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Abstract

Background: Drug repositioning, also known as drug repurposing, defines new indications for existing drugs and
can be used as an alternative to drug development. In recent years, the accumulation of large volumes of
information related to drugs and diseases has led to the development of various computational approaches for
drug repositioning. Although herbal medicines have had a great impact on current drug discovery, there are still a
large number of herbal compounds that have no definite indications.

Results: In the present study, we constructed a computational model to predict the unknown pharmacological
effects of herbal compounds using machine learning techniques. Based on the assumption that similar diseases can
be treated with similar drugs, we used four categories of drug-drug similarity (e.g., chemical structure, side-effects,
gene ontology, and targets) and three categories of disease-disease similarity (e.g., phenotypes, human phenotype
ontology, and gene ontology). Then, associations between drug and disease were predicted using the employed
similarity features. The prediction models were constructed using classification algorithms, including logistic
regression, random forest and support vector machine algorithms. Upon cross-validation, the random forest
approach showed the best performance (AUC = 0.948) and also performed well in an external validation assessment
using an unseen independent dataset (AUC = 0.828). Finally, the constructed model was applied to predict potential
indications for existing drugs and herbal compounds. As a result, new indications for 20 existing drugs and 31
herbal compounds were predicted and validated using clinical trial data.

Conclusions: The predicted results were validated manually confirming the performance and underlying
mechanisms – for example, irinotecan as a treatment for neuroblastoma. From the prediction, herbal compounds
were considered to be drug candidates for related diseases which is important to be further developed. The
proposed prediction model can contribute to drug discovery by suggesting drug candidates from herbal
compounds which have potentials but few were studied.
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Background
Over the past few years, it has become apparent that de
novo drug discovery is a time-consuming and expensive
process. Although expenditures for drug development have
continued to increase, the number of approved or marketed
drugs has stagnated [1, 2]. Drug repositioning, also known
as drug repurposing, may be a viable alternative with regard

to the productivity problem. The repositioning strategy re-
uses existing drugs for new indications. Because drugs that
are currently on the market or have not been approved for
reasons other than safety during clinical phases are used as
candidates, drug repositioning presents the advantages of
reducing the time and expenses associated with the overall
pharmaceutical research and development process [3].
Most of the successful drug repositioning applied to date

have relied on discovery by chance [4]. Therefore, system-
atic drug repositioning approaches are needed. Several
computational methods for drug repositioning have been
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proposed, such as machine learning [5–8], network analysis
[9, 10], and analysis of omics data [11–13].
Specifically, machine learning is a state-of-the-art screen-

ing technique that has attracted attention as a strategy for
detecting potential indications. Therefore, drug reposi-
tioning could be converted to a supervised machine learn-
ing problem that predicts potential associations between
marketed drugs and diseases. To predict novel drug indica-
tions, researchers in a previous study [7] constructed a pre-
diction model using the classification algorithm of logistic
regression. These authors utilized multiple similarities of
drugs and disease properties as the features of machine
learning. In another study [8], a feature-based drug reposi-
tioning approach was proposed. These authors used the
phenotypic characteristics of drugs and the molecular char-
acteristics of diseases to construct a prediction model to
identify potential drug-disease associations. A support vec-
tor machine (SVM) algorithm was also employed to ad-
dress the drug repositioning issue [5].
Meanwhile, natural products have been studied as the

source of active ingredients in medicines. Among them,
traditional herbal medicines including various natural com-
pounds found in plants have been used for a long time [14,
15]. Herbal medicines are a highly promising source of new

active compounds due to their low toxicity [14] and syner-
gistic effects [16]. Despite various studies on drug reposi-
tioning, most of them have focused on predicting potential
indications of existing drugs rather than those of herbal
compounds. There have been several attempts to combine
traditional herbal medicines with computational ap-
proaches; however, the overall number of computational
approaches related to herbal medicines is limited, and such
approaches tend to lag behind the state-of-the-art technol-
ogy employed for these purposes [17–19]. To overcome
these limitations, in the present study, we constructed sev-
eral prediction models using various classification algo-
rithms, and employed the constructed models to predict
repositioning candidates among herbal compounds. We
predicted new indications for herbs or herbal compounds
using a computational model.
The present study aims to predict new indications for

