
applied
sciences

Article

SmartX Multi-View Visibility Framework
with Flow-Centric Visibility for SDN-Enabled
Multisite Cloud Playground

Muhammad Usman, Muhammad Ahmad Rathore and JongWon Kim *

School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology,
Gwangju 61005, Korea; musman@gist.ac.kr (M.U.); ahmadrathore@gist.ac.kr (M.A.R.)
* Correspondence: jongwon@gist.ac.kr; Tel.: +82-62-715-2219

Received: 5 April 2019; Accepted: 14 May 2019; Published: 17 May 2019
����������
�������

Abstract: Modern information communication technologies (ICT) infrastructures are getting complicated
to cope with the various demands needed to accommodate the emerging technology paradigms such
as cloud, software-defined networking (SDN), and internet of things (IoT). Visibility is essential for
the effective operation of such modern ICT infrastructures to easily pinpoint server faults, network
bottlenecks, and application performance troubles. Even though many conventional monitoring
solutions are now available, multi-layer visibility is still limited when operating such complicated
infrastructures. To address this particular limitation, a futuristic multi-layer visibility framework denoted
as SmartX multi-view visibility framework (MVF), is proposed for unifying the visibility of underlay,
physical and virtual resources, flow, and workload layers. To unify multi-layer visibility, this paper
presents a comprehensive extension of SmartX MVF with flow-centric visibility for simultaneously
monitoring physical-virtual resources, flows classification, and visualization to eventually assist secured
operation of SDN-enabled multisite cloud infrastructure. Flow-centric visibility design has five main
components (1) a lightweight network packets-precise flows visibility collection component, (2) a visibility
data aggregation and tagging component, (3) a multi-layer visibility data integration component,
(4) a non-learning-based network packets flows classification component, and (5) a visualization
component. Furthermore, a prototype implementation of SmartX MVF with flow-centric visibility is
deployed in an SDN-enabled multisite cloud playground to verify the proposed multi-view visibility of
fine-grained flow-aware physical-virtual resources.

Keywords: software-defined networking; cloud computing; future internet testbed; flow-centric
visibility; interactive visualization; monitoring technology

1. Introduction

Recently, software-defined networking (SDN) [1] has captivated the interest of both the industry
and research community since it proposes to decouple data-plane functionality from control plane
functionality. Data-plane functionality for programmable packet forwarding is built into switching
fabric, while the control plane functionality of managing network devices is placed in a logically
centralized software controller(s). This separation simplifies network management tasks and minimizes
the associated complexities of distributed network configurations. Because of the cost-effectiveness
of SDN approach, it enables developers to perform various experiments, which were too costly
or difficult with legacy network devices. Industry is adapting to vendor-independent interface
protocols, like OpenFlow, for managing network devices [2,3]. Cloud computing [4] is another big
emerging paradigm, which attracts the interest of service providers and consumers with its pay-per-use
service model, since it removes the upfront cost of purchasing physical hardware and hides network

Appl. Sci. 2019, 9, 2045; doi:10.3390/app9102045 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/2076-3417/9/10/2045?type=check_update&version=1
http://dx.doi.org/10.3390/app9102045
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 2045 2 of 19

connectivity complexities. That is, cloud computing delivers on-demand IT resources by dynamically
scaling its provisioning power. What is more, cloud computing can offer distributed intercontinental
connectivity to its developers [5].

Various research works have concentrated on establishing research testbeds to provide advanced
experimental networking facilities for evaluating emerging software-defined technologies. Aligned with
future internet testbed projects like GENI [6] and FIRE [7], we launched OF@TEIN Playground [8] to
serve as SDN-enabled multisite clouds to facilitate miniaturized academic experiments. OF@TEIN
Playground is composed of ten distributed sites, spread over nine countries (i.e., Korea, Malaysia,
Thailand, Indonesia, Philippines, Pakistan, Taiwan, Vietnam, and India).

At the playground, multi-tenant and multisite underlay infrastructure asserts the main challenges
when dealing with heterogeneous resource monitoring, flows identification, and deployed workload
performance measurements. Playground resources that are distributed at multiple geographical sites,
utilize multiple planes for different connectivity purposes where associated flows monitoring is very
challenging. Also, playground spreads over heterogeneous underlay networks, where exploitation
is easy due to lack of integrated flow monitoring support tools for the tiny-size operator team.
In order to address these challenges, we are developing a multi-layered visibility (underlay, physical,
and virtual resource-layers, flow-layer, and workload-layer) solution denoted as SmartX multi-view
visibility framework (MVF) [9], but flow-layer visibility with the desired level of flow-centric visibility
is missing and should be added. Visibility is defined as the state of being able to see or be seen.
As compared to the monitoring that solely focuses on measurements data, the term visibility referred
here covers both measurements data and data for tracing. Basically, flow-layer should be extended
to be called flow-centric visibility that can smoothly integrate several layers of visibilities together
and provide certain level of flow information such as flow type and statistics, flow class identification,
flow physical-virtual topology, etc.

In this paper, we list flow-centric visibility requirements for SDN-enabled multi-site clouds
and then extend SmartX MVF to process multi-layer visibility data from diverse measurement points
over the OF@TEIN Playground. The proposed extension of framework attempts to deliver an integrated
design for both flow-centric visibility and visualization workflow. As compared to the original SmartX
MVF design that focused on defining base stages, in this paper, we mainly focus on the technical details
about visibility collection from distributed SmartX boxes and multi-layer visibility integration with
supporting visualizations. Flow-centric visibility adopts the following approaches. First, we enable
lightweight, packet-precise, visibility collections from distributed sites. Then, visibility data aggregation,
tagging, and integration uses an analytics engine for smooth processing of playground visibility data.
Finally, network packet flows are classified using key attributes from multiple layers of visibilities
and results are disseminated in the form of interactive visualizations to the playground users. We also
identify various tools and provide the software implementation for the proposed solution. In addition,
we present the real testbed-scale verifications to highlight the potential of the proposed flow-centric
visibility for delivering several types of visibility. In summary, the following key contributions are
made in this work.

• We list flow-centric visibility requirements of unified visibility framework (SmartX MVF) for
SDN-enabled multi-site clouds. These requirements are clearly explained in order to effectively
provide a clear mapping with flow-centric visibility design choices.

• By leveraging SmartX MVF, we propose a unique integrated design for flow-centric visibility.
We provide the prototype implementation of flow-centric visibility for the specific case of OF@TEIN
Playground by focusing on the physical-virtual topology of the playground.

• The proposed flow-centric visibility is verified as capable of enabling visibility data collection
from distributed sites and enables interactive visualization of classified visibility data to support
the sustained operation of playground. Also, the results highlight the proposed design potential
to process and describe complicated flow information in a simplified presentable manner.

Appl. Sci. 2019, 9, 2045 3 of 19

The rest of this paper is organized as follows. In Section 2, we provide an overview of OF@TEIN
Playground, list flow-centric visibility requirements, and briefly summarize related work. In Section 3,
we provide an integrated design and prototype implementation of flow-centric visibility, which is
followed by verification results in Section 4. Finally, in Section 5, we conclude the paper.

2. Background and Requirements of Flow-Centric Visibility

In this section, we introduce the key terminologies related to playground visibility for the specific
case of OF@TEIN Playground. That is, OF@TEIN is an SDN-enabled multisite cloud playground that
dynamically provides dedicated resources to the developers for performing various miniaturized
experiments. Visibility is essential for the effective operation of OF@TEIN Playground in order
to understand and troubleshoot server and network issues before they affect the developers.
Now, we briefly discuss the flow-centric visibility requirements with a brief survey of related work.

2.1. OF@TEIN Playground as an SDN-Enabled Multisite Cloud Playground

Aligned with Future Internet testbeds, we established OF@TEIN Playground, which is
an SDN-enabled multisite cloud playground [8,10]. OF@TEIN Playground connects ten international
sites spread over nine Asian countries to dynamically provide dedicated resources for performing
various miniaturized experiments to the developers. In order to automatically build, operate, and utilize
multisite playground, we have a SmartX playground tower (playground tower), which provides
a logical space in a centralized location by following the concept of monitor and control tower.
Playground tower systematically covers various functional requirements of operating multisite
playground by employing several entities as depicted in Figure 1. First, ID center is responsible for
OpenStack-based keystone authentication and provides OpenStack Horizon Web UI. The provisioning
center (pro center) is responsible for remote installation and configuration of multi-site playground
resources. The visibility center (vis center) covers playground visibility and provides panoramic
visualization support. The security center (sec center) and SDN controllers take care of the security
challenges of keeping the playground safe and inter-connects playground sites by using virtual
extensible local area network (VXLAN) tunnels.

Appl. Sci. 2019, 12, x FOR PEER REVIEW 3 of 19

The rest of this paper is organized as follows. In Section 2, we provide an overview of OF@TEIN
Playground, list flow-centric visibility requirements, and briefly summarize related work. In Section
3, we provide an integrated design and prototype implementation of flow-centric visibility, which is
followed by verification results in Section 4. Finally, in Section 5, we conclude the paper.

2. Background and Requirements of Flow-Centric Visibility

In this section, we introduce the key terminologies related to playground visibility for the
specific case of OF@TEIN Playground. That is, OF@TEIN is an SDN-enabled multisite cloud
playground that dynamically provides dedicated resources to the developers for performing various
miniaturized experiments. Visibility is essential for the effective operation of OF@TEIN Playground
in order to understand and troubleshoot server and network issues before they affect the developers.
Now, we briefly discuss the flow-centric visibility requirements with a brief survey of related work.

2.1. OF@TEIN Playground as an SDN-Enabled Multisite Cloud Playground

Aligned with Future Internet testbeds, we established OF@TEIN Playground, which is an SDN-
enabled multisite cloud playground [8,10]. OF@TEIN Playground connects ten international sites
spread over nine Asian countries to dynamically provide dedicated resources for performing various
miniaturized experiments to the developers. In order to automatically build, operate, and utilize
multisite playground, we have a SmartX playground tower (playground tower), which provides a
logical space in a centralized location by following the concept of monitor and control tower.
Playground tower systematically covers various functional requirements of operating multisite
playground by employing several entities as depicted in Figure 1. First, ID center is responsible for
OpenStack-based keystone authentication and provides OpenStack Horizon Web UI. The
provisioning center (pro center) is responsible for remote installation and configuration of multi-site
playground resources. The visibility center (vis center) covers playground visibility and provides
panoramic visualization support. The security center (sec center) and SDN controllers take care of
the security challenges of keeping the playground safe and inter-connects playground sites by using
virtual extensible local area network (VXLAN) tunnels.

Figure 1. OF@TEIN playground as a software-defined networking (SDN)-enabled multisite cloud.

