Strain relaxation occurred because the lattice constant of ZnO is 
slightly (1.8%) larger than that of GaN, which generates tensile strain and compensates for 
the compressive strain in the InGaN active region resulting from the lattice mismatch of 
InGaN and GaN in the MQWs. However, the optical output power of an LED with the hybrid 
structure p-ZnO/(InGaN/GaN) MQW/n-GaN was much lower than that of a conventional 
GaN-based LED because of the poor current spreading in the columnar-structured Sb-doped 
p-ZnO layer. 

In this study, we investigate the performance of InGaN/GaN MQW LEDs with strain-
relaxing Ga-doped ZnO TCLs. We find that the optical output power of LEDs with 180- and 
500-nm-thick Ga-doped ZnO TCLs is greatly enhanced by 26.9% and 30.9% at 100 mA, 
respectively, compared to that of LEDs with ITO TCLs. The Ga-doped ZnO TCL epitaxailly 
grown on p-GaN introduces tensile strain into MQWs and this compensates the compressive 
strain in the MQW active region resulting from lattice mismatch of InGaN and GaN. This led 
to the relaxation of strain and increased wavefunction overlap between electron and hole. The 
large increase of optical output power is attributed to the increased IQE resulting from the 
relaxation of compressive strain in the active region and increased light extraction. 

 

Fig. 1. (a) Schematic of an LED with a Ga-doped ZnO TCL. Top-view and cross-sectional 
SEM images of Ga-doped ZnO TCLs with thicknesses of (b), (c) 180 nm (LED B) and (d), (e) 
500 nm (LED C). 
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