existing drugs and additional herbal compounds based on
a machine-learning approach. As shown in Fig. 1, firstly,
we used reliable known drug-disease associations and ob-
tained information on various properties of both drugs
and diseases from different databases. We then calculated
similarity scores for both drug and disease aspects based
on their properties, and the similarity scores were

Fig. 1 Overview of the proposed work. The training dataset was obtained from a previous study, and the drug and disease property data was
retrieved from each database. Using the property information, similarity scores were calculated and combined to represent drug-disease
associations. The drug-disease associations and similarity scores were used to construct a prediction model through cross-validation and external
validation. Finally, the best performing model was applied to predict the repositioning candidates from the herbal compounds
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employed as features in model construction. After data
preprocessing, 1330 positive drug-disease associations
were obtained. For negative associations, we randomly se-
lected drug-disease pairs among all possible associations.
Then for all training dataset, we calculated combined fea-
tures of drug and disease similarities into a vector to rep-
resent drug-disease associations. Given the combinations
of drug-disease similarities, prediction models were con-
structed using diverse classification algorithms, including
both linear and nonlinear types. To evaluate the model,
both linear and nonlinear classifiers were compared, after
which we selected the prediction model that performed
best for further use to predict new indications. Finally, we
employed the constructed model to predict new associa-
tions between independent drugs and diseases and deter-
mined the capability of the model based on the predicted
results. Moreover, new indications for herbal compounds
stemming from various herbs were predicted as suggested
candidates for drug repositioning.

Methods
Data preparation
For the purpose of drug repositioning, we used drug, dis-
ease, and drug-disease association data. The drug-disease
associations to be employed as a training dataset were ob-
tained from a previous study [7]. That study involved
1933 known drug-disease associations between 593 drugs
from the DrugBank [19] database and 313 diseases regis-
tered in the Online Mendelian Inheritance in Man
(OMIM) database [20].

Similarity scores
In the present study, it was assumed that similar
drugs are likely to serve as treatments for similar dis-
eases; therefore, similarity scores were calculated for
both drug and disease aspects. We calculated four
types of drug-drug similarity and three types of
disease-disease similarity and subsequently combined
these scores to represent drug-disease associations.

Drug chemical structural similarity
Drugs with similar chemical structures are likely to serve
as treatments for common diseases due to common thera-
peutic functions [5]. The degree of chemical similarity was
calculated using information on chemical structures in the
form of molecular fingerprints, which provide structural
information by representing the presence or absence of
substructures as binary digits. To obtain the molecular
fingerprint data, we initially collected the canonical
SMILES (Simplified Molecular-Input Line-Entry System)
of 456 drugs from the DrugBank. The SMILES is a line
notation describing the structures of compounds that can
potentially be converted into fingerprints. We next ob-
tained path-based fingerprints (referred to as FP2)

providing structural information in 1021-bit vectors from
Open Babel [21]. Finally, the chemical similarity scores be-
tween two drugs were computed using the Tanimoto coef-
ficient [22], which equates to the Jaccard score [23].

Drug side-effect similarity
Information on side effects was retrieved from the
SIDER [24] and OFFSIDES [25] databases. SIDER con-
tains information on adverse drug reactions for mar-
keted medicines, and OFFSIDES contains information
on side effects that are not listed on the FDA’s official
drug labels. We included the side effects that were com-
mon to both SIDER and OFFSIDES. Because both data-
bases represent drugs showing side effects with STITCH
[26] database IDs, ID mapping was necessary to link the
drugs used here to their DrugBank IDs. To this end, the
STITCH IDs were mapped to PubChem [27] CIDs (Pub-
Chem Compound Identifiers), and then converted from
PubChem CIDs to DrugBank IDs using the compound
ID mapping service UniChem [28]. As a result, informa-
tion on 1844 drug side effects was obtained. We con-
structed binary vectors with a length of 1844, which
represented whether a drug exhibits any side effects.
Subsequently, the Jaccard score was employed to calcu-
late the side effect similarity scores of the two drugs.