At OF@TEIN playground, distributed SmartX boxes [10] hosts the virtual machine (VM)
instances of OpenStack cloud [11] and controls virtual networking overlay among multiple sites.
Playground developers request OpenStack VM instances and virtual local area network (VLAN)
isolated overlay virtual networking from distributed SmartX boxes to perform various diversified
networking experiments [12]. Distributed SmartX boxes support multi-tenancy by hosting any
number of dedicated virtual entities for each tenant. By using five virtual switches at each SmartX
box, we implement required virtual networking features. Three virtual switches: br-int (integration

Figure 1. OF@TEIN playground as a software-defined networking (SDN)-enabled multisite cloud.

At OF@TEIN playground, distributed SmartX boxes [10] hosts the virtual machine (VM)
instances of OpenStack cloud [11] and controls virtual networking overlay among multiple sites.
Playground developers request OpenStack VM instances and virtual local area network (VLAN)
isolated overlay virtual networking from distributed SmartX boxes to perform various diversified
networking experiments [12]. Distributed SmartX boxes support multi-tenancy by hosting any number

Appl. Sci. 2019, 9, 2045 4 of 19

of dedicated virtual entities for each tenant. By using five virtual switches at each SmartX box,
we implement required virtual networking features. Three virtual switches: br-int (integration bridge),
brvlan (VLAN tagging bridge), and br-ex (external bridge) are used by the cloud portion of SmartX
box. Two virtual switches: br-dev (developer’s switch) and br-cap (operator switch) are used to enable
SDN capability at the playground. Developer switch is sliced based on flowspace allocation under
FlowVisor OpenFlow controller and utilized by several developers simultaneously. Operator switch
provides output ports for the developer switch, which is mapped into several VXLAN-based tunnel
ports for inter-site connections. Additionally, the underlay network for the playground is spread across
several research and education (R&E) networks under distinct administrative domains. For instance,
an interconnection between any two sites of the playground involves from three to seven heterogeneous
underlay networks.

2.2. Flow-Centric Visibility Requirement for Unified Monitoring

We proposed SmartX MVF to deal with the multiple layers of visibility with associated visualization
support for SDN-enabled multisite cloud [13]. Among multiple visibility layers, as shown in Figure 2,
flow-layer is becoming crucial because it can help us to smoothly integrate several layers of visibilities
together and verify packets that are flowing through the playground. A network flow is the sequence of
packets that belong to a certain network session between two endpoints. Typically, flows are identified
by a five-tuple consisting of source IP address, source port, destination IP address, destination port,
and transport layer protocol. Flow information is useful for understanding network behavior by
denoting source address and destination address to understand flow origin, port information to
characterize application traffic utilization, device interface identification to indicate traffic utilization
for specific network devices, and matched packets and bytes to show the amount of traffic flow.
This view of the flow-centric visibility can be used to instantly highlight congested links and identify
the source of the flow and the associated application-level conversations. To enable a practical,
sustainable version of flow-centric visibility to effectively collect, integrate, and visualize visibility data
of multiple layers together, the following key requirements should be fulfilled.

Appl. Sci. 2019, 12, x FOR PEER REVIEW 4 of 19

bridge), brvlan (VLAN tagging bridge), and br-ex (external bridge) are used by the cloud portion of
SmartX box. Two virtual switches: br-dev (developer’s switch) and br-cap (operator switch) are used
to enable SDN capability at the playground. Developer switch is sliced based on flowspace allocation
under FlowVisor OpenFlow controller and utilized by several developers simultaneously. Operator
switch provides output ports for the developer switch, which is mapped into several VXLAN-based
tunnel ports for inter-site connections. Additionally, the underlay network for the playground is
spread across several research and education (R&E) networks under distinct administrative domains.
For instance, an interconnection between any two sites of the playground involves from three to
seven heterogeneous underlay networks.

2.2. Flow-Centric Visibility Requirement for Unified Monitoring

We proposed SmartX MVF to deal with the multiple layers of visibility with associated
visualization support for SDN-enabled multisite cloud [13]. Among multiple visibility layers, as
shown in Figure 2, flow-layer is becoming crucial because it can help us to smoothly integrate several
layers of visibilities together and verify packets that are flowing through the playground. A network
flow is the sequence of packets that belong to a certain network session between two endpoints.
Typically, flows are identified by a five-tuple consisting of source IP address, source port, destination
IP address, destination port, and transport layer protocol. Flow information is useful for
understanding network behavior by denoting source address and destination address to understand
flow origin, port information to characterize application traffic utilization, device interface
identification to indicate traffic utilization for specific network devices, and matched packets and
bytes to show the amount of traffic flow. This view of the flow-centric visibility can be used to
instantly highlight congested links and identify the source of the flow and the associated application-
level conversations. To enable a practical, sustainable version of flow-centric visibility to effectively
collect, integrate, and visualize visibility data of multiple layers together, the following key
requirements should be fulfilled.

Figure 2. Identified multiple layers of visibilities for SmartX multi-view visibility framework (MVF)
that should be integrated through flow-layer.

2.2.1. Network Packet-Precise Collection

In computer networks, traffic measurement is the process of measuring the amount and type of
traffic on a particular network [14]. At the playground, each SmartX box has a number of dedicated
networking planes for carrying different types of network traffic such as control traffic, data traffic,
etc. For flexibility, playground is kept open but can be misused by either playground users or outside
intruders to exploit playground resources. Therefore, flow-centric visibility should inspect each
packet that is coming in or going out from the playground by using the light-weight approach. Also,

Figure 2. Identified multiple layers of visibilities for SmartX multi-view visibility framework (MVF)
that should be integrated through flow-layer.

2.2.1. Network Packet-Precise Collection

In computer networks, traffic measurement is the process of measuring the amount and type of
traffic on a particular network [14]. At the playground, each SmartX box has a number of dedicated
networking planes for carrying different types of network traffic such as control traffic, data traffic,
etc. For flexibility, playground is kept open but can be misused by either playground users or outside

Appl. Sci. 2019, 9, 2045 5 of 19

intruders to exploit playground resources. Therefore, flow-centric visibility should inspect each packet
that is coming in or going out from the playground by using the light-weight approach. Also, visibility
agent of SmartX box for network packet measurement should be able to relaunch itself in the case of
system restart or failure.

2.2.2. Visibility Data Aggregation and Tagging

Data aggregation is a process in which information is expressed in summary form for purposes
such as statistical analysis and data reduction [15]. Visibility data aggregation goal is to gather particular
information about individual groups based on specific variables and cater missing data issues when
data is coming from distributed geographical locations. Visibility data should be aggregated for all
data instances over a specified time period and filter out unnecessary data to overcome any additional
metrics burden. Raw visibility data should be kept at DataLake [16] for analysis and aggregated data
should be sent to the next component for further processing.

SmartX MVF is designed to offer unified monitoring by integrating multiple layers of visibilities
together. As of now, due to the diverse nature of workloads, workload-layer visibility is missing
from the SmartX MVF. As a workaround, visibility data tagging should be supported to incorporate
additional information from both playground operators and developers into collected data for catering
missing information issues. Data tagging allows playground users to organize information efficiently
by associating pieces of information with tags. Examples of this data are playground user tenant
and application information.

2.2.3. Multi-Layer Visibility Data Integration

Due to the growth in collected metrics from multiple layers of visibilities, the amount of visibility
data generated is huge. Data integration is the process of combining data from different sources into
a single unified view [17]. In typical scenarios of data integration, a user sends a request to the server
for the data. The server gets the required data from internal or external datastores, consolidates it into
a single cohesive data set, and sends it back to the user for use. Another key benefit of data integration is
that it produces a summarized output that is more suitable for subsequent analysis. Flow-centric visibility
requires scalable tools to analyze and integrate metrics from multiple layers together. Identification of
key metrics that can facilitate the linking of these multiple layers is also required.

2.2.4. Network Packets Flow Classification

Network packets flow classification is a process that categorizes computer network traffic according
to various parameters (e.g., based on protocol or port number) into a number of traffic classes such
as identified and attack [18]. Then each traffic class can be treated differently to differentiate the services
implied for the playground user. Network packet flow classification for playground should offer sufficient
information from various dimensions such as underlay resources, physical resources, virtual resources, etc.

2.2.5. Visibility Data Visualization

Classified visibility data should be accessible to playground users through APIs and support
interactive visualization for further exploration of visibility data. Visualization should be innovative to
offer a single unified view for SDN-enabled multisite clouds by covering various physical and virtual
resource components and their associated flows of OF@TEIN playground.

2.3. Related Work

In relation to the work presented in this paper, we describe the first group of monitoring approaches
designed for the SDN and cloud environments. In the last few years, we have witnessed a growing
interest in monitoring cloud resources. Authors in [19] discussed the key properties of a cloud monitoring
system and identified open issues and future directions in the field of cloud monitoring. Nagios

Appl. Sci. 2019, 9, 2045 6 of 19

core [20] is an integral monitoring tool, capable of monitoring systems, network, and infrastructure.
Although Nagios was initially perceived outside the cloud, its most current versions can be easily
installed in a cloud environment and it is capable of monitoring both physical and virtual resources.
Global monitoring system (GMonE) is a general-purpose monitoring approach that covers the different
aspects of the cloud, as the main cloud service models, client-side or service provider-side, and virtual or
physical side monitoring [21]. Flexible monitoring solution at the edge (FMonE) is proposed to allow
monitoring workflows that conform to the specific demands of edge computing systems [22]. Distributed
architecture for resource management and monitoring in clouds (DARGOS) is a decentralized cloud
monitoring tool for multitenant clouds and designed to efficiently disseminate monitoring information
providing aggregate and filter functionalities [23]. To cover diverse network conditions, robust and agile
defense (RAD) presented a reactive system for monitoring failures, anomalies, and attacks for high
availability and reliability [24]. New Relic [25] is a famous commercial software as a service (SaaS)
solution that can be deployed to monitor data in a cloud. Likewise, Dynatrace [26] also commercializes
a solution for application performance monitoring, focusing on application monitoring inside a platform
as a service (PaaS) cloud. PayLess also proposes a low-cost SDN monitoring framework by utilizing
Floodlight controller’s API [27]. For OF@TEIN Playground, tapping-based flow-layer visibility is
proposed as a collection tool in [28]. Finally, improving network measurements in terms of accuracy,
security, and tight time-scales are approached in [29–31].