Drug target similarity
Target protein information for all drugs was provided by
DrugBank, and the corresponding protein sequences
were downloaded from the UniProt [29] database. Drug
target similarity scores were computed based on the
Smith-Waterman sequence alignment score [30] be-
tween the target proteins of two drugs. If two drugs have
multiple targets, this method uses the maximum value
of the target similarities of the two drugs.

Gene ontology (GO) similarity of drug-related genes
GO provides ontologies to annotate gene products. All
drug-related genes are included in the DGIdb [31] data-
base. We downloaded information on drug-gene interac-
tions and extracted the Entrez gene IDs for the drugs of
interest. The GO similarity score in each case was mea-
sured using the GoSemSim R package [32] based on the
Resnik [33] method, which calculates the semantic simi-
larities between two ontology terms. When drug-related
genes exhibited multiple GO terms, the best-match aver-
age (BMA) combination strategy was used to combine
semantic similarity scores.

Disease phenotypic similarity
We obtained disease phenotypic similarity scores using
MimMiner [34], which calculates the similarities between
the MeSH terms [35] of the diseases listed in OMIM.
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Human phenotype ontology (HPO) similarity
HPO [36] is a standardized vocabulary describing
phenotypic abnormalities in human diseases. The HPO-
Sim R package [37] provides phenotypic similarity scor-
ing based on HPO data for genes and diseases. The
Resnik method was employed to measure the semantic
similarities between HPO terms, and the BMA combin-
ation strategy was similarly used to combine similarities
between diseases with multiple HPO terms.

GO similarity of disease-related genes
The GO semantic similarities of diseases were calculated
using a method similar to that employed for drugs. A list
of disease-related genes was provided by the DisGeNet
[38] database. We mapped the OMIM IDs of diseases to
UMLS Concept Unique Identifiers (CUIs) [39]. Using
these UMLS CUIs, we obtained information concerning
disease-gene associations from DisGeNet. The process
of calculating the degrees of GO similarity was identical
to the method used for drugs.

Gold standard dataset
After the retrieval of feature information, the final training
dataset, which is the gold-standard dataset, was estab-
lished. Due to data limitations, 159 drugs were excluded
because they did not have available structure or side-effect
information. Similarly, 80 diseases with no information
pertaining to disease-related genes and known associa-
tions with gold-standard drugs were removed. Finally, we
utilized 1330 known drug-disease associations encompass-
ing 434 drugs and 233 diseases as the gold-standard data-
set. Moreover, we selected random pairs of drugs and
diseases that were not included in the positive set as the

negative set. Due to the imbalance between positives and
negatives, a random under-sampling method was adopted
to obtain a 1:2 ratio of positives to negatives.

Classification features for drug-disease associations
To represent drug-disease associations, we employed a pre-
viously described method for constructing classification fea-
tures [7]. The combination of the four types of drug-drug
similarity and three types of disease-disease similarity con-
stituted the classification features, as a way to express
drug-disease associations. Figure 2 represents the process
of feature calculation. Given known drug-disease associa-
tions from gold standard dataset (A), we calculated com-
bined features by comparing properties in terms of drugs
and diseases to those of known pairs. As shown in the Fig. 2
(B), the association between drug A and disease β is not
known. To represent the association, we compared the
query association with four known associations. To con-
struct combination features, we first calculated each drug
similarity and disease similarity. For each combination, four
types of drug-drug similarity and three types of
disease-disease similarity were combined using geometric
mean (C) [40]. In the Fig. 2, SdrSIM represents drug similar-
ities, consists of SdrChe(i, j), SdrSE, SdrGO, and SdrTar which
each represents the structural, side-effect, GO, and target
sequence similarity between drugs i and j. For disease simi-
larity SdiSIM, SdiGO(i

′, j′) represents the GO similarity be-
tween diseases i′ and j′. Similarly, SdiHPO and SdiPhe
represent each HPO and phenotypic similarity, respectively.
For drug i and disease i′ we calculated combined similarity
feature vector Fα using Eq. (1) for all known associations,
M and N represent the number of drugs and diseases in
known associations.

a

b

c

Fig. 2 Calculation of classification features for drug-disease associations. a An example of drug-disease associations considered as gold standard.
b From known drug-disease associations, classification features were calculated using the similarity scores between the drugs and diseases of
each association type. c Then, similarity scores of each association were combined into a Cartesian product, resulting in a total of 12 features, and
the maximum value was selected to represent the query association

Kim et al. BMC Bioinformatics 2019, 20(Suppl 10):247 Page 36 of 80



Fα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SdrSIM i; jð Þ � SdiSIM i
0
; j

0� �

q

;

where j ¼ 1; 2…;M; j
0 ¼ 1; 2;…;N

ð1Þ

This process was conducted for all selected known
associations.
Then, maximum values of each index of feature vec-

tors were used to represent the pair of drug i and dis-
ease i′. Here, we combined the maximum values because
the more similar the two associations are, the larger the
combined value becomes, suggesting that the query as-
sociation likely represents a potential association. In
other words, final classification features indicate how
similar the query association is to the entire known asso-
ciation dataset. Moreover, we constructed combined fea-
tures with mean values to compare the performance
which under consideration of overall similarity with
known associations.

Model construction
We constructed a prediction model that predicts whether
particular drug-disease associations present potential using
both linear and nonlinear classification algorithms. Al-
though most previous studies [7, 8] have employed a logis-
tic regression algorithm, the distribution of the
gold-standard dataset plotted using the t-SNE algorithm
[41] showed that the shape of the data was nonlinear
(Additional file 1: Figure S1) – the distribution seems like
the dataset can be classified by linear models, but better
with nonlinear classifiers. Therefore, we constructed predic-
tion models with linear classification as well as nonlinear al-
gorithms. In the case of linear classification models, logistic
regression and SVM with a linear kernel were employed.
Additionally, for the nonlinear classification algorithms,
random forest and SVM with nonlinear kernels of a radial
basis function (RBF) and a polynomial were used. The per-
formance of each prediction model was measured via
10-fold cross-validation and external validation.

Independent test dataset
For external validation, we employed an independent test
dataset sourced from the literature [9]. This study provided
144 new associations for 115 drugs collected from KEGG
[42], and the associations did not overlap with the
gold-standard associations. The independent test dataset
was also preprocessed as the training dataset. We removed
44 drugs from the set of original drugs due to missing
chemical structures or missing information on side-effects.
Consequently, the final independent test dataset contained
89 associations between 71 drugs and 34 diseases.

Herbal compound dataset
Data on herbal compounds were sourced from multiple
databases. First, we obtained the herb entries from the

Korea Traditional Knowledge Portal (KTKP, http://www.
koreantk.com), the Traditional Chinese Medicine Inte-
grated Database (TCMID) [43], the Traditional Chinese
Medicine Information Database (TCM-ID) [44] and the
Japanese Traditional Medicine and Therapeutics
(KAMPO) database [45]. We then gathered information
about the herb-compound and herb-phenotype associa-
tions from the KTKP, TCM-ID, and TCMID. In addition,
information on side effects was obtained from SIDER, and
gene information related to the herbal compounds were
collected from the BindingDB [46], MATADOR [45] and
STITCH databases. Information on the chemical structure
of herbal compounds was sourced from DrugBank. Fi-
nally, we preprocessed the dataset of 66 herbal com-
pounds and calculated the similarity scores between the
herbal compound dataset and the training dataset.