Several works have been published to provide flow classification and tagging mechanisms.
Authors studied a comparison of flow classification and tagging methods in the distributed visibility
point (i.e., single OpenFlow switch), which focuses on improving localized flow handling in that
point [32]. MultiClassifier combines deep packet inspection (DPI) and machine learning (ML) to quickly
classify the collected flows based on application information with an acceptable accuracy rate [33].
Authors studied a number of clustering algorithms and applied them to network traffic classification
with a different set of traffic characteristics (e.g., packet size, byte counts, inter-arrival, and connection
duration) for each cluster [34]. Similarly, other works have been presented to improve the network
traffic classification such as the introduction of flows statistical properties and supervised traffic
classification [18,35,36]. Most of these works mainly focus on flow clustering or classification by using
machine-learning techniques and lack comprehensive details for lightweight packet-precise visibility
collection and flexible integration of visibility data that is collected from multiple measurement points
of the system and network infrastructure.

3. SmartX MVF with Flow-Centric Visibility: Design and Implementation

In this section, we explain the design approaches of flow-centric visibility to satisfy the requirements
that are listed in Section 2. The general architecture of the SmartX MVF with flow-centric visibility is
depicted in Figure 3. SmartX MVF previously leveraged a minimalist flow-centric visibility approach
proposed in [28]. That approach utilized tapping-based flow-layer visibility for collection. But it
lacked the support in capturing network packets from SmartX boxes because each network packet
is captured and sent to user-space (system memory allocated to run applications) for the processing.
This work opts a lightweight approach to overcome the overhead of capturing and processing all
the packets in user-space. Also, in a previous approach, visibility integration support was limited
because only a data plane network traffic was considered, while the current approach is extensive
in terms of multi-layer visibility integration. Moreover, visualization support with the previous
approach was limited and desktop-oriented while work presented in this paper offers interactive
web-based visualization support. By leveraging a number of existing open-source technologies,
flow-centric visibility was implemented for the SDN-enabled multi-site cloud playground infrastructure
particularities. We explain here each of the main components of the proposed solution.

Appl. Sci. 2019, 9, 2045 7 of 19
Appl. Sci. 2019, 12, x FOR PEER REVIEW 7 of 19

Figure 3. The overall architecture of SmartX MVF with the extension of flow-centric visibility.

3.1. Network Packet-Precise Collection

As mentioned in the requirements section, we required a special visibility agent that should
collect the network packets from each network interface of SmartX box. IO Visor [37] is an open-
source project designed to accelerate the innovation, development, and sharing of virtualized kernel
input/output (I/O) services for networking, security, and tracing. It extends the networking
capabilities based on extended Berkeley packet filter (eBPF) [38], which exists in the Linux upstream
kernel version 4.x or later. eBPF is a small virtual machine that runs programs inserted from the user-
space and attached to specific hooks in the kernel. It is used on Linux to filter packets and avoid
expensive copies to user-space, for instance with tcpdump. IO Visor extends the capability by
providing a BPF compiler collection (BCC) tool for executing eBPF instruction from other high-level
languages, such as Python. By executing IO visor-based packet tracing, we can either trace the entire
packet payload or check only specific packet headers by leveraging the eBPF feature.

By employing eBPF and IO Visor, we developed a visibility agent that collects information about
each packet with a small number of CPU cycles because it directly accesses raw packets, copied from
NIC to receive ring buffer. Considering SmartX box network interface types, we created two
functions: ip_filter and vxlan_filter. Ip_filter collects packet header information such as five-tuples
(IP source, IP destination, protocol, TCP/UDP source port, TCP/UDP destination port), TCP window
size, and associated number of bytes. Vxlan_filter collects packets header information such as nine-
tuples (host IP source, host IP destination, host protocol, guest IP source, guest IP destination, VLAN
ID, guest protocol, guest TCP/UDP source port, guest TCP/UDP destination port), guest TCP window
size, and associated number of bytes. The overall design of visibility agent is shown in Figure 4.

Figure 3. The overall architecture of SmartX MVF with the extension of flow-centric visibility.

3.1. Network Packet-Precise Collection

As mentioned in the requirements section, we required a special visibility agent that should collect
the network packets from each network interface of SmartX box. IO Visor [37] is an open-source project
designed to accelerate the innovation, development, and sharing of virtualized kernel input/output
(I/O) services for networking, security, and tracing. It extends the networking capabilities based on
extended Berkeley packet filter (eBPF) [38], which exists in the Linux upstream kernel version 4.x
or later. eBPF is a small virtual machine that runs programs inserted from the user-space and attached
to specific hooks in the kernel. It is used on Linux to filter packets and avoid expensive copies to
user-space, for instance with tcpdump. IO Visor extends the capability by providing a BPF compiler
collection (BCC) tool for executing eBPF instruction from other high-level languages, such as Python.
By executing IO visor-based packet tracing, we can either trace the entire packet payload or check only
specific packet headers by leveraging the eBPF feature.

By employing eBPF and IO Visor, we developed a visibility agent that collects information about
each packet with a small number of CPU cycles because it directly accesses raw packets, copied from
NIC to receive ring buffer. Considering SmartX box network interface types, we created two functions:
ip_filter and vxlan_filter. Ip_filter collects packet header information such as five-tuples (IP source,
IP destination, protocol, TCP/UDP source port, TCP/UDP destination port), TCP window size,
and associated number of bytes. Vxlan_filter collects packets header information such as nine-tuples
(host IP source, host IP destination, host protocol, guest IP source, guest IP destination, VLAN ID,
guest protocol, guest TCP/UDP source port, guest TCP/UDP destination port), guest TCP window size,
and associated number of bytes. The overall design of visibility agent is shown in Figure 4.

Before IO visor-based packet tracing and collection can be enabled in the SmartX box, the kernel
should be upgraded to the kernel version 4.4.x and BCC tools/libraries should be installed. To ensure
the automated recovery of visibility agent, it is created as a Linux system service. Our implementation
of IO visor-based tracing code collects packet data from all the network interfaces of SmartX box by
attaching our user-space program into Linux networking socket and then starts filtering packet data
based on the filter definition (e.g., 0x0800 is IP packet) inside our program. Kernel networking I/O sends
matched packets in bytecode to a user-space program. The second implementation is a user-space
tracing program written in Python. The program is hooked into a Linux networking socket through

Appl. Sci. 2019, 9, 2045 8 of 19

python socket programming. It acquires all raw packets from that socket and translates them into byte
arrays. Finally by scanning, it extracts five-tuples or nine-tuples information from the whole byte array.
A timestamp field is added to the extracted header fields of the packet and sent to DataLake by using
the data delivery method specified at the visibility agent startup.Appl. Sci. 2019, 12, x FOR PEER REVIEW 8 of 19

Figure 4. Design of network packets flow collection component.

Before IO visor-based packet tracing and collection can be enabled in the SmartX box, the kernel
should be upgraded to the kernel version 4.4.x and BCC tools/libraries should be installed. To ensure
the automated recovery of visibility agent, it is created as a Linux system service. Our implementation
of IO visor-based tracing code collects packet data from all the network interfaces of SmartX box by
attaching our user-space program into Linux networking socket and then starts filtering packet data
based on the filter definition (e.g., 0x0800 is IP packet) inside our program. Kernel networking I/O
sends matched packets in bytecode to a user-space program. The second implementation is a user-
space tracing program written in Python. The program is hooked into a Linux networking socket
through python socket programming. It acquires all raw packets from that socket and translates them
into byte arrays. Finally by scanning, it extracts five-tuples or nine-tuples information from the whole
byte array. A timestamp field is added to the extracted header fields of the packet and sent to
DataLake by using the data delivery method specified at the visibility agent startup.

3.2. Visibility Data Aggregation and Tagging

To satisfy visibility data aggregation and tagging requirements, flow-centric visibility has a
special component. Under the title of SmartX tagging, additional information is collected from
playground users and system generated information is extracted from pro and ID centers. Figure 5
shows the various tags that are acquired and incorporated into visibility data. Visibility data
aggregation requirement is also facilitated by this component. Visibility data is aggregated based on
the statistical values at five-minute intervals by using average function against the key identifiers
such as SmartX box ID. In addition, visibility data aggregation also helps in overcoming the visibility
data processing dilemma of distributed playground resources locality and data timestamp issues. For
systematic processing of visibility data, SmartX MVF employs the Apache Spark analytics engine
[39]. Core advantages of Spark are its speed of operation, native support for selected datastores of
DataLake, and extensive API support.

Figure 4. Design of network packets flow collection component.

3.2. Visibility Data Aggregation and Tagging

To satisfy visibility data aggregation and tagging requirements, flow-centric visibility has a special
component. Under the title of SmartX tagging, additional information is collected from playground users
and system generated information is extracted from pro and ID centers. Figure 5 shows the various tags
that are acquired and incorporated into visibility data. Visibility data aggregation requirement is also
facilitated by this component. Visibility data is aggregated based on the statistical values at five-minute
intervals by using average function against the key identifiers such as SmartX box ID. In addition,
visibility data aggregation also helps in overcoming the visibility data processing dilemma of distributed
playground resources locality and data timestamp issues. For systematic processing of visibility data,
SmartX MVF employs the Apache Spark analytics engine [39]. Core advantages of Spark are its speed of
operation, native support for selected datastores of DataLake, and extensive API support.Appl. Sci. 2019, 12, x FOR PEER REVIEW 9 of 19

Figure 5. Automatically acquired SmartX tags from the playground tower and playground users.

The design of visibility data aggregation and tagging component is shown in Figure 6. There are
four main functions that facilitate flexible processing of multi-layer visibility data. An aggregate
underlay data function loads visibility data from the MongoDB datastore [13] of DataLake. Query
and filter specify conditions for matching data and pushes the queries to the MongoDB to bring only
matching data in the Spark executor program. On the fetched data, grouping function average is
applied to reduce the volume of data. Before saving the resultant data frame to the Elasticsearch [13]
and Parquet [40] datastores, a timestamp field is added. A dataset is a distributed collection of data
and a data frame is a dataset organized into named columns. Elasticsearch datastore retains
processed visibility data for long-term needs and Parquet datastore keeps the lastly processed
visibility data and is consumed by a subsequent component of visibility integration stage. Besides
raw data filtering and aggregation steps, aggregate physical data function also incorporates SmartX
tags to the system level visibility metrics. Aggregate packets data function deals with flow-layer
visibility data from each SmartX box. A SmartX box has two data files. The first file contains
management and control planes network packets and the second file contains data plane network
packets. Aggregate packet data function gets all the files from the disk and creates a combined data
frame. SmartX tags are then incorporated into this data according to the matching identifiers in the
data frame. Additional statistical fields are extracted (e.g., min/max/avg/total data bytes) for more
detailed information about playground network traffic.

Figure 6. Design of visibility data aggregation and tagging component.