Results
Our constructed prediction model shows more than 90%
accuracy
We attempted 10-fold cross-validation to construct
drug-disease association prediction model by means of
under-sampling 30 times independently for each predic-
tion model. Figure 3 and Additional file 2: Table S1 show
the evaluation results of the prediction models trained
by each classification algorithm. Here, we calculated and
reported performances by six evaluation metrics – ac-
curacy, AUC, AUPR, sensitivity, specificity, and preci-
sion. Upon cross-validation, the random forest method
resulted in the highest accuracy levels and AUC values
among all classifiers (Accuracy = 90.6%, AUC= 0.948),
followed by SVM (RBF), SVM (Quadratic), and SVM
(Cubic). The linear classifiers of logistic regression and
SVM (Linear) showed the poorest performance. We also
performed independent tests for external validation. Upon
external validation, the random forest method resulted in
better performance than the other classifiers in terms of
both accuracy and the AUC. The accuracy showed the fol-
lowing decreasing order: SVM (Quadratic), SVM (Cubic),
SVM (RBF), logistic regression, SVM (Linear). With re-
gard to AUC, unlike accuracy, the linear classifiers logistic
regression and SVM (Linear) showed better performance
than the nonlinear classifiers, except for the random forest
method. Detailed information on performance is pre-
sented in Fig. 4 and Additional file 2: Table S2. Moreover,
the performance of random forest model with features of
mean values are compared in Additional file 1: Figure S2.
In addition, we further evaluated the prediction model

by training only with drugs included in the test set to
validate the ability to predict drug repositioning candi-
dates. We filtered 168 positive and 9154 negative associ-
ations among the total training dataset, representing the
associations related to 71 drugs in the test dataset. Using
the filtered dataset, an additional prediction model with
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sampling of negative associations was constructed using
the random forest method, which performed the best.
Then, the model was validated with the independent test
dataset. In this validation, the same drugs were included
in the two datasets, but with different indications. The
differences resulted in different drug-disease associations
and, thus, drug repositioning (i.e., providing new indica-
tions for a given drug). The model performance under
the described conditions is represented in Additional file
1: Figure S3. Although overall performance decreased
slightly, by one to 4 %, compared with external valid-
ation using the whole dataset, reasonable results were
still obtained. This result shows that our prediction
model predicts unknown associations among both

known and unknown drugs and the performances were
both high despite of small dataset.
Finally, we compared the constructed model with previ-

ous studies. Figure 5 shows the comparison of perform-
ance with three related studies. Here, we compared the
performances in terms of the AUC and AUPR values ob-
tained from each of the previous studies. The performance
of PREDICT and PreDR was evaluated using similar data-
set, since we obtained the gold-standard dataset from
these two sources. Here, the number of dataset is different
each other because the feature information used for each
model is different. The differences from previous models
are the feature information used, so the combined features
are also different that might be the factor of performance

0.00

0.25

0.50

0.75

1.00

0

25

50

75

100

Accuracy(%) AUC AUPR Precision Sensitivity Specificity

Logistic regression Random forest SVM(Cubic)
SVM(Linear) SVM(Quadratic) SVM(RBF)

External validation

Fig. 4 Performance of prediction models in external validation. The random forest model showed the best performance in terms of accuracy and AUC
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Fig. 3 Performance of prediction models in cross-validation. Overall, the model involving the random forest algorithm performed better than those
using other algorithms
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increase. As the authors only reported cross-validation re-
sults, we could not compare the external validation per-
formance. As shown in Fig. 5, the present model performed
better than both the PREDICT and PreDR in terms of the
AUC values, which were 0.9 and 0.908, respectively. The
performance was further compared in terms of the AUPR
since the dataset used is imbalanced and the negative data-
set is not true negative associations, but is instead unknown
associations. The AUPR of our model was slightly better
compared to that of the PreDR (AUPR = 0.912) and there
was no AUPR for PREDICT. However, the model of Iwata
et al. was constructed with a different dataset from KEGG,
so this comparison might not be precise. Nevertheless, our
new model showed better performance, especially in
AUPR.