Apache Spark version 2.2.0 and Java version 1.8.0_201 are installed on vis center. SmartX tags
acquisition is implemented by shell scripting and OpenStack cloud platform python APIs and execute

Figure 5. Automatically acquired SmartX tags from the playground tower and playground users.

The design of visibility data aggregation and tagging component is shown in Figure 6. There are
four main functions that facilitate flexible processing of multi-layer visibility data. An aggregate

Appl. Sci. 2019, 9, 2045 9 of 19

underlay data function loads visibility data from the MongoDB datastore [13] of DataLake. Query
and filter specify conditions for matching data and pushes the queries to the MongoDB to bring only
matching data in the Spark executor program. On the fetched data, grouping function average is
applied to reduce the volume of data. Before saving the resultant data frame to the Elasticsearch [13]
and Parquet [40] datastores, a timestamp field is added. A dataset is a distributed collection of data
and a data frame is a dataset organized into named columns. Elasticsearch datastore retains processed
visibility data for long-term needs and Parquet datastore keeps the lastly processed visibility data
and is consumed by a subsequent component of visibility integration stage. Besides raw data filtering
and aggregation steps, aggregate physical data function also incorporates SmartX tags to the system
level visibility metrics. Aggregate packets data function deals with flow-layer visibility data from
each SmartX box. A SmartX box has two data files. The first file contains management and control
planes network packets and the second file contains data plane network packets. Aggregate packet
data function gets all the files from the disk and creates a combined data frame. SmartX tags are then
incorporated into this data according to the matching identifiers in the data frame. Additional statistical
fields are extracted (e.g., min/max/avg/total data bytes) for more detailed information about playground
network traffic.

Appl. Sci. 2019, 12, x FOR PEER REVIEW 9 of 19

Figure 5. Automatically acquired SmartX tags from the playground tower and playground users.

The design of visibility data aggregation and tagging component is shown in Figure 6. There are
four main functions that facilitate flexible processing of multi-layer visibility data. An aggregate
underlay data function loads visibility data from the MongoDB datastore [13] of DataLake. Query
and filter specify conditions for matching data and pushes the queries to the MongoDB to bring only
matching data in the Spark executor program. On the fetched data, grouping function average is
applied to reduce the volume of data. Before saving the resultant data frame to the Elasticsearch [13]
and Parquet [40] datastores, a timestamp field is added. A dataset is a distributed collection of data
and a data frame is a dataset organized into named columns. Elasticsearch datastore retains
processed visibility data for long-term needs and Parquet datastore keeps the lastly processed
visibility data and is consumed by a subsequent component of visibility integration stage. Besides
raw data filtering and aggregation steps, aggregate physical data function also incorporates SmartX
tags to the system level visibility metrics. Aggregate packets data function deals with flow-layer
visibility data from each SmartX box. A SmartX box has two data files. The first file contains
management and control planes network packets and the second file contains data plane network
packets. Aggregate packet data function gets all the files from the disk and creates a combined data
frame. SmartX tags are then incorporated into this data according to the matching identifiers in the
data frame. Additional statistical fields are extracted (e.g., min/max/avg/total data bytes) for more
detailed information about playground network traffic.

Figure 6. Design of visibility data aggregation and tagging component.

Apache Spark version 2.2.0 and Java version 1.8.0_201 are installed on vis center. SmartX tags
acquisition is implemented by shell scripting and OpenStack cloud platform python APIs and execute

Figure 6. Design of visibility data aggregation and tagging component.

Apache Spark version 2.2.0 and Java version 1.8.0_201 are installed on vis center. SmartX tags
acquisition is implemented by shell scripting and OpenStack cloud platform python APIs and execute
at various centers of playground tower. Visibility data tagging and aggregation component is developed
using the Scala programming language. By using simple build tool (sbt) [41], a thin jar file is created
and deployed at the vis center. To repeatedly execute this component, we developed a shell script
and following command specifies execution parameters when running this component.

$SPARK_HOME/bin/spark-submit –class smartx.multiview.flowcentric.Main –master local[*]
–driver-memory 24g multi-view-flowcentric-tag-aggregate_2.11-0.1.jar “x.x.x.x” &&

This command utilizes spark-submit tool to execute data processing jobs on the local system with
all available CPU cores and 24G of memory. Other important parameters are the class that specifies
the name of the main Scala class and the name of the executable jar file.

3.3. Multi-Layer Visibility Data Integration

Visibility data integration is one of the most critical components of flow-centric visibility designed
to satisfy multi-layer visibilities unification requirements. To integrate multiple layers, first, we identify
key identifiers for each collection of visibility data. A list of selected key identifiers is given in Figure 7.
Design of the visibility data integration component is shown in Figure 8. An integrate multi-layer

Appl. Sci. 2019, 9, 2045 10 of 19

visibility function creates five data frames and gets aggregated visibility data from the Parquet datastore
of DataLake. By selecting the flow-layer data frame as a starting point, we integrate it with all the other
data frames. A lookup is created to avoid identical column names exceptions. At the end of execution,
only two data frames are left and stored in both Parquet and Elasticsearch datastores.

Visibility data integration leverages Apache Spark SQL. Spark SQL is a Spark module for
structured data processing. Unlike the basic Spark resilient distributed dataset (RDD) API, the interfaces
provided by Spark SQL provide Spark with more information about the structure of both the data
and the computation being performed. There are several ways to interact with Spark SQL, including
dataset API. For visibility data integration, a separate project is created and implemented in Scala.
A jar file is created and deployed at vis center. By using Spark-submit this jar file is executed
at five-minute intervals.

Appl. Sci. 2019, 12, x FOR PEER REVIEW 10 of 19

at various centers of playground tower. Visibility data tagging and aggregation component is
developed using the Scala programming language. By using simple build tool (sbt) [41], a thin jar file
is created and deployed at the vis center. To repeatedly execute this component, we developed a shell
script and following command specifies execution parameters when running this component.

$SPARK_HOME/bin/spark-submit --class smartx.multiview.flowcentric.Main --master local[*] -
-driver-memory 24g multi-view-flowcentric-tag-aggregate_2.11-0.1.jar “x.x.x.x” &&

This command utilizes spark-submit tool to execute data processing jobs on the local system
with all available CPU cores and 24G of memory. Other important parameters are the class that
specifies the name of the main Scala class and the name of the executable jar file.

3.3. Multi-Layer Visibility Data Integration

Visibility data integration is one of the most critical components of flow-centric visibility
designed to satisfy multi-layer visibilities unification requirements. To integrate multiple layers, first,
we identify key identifiers for each collection of visibility data. A list of selected key identifiers is
given in Figure 7. Design of the visibility data integration component is shown in Figure 8. An
integrate multi-layer visibility function creates five data frames and gets aggregated visibility data
from the Parquet datastore of DataLake. By selecting the flow-layer data frame as a starting point, we
integrate it with all the other data frames. A lookup is created to avoid identical column names
exceptions. At the end of execution, only two data frames are left and stored in both Parquet and
Elasticsearch datastores.

Visibility data integration leverages Apache Spark SQL. Spark SQL is a Spark module for
structured data processing. Unlike the basic Spark resilient distributed dataset (RDD) API, the
interfaces provided by Spark SQL provide Spark with more information about the structure of both
the data and the computation being performed. There are several ways to interact with Spark SQL,
including dataset API. For visibility data integration, a separate project is created and implemented
in Scala. A jar file is created and deployed at vis center. By using Spark-submit this jar file is executed
at five-minute intervals.

Figure 7. Selected list of key identifiers for visibility data integration.

Figure 7. Selected list of key identifiers for visibility data integration.

Appl. Sci. 2019, 12, x FOR PEER REVIEW 10 of 19

at various centers of playground tower. Visibility data tagging and aggregation component is
developed using the Scala programming language. By using simple build tool (sbt) [41], a thin jar file
is created and deployed at the vis center. To repeatedly execute this component, we developed a shell
script and following command specifies execution parameters when running this component.

$SPARK_HOME/bin/spark-submit --class smartx.multiview.flowcentric.Main --master local[*] -
-driver-memory 24g multi-view-flowcentric-tag-aggregate_2.11-0.1.jar “x.x.x.x” &&

This command utilizes spark-submit tool to execute data processing jobs on the local system
with all available CPU cores and 24G of memory. Other important parameters are the class that
specifies the name of the main Scala class and the name of the executable jar file.

3.3. Multi-Layer Visibility Data Integration

Visibility data integration is one of the most critical components of flow-centric visibility
designed to satisfy multi-layer visibilities unification requirements. To integrate multiple layers, first,
we identify key identifiers for each collection of visibility data. A list of selected key identifiers is
given in Figure 7. Design of the visibility data integration component is shown in Figure 8. An
integrate multi-layer visibility function creates five data frames and gets aggregated visibility data
from the Parquet datastore of DataLake. By selecting the flow-layer data frame as a starting point, we
integrate it with all the other data frames. A lookup is created to avoid identical column names
exceptions. At the end of execution, only two data frames are left and stored in both Parquet and
Elasticsearch datastores.

Visibility data integration leverages Apache Spark SQL. Spark SQL is a Spark module for
structured data processing. Unlike the basic Spark resilient distributed dataset (RDD) API, the
interfaces provided by Spark SQL provide Spark with more information about the structure of both
the data and the computation being performed. There are several ways to interact with Spark SQL,
including dataset API. For visibility data integration, a separate project is created and implemented
in Scala. A jar file is created and deployed at vis center. By using Spark-submit this jar file is executed
at five-minute intervals.

Figure 7. Selected list of key identifiers for visibility data integration.

Figure 8. Design of multi-layer visibility data integration component.

3.4. Network Packets Flow Classification

As visibility data is already integrated by following flow-layer characteristics, grouping of
processed data into various classes becomes a relatively simplified job. For the classification of network
packets flows, in this initial version of flow-centric visibility, we define four classes (attack, identified,
known, and unknown). Attack class contains network packet flows that belong to previously attacked
IP addresses. These IP’s can be obtained from the internet, as known attack databases. Identified
class contains network packets flow from playground user tenant and already notified applications
to the playground operators via SmartX tagging mechanism. Known class contains network packets
flow from the playground user tenant, but the playground operator does not know the application.
Unknown class contains network packets flow from unknown IP addresses and unknown applications
(i.e., both user tenant and application are not known). After this initial classification, further analysis
can be performed at the sec center by considering other metrics.