Potential new indications for existing drugs predicted
using the present model
Using the prediction model trained by the random forest
algorithm, which showed the best performance, we
predicted potential drug-disease associations in the

independent test dataset. We then extracted the
drug-disease associations that were predicted to have
associations but had no known associations in the
gold standard dataset across the trials. Although the
true label was negative, predicting the association as
positive may indicate that potential associations are
still unknown. As a consequence, 37 associations be-
tween 20 drugs and 18 diseases were predicted among
2310 associations. For validation, we manually queried
predicted potential associations based on clinical trials
(https://clinicaltrials.gov/). Because one OMIM disease
term could include several disease concepts, the OMIM
disease names were mapped to multiple numbers of
UMLS concepts and then queried. The results are given
in Table 1, which lists the associations that showed clear
evidence in the manual search.
Bromocriptine was predicted to serve as a treatment

for Parkinson’s disease by the present model, with markedly
high probability scores, and we found several related com-
pleted studies among clinical trials. These experiments
addressed the safety and efficacy of pramipexole and
bromocriptine in Parkinson’s disease patients in phase three
or four. Methylprednisolone was predicted for potential re-
positioning to three different diseases: osteoarthritis, auto-
immune hemolytic anemia, and acute myeloid leukemia
(AML). These associations were not precisely matched in
clinical trials but are somehow related. Methylprednisolone
has been experimentally tested for the treatment of knee
osteoarthritis. Additionally, prednisolone was tested with
Rituximab for the treatment of warm-antibody-dependent
autoimmune hemolytic anemia, for which the conventional
treatment is a high-dose glucocorticoid. Prednisolone is
also used to treat AML patients for idiopathic pneumonia
syndrome after stem cell transplantation. Finally, the
triamcinolone-osteoarthritis association resulted in a num-
ber of studies involving several types of osteoarthritis, con-
firming that the present model showed good performance
in terms of prediction. This clinical evidence shows the pre-
dictive power of the constructed model, and other detailed
predicted results are listed in Additional file 3: Table S3.

The constructed prediction model provides potential new
indications for natural herbal compounds
Finally, we applied the prediction model to herbal com-
pounds to infer new indications for herbal compounds.

Table 1 Predicted indications for existing drugs

Drug DrugBank ID Predicted Indications Predicted Probability ClinicalTrials.gov Identifier

Bromocriptine DB01200 Parkinson disease 0.9879 NCT01673724

Methylprednisolone DB00959 Osteoarthritis 0.9403 NCT00805519

Autoimmune hemolytic anemia 0.9328 NCT01134432

Acute myeloid leukemia 0.8214 NCT00309907

Triamcinolone DB00620 Osteoarthritis 0.8421 NCT02295189

AUC AUPR

1.00

0.75

0.50

0.25

0.00

Proposed Iwata.et.al. PreDR PREDICT

Performance comparison
(cross-validation)

Fig. 5 Comparison of performance with previous studies. The
performance of the constructed model with the random forest
algorithm was compared with related studies. The AUC and AUPR
metrics were used for the comparison, as previously reported
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Herbal compounds have attracted attention as candidates
for drug development due to their low side-effects and
stability, and several previous studies have been performed
to predict the potential of herbal compounds through
computational models. Therefore, we predicted potential
new indications for natural herbal compounds using the
constructed model. Among the associations between 66
herbal compounds and 233 diseases, we excluded com-
pounds and diseases having associations in the gold stand-
ard dataset; thus, finally, 258 associations between 31
herbal compounds and 92 diseases were predicted. The
same process identifier conversion from OMIM to UMLS
was performed. Then, we searched for the predicted asso-
ciations between herbal compounds and diseases in clin-
ical trials, consistent with the method employed for
existing drugs. Table 2 lists the predicted results with pre-
diction probabilities.
Testosterone, which is included in many herbs, was