Appl. Sci. 2019, 9, 2045 11 of 19

The design of network packets flow classification component is shown in Figure 9. Classify network
packet flows is the main function that loads already integrated visibility data into a Spark data frame.
A pre-downloaded data file with attack IP addresses is loaded, and contents are validated before
further execution. After data validation, both integrated visibility data frame and attacker IP addresses
data frame are joined together on source and destination IP addresses. The resultant data frame is
stored to the Elasticsearch and Parquet datastores. Find identified flows analyzes the tenant name
and application name fields in the integrated data frame, if both the fields have values and these
data records are not in the attacked flows data frame, then it is classified into the identified class.
Find known flows then analyzes tenant name and application name fields and if the tenant name is
present and application name is absent, then it is classified into the known class. Find unknown flows
analyzes tenant name and application name fields and if both tenant name and application name are
absent, then it is classified into the unknown class.

Appl. Sci. 2019, 12, x FOR PEER REVIEW 11 of 19

Figure 8. Design of multi-layer visibility data integration component.

3.4. Network Packets Flow Classification

As visibility data is already integrated by following flow-layer characteristics, grouping of
processed data into various classes becomes a relatively simplified job. For the classification of
network packets flows, in this initial version of flow-centric visibility, we define four classes (attack,
identified, known, and unknown). Attack class contains network packet flows that belong to
previously attacked IP addresses. These IP’s can be obtained from the internet, as known attack
databases. Identified class contains network packets flow from playground user tenant and already
notified applications to the playground operators via SmartX tagging mechanism. Known class
contains network packets flow from the playground user tenant, but the playground operator does
not know the application. Unknown class contains network packets flow from unknown IP addresses
and unknown applications (i.e., both user tenant and application are not known). After this initial
classification, further analysis can be performed at the sec center by considering other metrics.

The design of network packets flow classification component is shown in Figure 9. Classify
network packet flows is the main function that loads already integrated visibility data into a Spark
data frame. A pre-downloaded data file with attack IP addresses is loaded, and contents are validated
before further execution. After data validation, both integrated visibility data frame and attacker IP
addresses data frame are joined together on source and destination IP addresses. The resultant data
frame is stored to the Elasticsearch and Parquet datastores. Find identified flows analyzes the tenant
name and application name fields in the integrated data frame, if both the fields have values and
these data records are not in the attacked flows data frame, then it is classified into the identified
class. Find known flows then analyzes tenant name and application name fields and if the tenant
name is present and application name is absent, then it is classified into the known class. Find
unknown flows analyzes tenant name and application name fields and if both tenant name and
application name are absent, then it is classified into the unknown class.

Figure 9. Design of network packets flow classification component.

Visibility classification also leverages Apache Spark SQL and implemented as a separate project
in Scala. Again, a jar file is created and deployed at the vis center. By using Spark-submit, this jar file
is executed at regular time intervals of five minutes.

3.5. Visibility Data Visualization

To address the playground multi-layer visibility data visualization requirement, we design
multi-belt onion-ring style visualization as shown in Figure 10. Primarily there are five main belts for

Figure 9. Design of network packets flow classification component.

Visibility classification also leverages Apache Spark SQL and implemented as a separate project
in Scala. Again, a jar file is created and deployed at the vis center. By using Spark-submit, this jar file is
executed at regular time intervals of five minutes.

3.5. Visibility Data Visualization

To address the playground multi-layer visibility data visualization requirement, we design
multi-belt onion-ring style visualization as shown in Figure 10. Primarily there are five main belts for
each layer of visibility and then they are further divided into three sub-belts to allow incorporation of
additional information for display in a particular belt. Also, the color-coded areas that are separated
with white lines correspond to distributed sites that host physical or virtual resources.

In order to realize the multi-belt onion-ring visualization, we leverage open-source visualization
library called psd3. That is, psd3 is primarily based on D3.js and supports multi-level pie charts.
In order to visualize flow-centric visibility data, we choose Kibana [42] visualization software due to
available support for a large number of feature-rich graphs. Visibility data is accessible via REST API.
For example, following call fetches visibility data in JSON format from identified class for demo tenant.

curl -X GET “x.x.x.x:9200/dp-classified-identify-1/_search?size=5&pretty=true” -H ‘Content-Type:
application/json’ -d ‘{“query” : {“term” : { “tenantname” : “demo” }}}’

Appl. Sci. 2019, 9, 2045 12 of 19

Appl. Sci. 2019, 12, x FOR PEER REVIEW 12 of 19

each layer of visibility and then they are further divided into three sub-belts to allow incorporation
of additional information for display in a particular belt. Also, the color-coded areas that are
separated with white lines correspond to distributed sites that host physical or virtual resources.

Figure 10. Multi-belt onion-ring visualization to show multi-layer visibility data.

In order to realize the multi-belt onion-ring visualization, we leverage open-source visualization
library called psd3. That is, psd3 is primarily based on D3.js and supports multi-level pie charts. In
order to visualize flow-centric visibility data, we choose Kibana [42] visualization software due to
available support for a large number of feature-rich graphs. Visibility data is accessible via REST API.
For example, following call fetches visibility data in JSON format from identified class for demo
tenant.

curl -X GET “x.x.x.x:9200/dp-classified-identify-1/_search?size=5&pretty=true” -H ‘Content-
Type: application/json’ -d ‘{“query” : {“term” : { “tenantname” : “demo” }}}’

4. SmartX MVF with Flow-Centric Visibility: Verification

This section verifies proposed extension of SmartX MVF by demonstrating that the implemented
prototype meets the above-listed requirements. A prototype of the proposed solution can be found
on GitHub (https://github.com/K-OpenNet/OpenStack-MultiView.git). To setup the verification
environment, we have considered reference architecture shown in Figure 1. We envision a cloud
architecture where a user had resources in different geographical regions and were inter-connected
by overlay-based SDN networks. These resources can be physical or virtual servers and run
applications from users in different locations. Since regions are distinct from each other, there are
bandwidth and latency restrictions between them. A central playground tower is located at the
highest level and all the other regions communicate with it to push the visibility data. From the
playground tower, operators need to monitor and make decisions about cloud infrastructure. For
example, thanks to the visibility data, we can detect overloaded servers in a given region or a server
that went down. There were several issues that should be validated from the viewpoint of overhead
and usability through detailed experiments for this type of environment. The first issue was visibility
overhead which is covered in Section 4.2. We needed to verify a successful classification of network
packets flow into various classes with visualization support for assisting secured operation in such
environments and covered in Section 4.3. Finally, we have a general discussion about verification
results and future directions in Section 4.4.

4.1. Verification Setup

An initial-stage deployment of the proposed solution utilized server-based hardware for vis
center with the following specs: Intel(R) Xeon(R) CPU E5-2690 v2@3.00GHz, memory DDR3 12x8GB,

Figure 10. Multi-belt onion-ring visualization to show multi-layer visibility data.

4. SmartX MVF with Flow-Centric Visibility: Verification

This section verifies proposed extension of SmartX MVF by demonstrating that the implemented
prototype meets the above-listed requirements. A prototype of the proposed solution can be found
on GitHub (https://github.com/K-OpenNet/OpenStack-MultiView.git). To setup the verification
environment, we have considered reference architecture shown in Figure 1. We envision a cloud
architecture where a user had resources in different geographical regions and were inter-connected by
overlay-based SDN networks. These resources can be physical or virtual servers and run applications
from users in different locations. Since regions are distinct from each other, there are bandwidth
and latency restrictions between them. A central playground tower is located at the highest level
and all the other regions communicate with it to push the visibility data. From the playground tower,
operators need to monitor and make decisions about cloud infrastructure. For example, thanks to
the visibility data, we can detect overloaded servers in a given region or a server that went down.
There were several issues that should be validated from the viewpoint of overhead and usability
through detailed experiments for this type of environment. The first issue was visibility overhead
which is covered in Section 4.2. We needed to verify a successful classification of network packets flow
into various classes with visualization support for assisting secured operation in such environments
and covered in Section 4.3. Finally, we have a general discussion about verification results and future
directions in Section 4.4.

4.1. Verification Setup

An initial-stage deployment of the proposed solution utilized server-based hardware for vis
center with the following specs: Intel(R) Xeon(R) CPU E5-2690 v2@3.00GHz, memory DDR3 12x8GB,
HDD 5.5TB, and four network interfaces of 1Gbit/s. We mainly utilized an IBM M4 server for our
SmartX box. In general, the 2U server has 12 CPU cores with 2.30 GHz Intel processors, 32 GB
memory, and 300 GB of hard-disk with RAID 0 array configuration. It has one dedicated physical
interface for IPMI-based remote access management through CLI (command-line interface) and web
UI (user interface). Also, it has four onboard 1G network interfaces. Both SmartX box and vis center
are utilizing Ubuntu 16.04.4 LTS release with a minimal kernel version of 4.4.0. Each playground
developer is assigned a dedicated tenant to perform various networking experiments. By choosing
the client-server virtual machine deployment model, they generate various types of TCP/UDP traffic
during their experiments. For the verification of the proposed solution, we leveraged existing developer
tenants and running applications to collect visibility data. We utilized six tenants with a total of twenty
VMs within ten SmartX boxes. Iperf version three is used for network traffic generation.

https://github.com/K-OpenNet/OpenStack-MultiView.git

Appl. Sci. 2019, 9, 2045 13 of 19

4.2. Visibility Overhead Results

The visibility agent for network packets collection should be lightweight and nonintrusive.
The aim of this first experiment is to ensure the requirement of non-intrusiveness of visibility agent.
We monitored the performance of SmartX box in two situations: without execution of the visibility
agent and with the execution of visibility agent. We recorded the average CPU load and memory
utilization before and after the execution of visibility agent as shown in Figure 11. On the x-axis
we have time and the y-axis shows resource usage. Visibility agent execution is started after 14:40:00.
The CPU load almost remains the same at 0.7 as shown in Figure 11a. Memory utilization is initially
increased by 217 MB and later stayed around 177 MB as shown in Figure 11b. These graphs indicate
that visibility agent is lightweight and incurs low impact on SmartX box performance, even when
processing network packets from multiple network interfaces.

Appl. Sci. 2019, 12, x FOR PEER REVIEW 13 of 19

HDD 5.5TB, and four network interfaces of 1Gbit/s. We mainly utilized an IBM M4 server for our
SmartX box. In general, the 2U server has 12 CPU cores with 2.30 GHz Intel processors, 32 GB
memory, and 300 GB of hard-disk with RAID 0 array configuration. It has one dedicated physical
interface for IPMI-based remote access management through CLI (command-line interface) and web
UI (user interface). Also, it has four onboard 1G network interfaces. Both SmartX box and vis center
are utilizing Ubuntu 16.04.4 LTS release with a minimal kernel version of 4.4.0. Each playground
developer is assigned a dedicated tenant to perform various networking experiments. By choosing
the client-server virtual machine deployment model, they generate various types of TCP/UDP traffic
during their experiments. For the verification of the proposed solution, we leveraged existing
developer tenants and running applications to collect visibility data. We utilized six tenants with a
total of twenty VMs within ten SmartX boxes. Iperf version three is used for network traffic
generation.

4.2. Visibility Overhead Results

The visibility agent for network packets collection should be lightweight and nonintrusive. The
aim of this first experiment is to ensure the requirement of non-intrusiveness of visibility agent. We
monitored the performance of SmartX box in two situations: without execution of the visibility agent
and with the execution of visibility agent. We recorded the average CPU load and memory utilization
before and after the execution of visibility agent as shown in Figure 11. On the x-axis we have time
and the y-axis shows resource usage. Visibility agent execution is started after 14:40:00. The CPU load
almost remains the same at 0.7 as shown in Figure 11a. Memory utilization is initially increased by
217 MB and later stayed around 177 MB as shown in Figure 11b. These graphs indicate that visibility
agent is lightweight and incurs low impact on SmartX box performance, even when processing
network packets from multiple network interfaces.

(a) (b)

Figure 11. Visibility data collection overhead for packet-precise network flows. (a) CPU
load and (b) memory utilization.

To verify the persistent measurement and collection of data via the proposed solution, as shown
in Figure 12a, we reported the total number of data instances collected per day from playground
distributed sites to the DataLake in one month. The highest number of data instances, around 47
million, were recorded on the twenty-ninth and the lowest number of data instances, just above 20
million, were recorded on the eighteenth. We effectually collected, validated, and stored almost 25
million data instances per day. In addition, we calculated the number of data instances that are
collected from each layer of the visibilities for an hour (underlay resource layer = 54, physical resource
layer = 420, virtual resource layer = 840, and flow layer = 52 million). In order to measure the execution
time of implemented visibility integration component, we simulated it by increasing the number of
network packets. In this experiment, we started the Spark analytics engine in standalone mode with
a different number of CPU cores and memory allocation as shown in Figure 12b. We begin the tests
using 25,726 network packets with a total size of 3.4 MB, where execution took a total of 3.7 s over 4
CPU cores and 8 GB of memory to aggregate network packets and tag them. Next, we increased the
number of network packets (number = 450,000 and dataset size on disk = 61 MB). Now, execution
took 5.8 s. Also, a similar trend was observed accordingly to the increased number of network packets
(number = 5 million and dataset size on disk = 630.30 MB), where 7.4 s were taken by the execution.

Figure 11. Visibility data collection overhead for packet-precise network flows. (a) CPU load and (b)
memory utilization.

To verify the persistent measurement and collection of data via the proposed solution, as shown
in Figure 12a, we reported the total number of data instances collected per day from playground
distributed sites to the DataLake in one month. The highest number of data instances, around 47 million,
were recorded on the twenty-ninth and the lowest number of data instances, just above 20 million,
were recorded on the eighteenth. We effectually collected, validated, and stored almost 25 million data
instances per day. In addition, we calculated the number of data instances that are collected from
each layer of the visibilities for an hour (underlay resource layer = 54, physical resource layer = 420,
virtual resource layer = 840, and flow layer = 52 million). In order to measure the execution time of
implemented visibility integration component, we simulated it by increasing the number of network
packets. In this experiment, we started the Spark analytics engine in standalone mode with a different
number of CPU cores and memory allocation as shown in Figure 12b. We begin the tests using 25,726
network packets with a total size of 3.4 MB, where execution took a total of 3.7 s over 4 CPU cores
and 8 GB of memory to aggregate network packets and tag them. Next, we increased the number
of network packets (number = 450,000 and dataset size on disk = 61 MB). Now, execution took
5.8 s. Also, a similar trend was observed accordingly to the increased number of network packets
(number = 5 million and dataset size on disk = 630.30 MB), where 7.4 s were taken by the execution.
When we further increase the number of packets (number = 10 million and dataset size on disk = 1.3 GB),
13.5 s was needed for completing the execution. Based on these results, we can see execution efficiency
improved with the increase in number of assigned resources to the analytics engine.

Appl. Sci. 2019, 9, 2045 14 of 19

Appl. Sci. 2019, 12, x FOR PEER REVIEW 14 of 19

When we further increase the number of packets (number = 10 million and dataset size on disk = 1.3
GB), 13.5 s was needed for completing the execution. Based on these results, we can see execution
efficiency improved with the increase in number of assigned resources to the analytics engine.

(a) (b)

Figure 12. Flow-centric visibility verification results. (a) The number of visibility data instances
collected for a month and (b) execution time of visibility integration component.

4.3. Network Packets Flow Classification and Visualization Results

Integrated network packets flow classification is verified by conducting various experiments.
For this purpose, we selected three tenants (i.e., demo, ncku, and uscm) to generate network traffic
by using various TCP/UDP application ports. As shown in Table 1, four cases are verified by
generating traffic that is associated with various classes to ensure implemented non-learning-based
classification is working as expected. We understand that assuming the server port always identifies
an application is not fully correct. However, we assume the ports used in this work belong to the
expected applications. Furthermore, we also do not consider traffic of the selected applications on
other than the standard server ports e.g., HTTP traffic is on port 80 but not on port 81.

Table 1. Verification cases of network packets flow classification for three different tenants.

 Demo Uscm Ncku
Case I Identified (9092) Identified (11,211) Identified (6343)
Case II Identified (53) Attack (27,017) Identified (161)
Case III Attack (443) Identified (8086) Known (1250)
Case IV Known (8000) Known (7000) Attack (11,211)

Figure 13a shows the result for network packets flows that are classified as identified. In this pie
chart, the innermost ring shows the TEIN PoPs (point-of-presence) (TEINHK and TEINSG) from
where network packets have passed. The second ring shows the site names (e.g., VN-HUST) from
where identified network packets flows are collected and third ring shows the tenant names (e.g.,
demo). The fourth ring shows the OpenStack VM instance names (e.g., USCM-myren-vm) from
where network packets flow is initiated or terminated. The outermost ring shows the application
names (e.g., InfluxDB). We can see all the applications, which were listed as identified in Table 1, are
also classified as identified by the system and properly tagged with corresponding tenant and
application names. For example, port 9092 corresponded to the Kafka and belonged to the demo
tenant, and port 8086 corresponded to the InfluxDB and belonged to the uscm tenant. Figure 13b
shows the result for network packet flow that were classified as known. In this pie chart, the
innermost ring shows the TEIN PoPs. The second ring shows the site names and third ring shows the
tenant names. The outermost ring shows the application ports (7000, 8000, and 1250). Please note
these snapshots were taken from the real system and can easily incorporate further rings to display
more information as well as show the tooltip with corresponding and associated ring’s actual values
from the data. Figure 13c shows the result for network packets flows that are classified as unknown.
In this pie chart, the innermost ring shows the TEIN PoPs. The second ring shows the SmartX boxes
names (e.g., SmartX-Box-GIST1) from where unknown network packets were collected and the third
ring shows the IP addresses (e.g., 6.2.0.120). The outermost ring shows the application port numbers

3.
7 5.
8 7.
4 13

.5

15

38
.4

3.
1 4.
4 7.

2 9.
2 15

.2

26
.4

3.
6 4.
5 5.
8 9.
7 13

.5 21
.5

2 5 4 5 0 5 ,0 0 0 1 0 , 0 0 0 1 9 ,7 0 7 3 9 ,4 1 5

Ti
m

e
(S

ec
on

ds
)

Data Instances (x1000)

CPU Cores = 4 Memory = 8GB CPU Cores = 8, Memory = 32GB
CPU Cores = 16, Memory = 64GB

Figure 12. Flow-centric visibility verification results. (a) The number of visibility data instances
collected for a month and (b) execution time of visibility integration component.

4.3. Network Packets Flow Classification and Visualization Results

Integrated network packets flow classification is verified by conducting various experiments.
For this purpose, we selected three tenants (i.e., demo, ncku, and uscm) to generate network traffic by
using various TCP/UDP application ports. As shown in Table 1, four cases are verified by generating
traffic that is associated with various classes to ensure implemented non-learning-based classification is
working as expected. We understand that assuming the server port always identifies an application is
not fully correct. However, we assume the ports used in this work belong to the expected applications.
Furthermore, we also do not consider traffic of the selected applications on other than the standard
server ports e.g., HTTP traffic is on port 80 but not on port 81.

Table 1. Verification cases of network packets flow classification for three different tenants.

Demo Uscm Ncku

Case I Identified (9092) Identified (11,211) Identified (6343)
Case II Identified (53) Attack (27,017) Identified (161)
Case III Attack (443) Identified (8086) Known (1250)
Case IV Known (8000) Known (7000) Attack (11,211)

Figure 13a shows the result for network packets flows that are classified as identified. In this
pie chart, the innermost ring shows the TEIN PoPs (point-of-presence) (TEINHK and TEINSG)
from where network packets have passed. The second ring shows the site names (e.g., VN-HUST)
from where identified network packets flows are collected and third ring shows the tenant names
(e.g., demo). The fourth ring shows the OpenStack VM instance names (e.g., USCM-myren-vm)
from where network packets flow is initiated or terminated. The outermost ring shows the application
names (e.g., InfluxDB). We can see all the applications, which were listed as identified in Table 1, are also
classified as identified by the system and properly tagged with corresponding tenant and application
names. For example, port 9092 corresponded to the Kafka and belonged to the demo tenant, and port
8086 corresponded to the InfluxDB and belonged to the uscm tenant. Figure 13b shows the result for
network packet flow that were classified as known. In this pie chart, the innermost ring shows the TEIN
PoPs. The second ring shows the site names and third ring shows the tenant names. The outermost
ring shows the application ports (7000, 8000, and 1250). Please note these snapshots were taken from
the real system and can easily incorporate further rings to display more information as well as show
the tooltip with corresponding and associated ring’s actual values from the data. Figure 13c shows
the result for network packets flows that are classified as unknown. In this pie chart, the innermost
ring shows the TEIN PoPs. The second ring shows the SmartX boxes names (e.g., SmartX-Box-GIST1)
from where unknown network packets were collected and the third ring shows the IP addresses
(e.g., 6.2.0.120). The outermost ring shows the application port numbers (e.g., 1285) from where network
packets are originated. Interestingly, we did not generate any traffic for unknown class and still
got packets classified into this class. Upon further investigation, ONOS SDN controller application

Appl. Sci. 2019, 9, 2045 15 of 19

was found to be using this port number and IP addresses. Figure 13d shows the result for network
packets flows that are classified as an attack. In this pie chart, the innermost ring shows the TEIN
PoPs. The second ring shows the national research and education network names (e.g., TWAREN)
and third ring shows the tenant names. The outermost ring shows the OpenStack VM instance IP
addresses (e.g., 192.168.1.124). We can see all the IP addresses, which were listed as the attacker,
were also classified as attacked by the system. For example, before performing experiments for case II,
we have added 192.168.116.6 and 192.168.116.35 in attackers list and they were successfully detected
as attack class.