predicted for several diseases. Among these diseases, testos-
terone gel has been tested for shrinking large prostate
glands in several studies. Ephedrine (specifically pseudo-
ephedrine) has been experimentally tested regarding its effi-
cacy and safety for the treatment of the common cold.
Although not specifically examined in experiments, podo-
phyllotoxin has been tested with several drugs, including
etoposide. Podophyllotoxin and its derivatives are precur-
sors of anti-tumor agents such as etoposide, which was the
tested drug. This result shows that our model can predict
more complex associations based on a combination of fea-
tures. Moreover, irinotecan was predicted to serve as a
treatment for neuroblastoma, and several matching studies
were found among clinical trials. Experiments involving iri-
notecan have been performed in combination with chemo-
therapy to stop the growth of neuroblastoma cells.
According to these results, repositioning candidates pre-
dicted from herbal compounds have been examined in clin-
ical trials, indicating that the constructed model is reliable.
Moreover, other predicted associations could represent

potential repositioning candidates. The detailed prediction
results are listed in Additional file 3: Table S4.
Furthermore, we analyzed which specific similarities are

related to predicting drug-disease associations. Among 258
associations, we filtered 50 drug-disease pairs that showed
highest match score when searched on PubMed. Then, we
traced back each similarity score of 12 herbal compounds
in the selected associations. We focused on drug similarities
first since large number of phenotypic similarities showed
zeros and ones that might be resulted from calculating on-
tologies with disease related identifiers. Interestingly, drugs
showed slightly different patterns in similarities. Each type
of similarity scores varies depending on the drug – salicylic
acid showed low similarity scores of chemical struc-
ture and GO (0.623 and 0.626 for each), but atropine
showed high score in GO (0.937) and still low score
in structure (0.674). More specifically, podophyllo-
toxin showed different similarity scores in each type
– side effect (0.985), target sequence (1), GO (0.445),
and structure (0.760). Then, we extracted 18 related
diseases of each similar drug in known associations to
compare with predicted indication which is ‘Dohle
bodies and leukemia’. Overall similarity scores are low
considering their values of SdiPhe (0.145), SdiGO
(0.348), and SdiHPO (0.268), but it showed high simi-
larities in maximum value aspect except the GO simi-
larity which score was 0.63 the highest. From this
result, we can infer that our combined features may
reflect information of both drug and disease proper-
ties and each property type, so that model can predict
associations that includes low similarity from one
aspect.

Discussion
Drug repositioning plays a key role in drug development,
and systematic computational approaches could be prom-
ising for achieving this goal. Many computational
drug-repositioning methods have been proposed using

Table 2 Predicted indications for herbal compounds

Compound Disease Predicted Probability ClinicalTrials.gov Identifier

Testosterone Calcification 0.9245 NCT00838838

Polycystic ovary syndrome 0.8584 NCT00757185

Hyperplasia 0.6345 NCT00194675

Cortisol Edema 0.9067 NCT00820092

Alopecia 0.7454 NCT01453686

Ephedrine Headache 0.8883 NCT00378144

Cough 0.8836 NCT00378144

Podophyllotoxin Leukemia 0.8141 NCT01260714

(−)-Prostaglandin E1 Hypertension 0.7911 NCT01467076

Irinotecan Neuroblastoma 0.6746 NCT00644696

Salicylic acid Hypertension 0.6071 NCT01741922
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state-of-the-art techniques, such as machine learning
supported by large volumes of omics data. Machine
learning approaches consider both drug and disease
characteristics into prediction models resulting in
higher performance. Also, we can analyze important
features in the model. However, the complexity and
relative scarcity of drug-disease association data can
influence the performance capability of the applied
model. Additionally, previous studies have not shown
practical applications beyond predicting potential indi-
cations for existing drugs. Thus, in the present study
we constructed a prediction model based on the
properties of drug-disease associations and applied
the model for prediction of repositioning candidates
in an herbal compound dataset.
First, we attempted to construct prediction models