Appl. Sci. 2019, 12, x FOR PEER REVIEW 15 of 19

(e.g., 1285) from where network packets are originated. Interestingly, we did not generate any traffic
for unknown class and still got packets classified into this class. Upon further investigation, ONOS
SDN controller application was found to be using this port number and IP addresses. Figure 13d
shows the result for network packets flows that are classified as an attack. In this pie chart, the
innermost ring shows the TEIN PoPs. The second ring shows the national research and education
network names (e.g., TWAREN) and third ring shows the tenant names. The outermost ring shows
the OpenStack VM instance IP addresses (e.g., 192.168.1.124). We can see all the IP addresses, which
were listed as the attacker, were also classified as attacked by the system. For example, before
performing experiments for case II, we have added 192.168.116.6 and 192.168.116.35 in attackers list
and they were successfully detected as attack class.

(a) (b)

(c) (d)

Figure 13. Network packets flow classification results. (a) Identified class, (b) known class, (c)
unknown class and (d) attack class.

Additionally, for faster troubleshooting of OF@TEIN playground, we can generate various
visualizations from aggregated, integrated, and classified visibility data and arrange them into
interactive dashboards. After integration, a single data instance has eighty-three metrics available for
further analysis while flow-centric visibility that was proposed in [28] had seven metrics available
for further analysis. To show some of these metrics, we have created a dashboard that presents four
charts as shown in Figure 14. These charts were automatically refreshed after every thirty seconds
and express last thirty minutes’ visibility data. The first chart on top-left shows the top applications
with the highest amount of data bytes. The next chart shows the five-tuple-based flow information
with corresponding application. The third chart shows top flows statistics such as the number of
packets and data bytes. The last chart shows system resources (CPU, memory, and network
interfaces) utilization per site. In addition, we have uploaded a demonstration video of our
preliminary version of onion-ring visualization at https://www.youtube.com/watch?v=iJ7lah4v1y8.

Figure 13. Network packets flow classification results. (a) Identified class, (b) known class, (c) unknown
class and (d) attack class.

Additionally, for faster troubleshooting of OF@TEIN playground, we can generate various
visualizations from aggregated, integrated, and classified visibility data and arrange them into
interactive dashboards. After integration, a single data instance has eighty-three metrics available for
further analysis while flow-centric visibility that was proposed in [28] had seven metrics available
for further analysis. To show some of these metrics, we have created a dashboard that presents four
charts as shown in Figure 14. These charts were automatically refreshed after every thirty seconds
and express last thirty minutes’ visibility data. The first chart on top-left shows the top applications
with the highest amount of data bytes. The next chart shows the five-tuple-based flow information
with corresponding application. The third chart shows top flows statistics such as the number of
packets and data bytes. The last chart shows system resources (CPU, memory, and network interfaces)
utilization per site. In addition, we have uploaded a demonstration video of our preliminary version
of onion-ring visualization at https://www.youtube.com/watch?v=iJ7lah4v1y8.

https://www.youtube.com/watch?v=iJ7lah4v1y8

Appl. Sci. 2019, 9, 2045 16 of 19
Appl. Sci. 2019, 12, x FOR PEER REVIEW 16 of 19

Figure 14. Kibana dashboard to show visualization results from classified visibility data.

4.4. Discussion

To prove the viability of our approaches, in this section, we have verified our design and
prototype implementation. Flow-centric visibility leverages popular open-source tools such as IO
Visor, Apache Spark, Parquet, and Kibana. The features of the used tools may limit the proposed
solution. IO visor-based network packets measurements can be augmented by other tools (e.g., sFlow
[43]) to collect the sampled packets flows in resource-constrained sites of the playground. The
proposed solution does not solve all the operational problems in the playground, but it can expand
with other tools or methods to support new features. For example, comprehensive security strategy
involves protecting the system and network from external and internal misuse and upon detection
of anomalies using flow-centric visibility, operators can baseline normal behaviors and trigger for
suspicious events [44,45]. Integrating further tools like IDS and SDN controllers in flow-centric
visibility workflow is a topic for upcoming study. Moreover, as a further study, it will be vital to
support flow-centric visibility with learning-based approaches for automated classification of
network packets flow and detecting various system and network operational issues.

5. Conclusions

In this study, we proposed a comprehensive extension to visibility and visualization framework
called SmartX MVF for flow-centric visibilities (e.g., aggregated packets flow, integrated packets
flow, or classified packets flow) on SDN-enabled multisite clouds. Such a comprehensive system has
not been considered by previous studies on unified visibility. After flow-centric visibility extension,
SmartX MVF offers fine-grained flow information for physical-virtual resources system performance
and network utilization. The lightweight network packet-precise flows collection component in the
proposed solution first collects network packets and then send them to the vis center. The data
aggregation and tagging component generates summarized output by applying time-based data
aggregation and adds extra information to the collected visibility data. Aggregated data are
integrated together by using key identifiers from multiple layers of visibilities via the data integration
component. The data classification component classifies the integrated visibility data into four
classes. Finally, this classified visibility data is readily accessible via APIs and interactive dashboards
that are created in Kibana. We instantiated flow-centric visibility in the playground that is built with
SDN controllers (OpenDayLight [12] and ONOS [46]) and multisite OpenStack cloud to investigate
the properties of the proposed solution. We then conducted a series of experiments for system
verification. Our experimentation results show that our approaches are both feasible and practical,
and can successfully augment an existing SDN-enabled multisite cloud infrastructure in terms of
robustness and agility.

Figure 14. Kibana dashboard to show visualization results from classified visibility data.

4.4. Discussion

To prove the viability of our approaches, in this section, we have verified our design and prototype
implementation. Flow-centric visibility leverages popular open-source tools such as IO Visor,
Apache Spark, Parquet, and Kibana. The features of the used tools may limit the proposed solution.
IO visor-based network packets measurements can be augmented by other tools (e.g., sFlow [43])
to collect the sampled packets flows in resource-constrained sites of the playground. The proposed
solution does not solve all the operational problems in the playground, but it can expand with other tools
or methods to support new features. For example, comprehensive security strategy involves protecting
the system and network from external and internal misuse and upon detection of anomalies using
flow-centric visibility, operators can baseline normal behaviors and trigger for suspicious events [44,45].
Integrating further tools like IDS and SDN controllers in flow-centric visibility workflow is a topic for
upcoming study. Moreover, as a further study, it will be vital to support flow-centric visibility with
learning-based approaches for automated classification of network packets flow and detecting various
system and network operational issues.

5. Conclusions

In this study, we proposed a comprehensive extension to visibility and visualization framework
called SmartX MVF for flow-centric visibilities (e.g., aggregated packets flow, integrated packets flow,
or classified packets flow) on SDN-enabled multisite clouds. Such a comprehensive system has not been
considered by previous studies on unified visibility. After flow-centric visibility extension, SmartX MVF
offers fine-grained flow information for physical-virtual resources system performance and network
utilization. The lightweight network packet-precise flows collection component in the proposed solution
first collects network packets and then send them to the vis center. The data aggregation and tagging
component generates summarized output by applying time-based data aggregation and adds extra
information to the collected visibility data. Aggregated data are integrated together by using key
identifiers from multiple layers of visibilities via the data integration component. The data classification
component classifies the integrated visibility data into four classes. Finally, this classified visibility data
is readily accessible via APIs and interactive dashboards that are created in Kibana. We instantiated
flow-centric visibility in the playground that is built with SDN controllers (OpenDayLight [12]
and ONOS [46]) and multisite OpenStack cloud to investigate the properties of the proposed solution.
We then conducted a series of experiments for system verification. Our experimentation results
show that our approaches are both feasible and practical, and can successfully augment an existing
SDN-enabled multisite cloud infrastructure in terms of robustness and agility.

Appl. Sci. 2019, 9, 2045 17 of 19

Author Contributions: This work is completed by M.U., M.A.R., and J.K., M.U. designed and developed
the proposed system in this work. M.A.R. helped to implement and experiment proposed system. M.U. and M.A.R.
focused on writing the paper. J.K. guided this whole project as a corresponding author and reviewed
this manuscript.

Funding: This research was supported by Agency Defense Development funded project “Study on QoS method
in tactical communications network” (UD170050ED).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kim, H.; Feamster, N. Improving network management with software defined networking. IEEE Commun.
Mag. 2013, 51, 114–119. [CrossRef]

2. Hu, F.; Hao, Q.; Bao, K. A Survey on Software-Defined Network and OpenFlow: From Concept to
Implementation. IEEE Commun. Surv. Tutor. 2014, 16, 2181–2206. [CrossRef]

3. Nunes, B.A.A.; Mendonca, M.; Nguyen, X.N.; Obraczka, K.; Turletti, T. A Survey of Software-Defined Networking:
Past, Present, and Future of Programmable Networks. IEEE Commun. Surv. Tutor. 2014, 16, 1617–1634. [CrossRef]

4. Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.A.; Rabkin, A.;
Stoica, I.; Zaharia, M. A view of cloud computing. Commun. ACM 2010, 53, 50–58. [CrossRef]

5. Zhang, Q.; Cheng, L.; Boutaba, R. Cloud computing: State-of-the-art and research challenges. J. Int. Serv. Appl.
2010, 1, 7–18. [CrossRef]

6. Berman, M.; Chase, J.S.; Landweber, L.; Nakao, A.; Ott, M.; Raychaudhuri, D.; Ricci, R.; Seskar, I. GENI:
A federated testbed for innovative network experiments. Comput. Netw. 2014, 61, 5–23. [CrossRef]

7. SmartFIRE-NITlab-Network. Available online: https://nitlab.inf.uth.gr/NITlab/index.php/projects/40-
projects/current/444-smartfire.html (accessed on 30 March 2019).

8. Risdianto, A.C.; Kim, J. Prototyping Media Distribution Experiments over OF@TEIN SDN-enabled Testbed.
Proc. Asia-Pac. Adv. Netw. 2014, 38, 12–18. [CrossRef]

9. Usman, M.; Risdianto, A.C.; Han, J.; Kang, M.; Kim, J. SmartX multiview visibility framework leveraging
open-source software for SDN-cloud playground. In Proceedings of the 2017 IEEE Conference on Network
Softwarization (NetSoft), Bologna, Italy, 3–7 July 2017; pp. 1–4.