with several classification algorithms. Given that the dis-
tribution of the drug-disease associations was nonlinear,
we employed both linear and nonlinear classification al-
gorithms during model construction. Using internal val-
idation and external validation, we confirmed that the
performance of nonlinear classifiers (the random forest
algorithm and SVM with a nonlinear kernel) was super-
ior to that of linear classifiers (logistic regression and
SVM with a linear kernel). Upon cross-validation, the
accuracy and AUC values of the nonlinear classifiers
were higher than those of the linear classifiers, with the
random forest method showing the best performance.
Upon external validation, the random forest method also
achieved the highest accuracy and AUC values. These
results suggested that the random forest algorithm is
suitable for use in a prediction model for drug reposi-
tioning and can be applied for predicting repositioning
candidates among herbal compounds.
Using the prediction model trained by the random forest

algorithm, we made predictions based on an independent
test dataset. The drug-disease associations predicted as false
positives were filtered to detect associations with a high
likelihood of repositioning. The selected drug-disease asso-
ciations were validated through manual searches of clinical
trials. Based on these results, we identified potential candi-
dates and assessed the potential of the prediction model for
herbal compound prediction.
Finally, potential indications for herbal compounds

were inferred in addition to the prediction of indications
for existing drugs. Analysis of the specific ingredients of
herbs could help to develop various uses for the herbs.
Such analyses may provide evidence of the effectiveness
of an herb, in addition to suggesting potential candidate
herbal medicines.

Conclusions
In this study, we introduced a prediction model for drug
repositioning based on a similarity-based assumption.

We collected and preprocessed three datasets, which
included the properties of drugs, diseases, and
drug-disease associations. We then calculated classifi-
cation features using multiple similarity measures to
express the drug-disease associations. Based on these
classification features, we constructed prediction
models, which were trained using linear classifiers as
well as nonlinear classifiers. Through both internal
validation and external validation, we assessed the
performance of each model and found that nonlinear
classifiers, particularly the random forest method, out-
performed linear classifiers. The prediction model
trained via the random forest method was applied to
an independent test dataset and an herbal compound
dataset to predict potential drug-disease associations.
In the independent test, the accuracy of the model
was above 90% and resulting false positive associa-
tions were considered repositioning candidates to be
further validated. Moreover, the model was applied to
predict associations between herbal compounds and
diseases. The predicted repositioning indications for
existing drugs and herbal compounds were manually
validated with clinical trial results, and the results
showed that herbal compounds could serve as drug
candidates for corresponding diseases. This finding is
important because the mechanisms and usage of
herbal compounds are not well understood, despite
their potential as drug candidates. Therefore, the pro-
posed prediction models can contribute to drug dis-
covery in terms of the drug repositioning of herbal
compounds by indicating their potentialities for different
diseases.
Although the proposed method showed an out-

standing performance, the method still has room to
be improved. First, the amount of available data is
limited to the results of data retrieval for features. Be-
cause not all feature information is available for all
drugs and diseases, a certain amount of data should
be excluded, which can decrease performance when
the machine-learning approach is employed. Similarly,
information on herbal compounds is limited. Second,
the negative dataset was randomly selected, indicating
the potential for false positives (i.e., not true nega-
tives). This characteristic of a negative dataset can
cause confusion during the training of prediction
models. This problem can be solved using more pre-
cise data labels to improve prediction models. Lastly,
there is a fundamental problem with similarity-based
methods, in that these strategies do not work under
certain conditions, such as when drugs are macro-
scopically dissimilar but share key substructures at
the detailed level. Regarding this point, feature-based
methods may be better than similarity-based methods,
including the neural network approach.
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