10. Risdianto, A.C.; Shin, J.; Kim, J. Building and Operating Distributed SDN-Cloud Testbed with
Hyper-Convergent SmartX Boxes. In Cloud Computing; Zhang, Y., Peng, L., Youn, C.H., Eds.; Springer
International Publishing: Cham, Switzerland, 2016; Volume 167, pp. 224–233.

11. Sefraoui, O.; Aissaoui, M.; Eleuldj, M. OpenStack: Toward an Open-source Solution for Cloud Computing.
Int. J. Comput. Appl. 2012, 55, 38–42. [CrossRef]

12. Risdianto, A.C.; Kim, N.L.; Shin, J.; Bae, J.; Usman, M.; Ling, T.C.; Panwaree, P.; Thet, P.M.; Aswakul, C.;
Thanh, N.H.; et al. OF@TEIN: A Community Effort towards Open/Shared SDN-Cloud Virtual Playground.
Proc. Asia-Pac. Adv. Netw. 2015, 40, 22–28. [CrossRef]

13. Usman, M.; Risdianto, A.C.; Han, J.; Kim, J. Interactive Visualization of SDN-Enabled Multisite Cloud
Playgrounds Leveraging SmartX MultiView Visibility Framework. Comput. J. 2018. [CrossRef]

14. Mohan, V.R.; Reddy, Y.R.J.; Kalpana, K. Active and Passive Network Measurements: A Survey. Int. J. Comput.
Sci. Inf. Technol. 2011, 2, 1372–1385.

15. Data Aggregation. Available online: https://www.ibm.com/support/knowledgecenter/en/SSBNJ7_1.4.2/

dataView/Concepts/ctnpm_dv_use_data_aggreg.html (accessed on 31 March 2019).
16. DataLake. Available online: https://martinfowler.com/bliki/DataLake.html (accessed on 31 March 2019).
17. Data Integration. Available online: https://www.ibm.com/analytics/data-integration (accessed on 31 March

2019).
18. Vlăduţu, A.; Comăneci, D.; Dobre, C. Internet traffic classification based on flows’ statistical properties with

machine learning. Int. J. Netw. Manag. 2017, 27, e1929. [CrossRef]
19. Aceto, G.; Botta, A.; De Donato, W.; Pescapè, A. Cloud monitoring: A survey. Comput. Netw. 2013,

57, 2093–2115. [CrossRef]
20. Nagios. Available online: https://www.nagios.org/ (accessed on 31 March 2019).
21. Montes, J.; Sánchez, A.; Memishi, B.; Pérez, M.S.; Antoniu, G. GMonE: A complete approach to cloud

monitoring. Future Gener. Comput. Syst. 2013, 29, 2026–2040. [CrossRef]

http://dx.doi.org/10.1109/MCOM.2013.6461195
http://dx.doi.org/10.1109/COMST.2014.2326417
http://dx.doi.org/10.1109/SURV.2014.012214.00180
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1007/s13174-010-0007-6
http://dx.doi.org/10.1016/j.bjp.2013.12.037
https://nitlab.inf.uth.gr/NITlab/index.php/projects/40-projects/current/444-smartfire.html
https://nitlab.inf.uth.gr/NITlab/index.php/projects/40-projects/current/444-smartfire.html
http://dx.doi.org/10.7125/APAN.38.2
http://dx.doi.org/10.5120/8738-2991
http://dx.doi.org/10.7125/40.4
http://dx.doi.org/10.1093/comjnl/bxy103
https://www.ibm.com/support/knowledgecenter/en/SSBNJ7_1.4.2/dataView/Concepts/ctnpm_dv_use_data_aggreg.html
https://www.ibm.com/support/knowledgecenter/en/SSBNJ7_1.4.2/dataView/Concepts/ctnpm_dv_use_data_aggreg.html
https://martinfowler.com/bliki/DataLake.html
https://www.ibm.com/analytics/data-integration
http://dx.doi.org/10.1002/nem.1929
http://dx.doi.org/10.1016/j.comnet.2013.04.001
https://www.nagios.org/
http://dx.doi.org/10.1016/j.future.2013.02.011

Appl. Sci. 2019, 9, 2045 18 of 19

22. Brandón, Á.; Pérez, M.S.; Montes, J.; Sanchez, A. FMonE: A Flexible Monitoring Solution at the Edge.
Wirel. Commun. Mob. Comput. 2018, 2018, 2068278. Available online: https://www.hindawi.com/journals/
wcmc/2018/2068278/ (accessed on 30 March 2019). [CrossRef]

23. Povedano-Molina, J.; Lopez-Vega, J.M.; Lopez-Soler, J.M.; Corradi, A.; Foschini, L. DARGOS: A highly
adaptable and scalable monitoring architecture for multi-tenant Clouds. Future Gener. Comput. Syst. 2013,
29, 2041–2056. [CrossRef]

24. Kim, M.; Park, Y.; Kotalwar, R. Robust and Agile System against Fault and Anomaly Traffic in Software
Defined Networks. Appl. Sci. 2017, 7, 266. [CrossRef]

25. New Relic. Available online: https://newrelic.com/ (accessed on 31 March 2019).
26. Dynatrace. Available online: https://www.dynatrace.com/ (accessed on 31 March 2019).
27. Chowdhury, S.R.; Bari, M.F.; Ahmed, R.; Boutaba, R. PayLess: A low cost network monitoring framework

for Software Defined Networks. In Proceedings of the 2014 IEEE Network Operations and Management
Symposium (NOMS), Krakow, Poland, 5–9 May 2014; pp. 1–9.

28. Risdianto, A.C.; Kim, J. Flow-centric Visibility Tools for OF@TEIN OpenFlow-based SDN Testbed.
In Proceedings of the 10th International Conference on Future Internet, Seoul, Korea, 8–10 June 2015;
pp. 46–50.

29. Van Adrichem, N.L.; Doerr, C.; Kuipers, F.A. OpenNetMon: Network monitoring in OpenFlow
Software-Defined Networks. In Proceedings of the 2014 IEEE Network Operations and Management
Symposium (NOMS), Krakow, Poland, 5–9 May 2014; pp. 1–8.

30. Rasley, J.; Stephens, B.; Dixon, C.; Rozner, E.; Felter, W.; Agarwal, K.; Carter, J.; Fonseca, R. Planck:
Millisecond-scale monitoring and control for commodity networks. In Proceedings of the 2014 ACM
conference on SIGCOMM, Chicago, IL, USA, 17–22 August 2014; pp. 407–418.

31. Yoon, C.; Lee, S.; Kang, H.; Park, T.; Shin, S.; Yegneswaran, V.; Porras, P.; Gu, G. Flow Wars: Systemizing
the Attack Surface and Defenses in Software-Defined Networks. IEEE ACM Trans. Netw. 2017, 25, 3514–3530.
[CrossRef]

32. Farhadi, H.; Nakao, A. Application layer flow classification in SDN. In Proceedings of the 15th Asia-Pacific
Network Operations and Management Symposium (APNOMS), Hiroshima, Japan, 25–27 September 2013;
pp. 1–3.

33. Li, Y.; Li, J. MultiClassifier: A combination of DPI and ML for application-layer classification in SDN. In Proceedings of
the 2nd International Conference on Systems and Informatics (ICSAI 2014), Shanghai, China, 15–17 November 2014;
pp. 682–686.

34. McGregor, A.; Hall, M.; Lorier, P.; Brunskill, J. Flow Clustering Using Machine Learning Techniques. In Passive
and Active Network Measurement; Barakat, C., Pratt, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2004;
Volume 3015, pp. 205–214.

35. Bagui, S.; Fang, X.; Kalaimannan, E.; Bagui, S.C.; Sheehan, J. Comparison of machine-learning algorithms for
classification of VPN network traffic flow using time-related features. J. Cyber Secur. Technol. 2017, 1, 108–126.
[CrossRef]

36. Promrit, N.; Mingkhwan, A. Traffic Flow Classification and Visualization for Network Forensic Analysis.
In Proceedings of the 29th International Conference on Advanced Information Networking and Applications
(2015 IEEE), Gwangiu, Korea, 24–27 March 2015; pp. 358–364.

37. Nam, T.; Kim, J. Open-source IO visor eBPF-based packet tracing on multiple network interfaces of Linux
boxes. In Proceedings of the 2017 International Conference on Information and Communication Technology
Convergence (ICTC), Jeju, Korea, 16–18 October 2017; pp. 324–326.

38. Learn eBPF Tracing: Tutorial and Examples. Available online: http://www.brendangregg.com/blog/2019-01-
01/learn-ebpf-tracing.html (accessed on 31 March 2019).

39. Li, Y.; Jiang, Y.; Gu, J.; Lu, M.; Yu, M.; Armstrong, E.M.; Huang, T.; Moroni, D.; McGibbney, L.J.; Frank, G.;
et al. A Cloud-Based Framework for Large-Scale Log Mining through Apache Spark and Elasticsearch.
Appl. Sci. 2019, 9, 1114. [CrossRef]

40. Apache Parquet. Available online: https://parquet.apache.org/documentation/latest/ (accessed on
31 March 2019).

41. Getting Started with sbt. Available online: https://www.scala-sbt.org/1.0/docs/Getting-Started.html
(accessed on 31 March2019).

https://www.hindawi.com/journals/wcmc/2018/2068278/
https://www.hindawi.com/journals/wcmc/2018/2068278/
http://dx.doi.org/10.1155/2018/2068278
http://dx.doi.org/10.1016/j.future.2013.04.022
http://dx.doi.org/10.3390/app7030266
https://newrelic.com/
https://www.dynatrace.com/
http://dx.doi.org/10.1109/TNET.2017.2748159
http://dx.doi.org/10.1080/23742917.2017.1321891
http://www.brendangregg.com/blog/2019-01-01/learn-ebpf-tracing.html
http://www.brendangregg.com/blog/2019-01-01/learn-ebpf-tracing.html
http://dx.doi.org/10.3390/app9061114
https://parquet.apache.org/documentation/latest/
https://www.scala-sbt.org/1.0/docs/Getting-Started.html

Appl. Sci. 2019, 9, 2045 19 of 19

42. Kibana User Guide. Available online: https://www.elastic.co/guide/en/kibana/current/introduction.html
(accessed on 31 March 2019).

43. sFlow Overview. Available online: https://sflow.org/about/index.php (accessed on 31 March 2019).
44. Shin, J.S.; Usman, M.; Kim, J. Conceptual Verification of Multi-Level Visibility Points for SmartX MultiView

Security. In Proceedings of the 2018 International Conference on Information and Communication Technology
Convergence (ICTC), Jeju, Korea, 17–19 October 2018; pp. 1449–1451.

45. Usman, M.; Risdianto, A.C.; Han, J.; Kim, J. Inter-correlation of Resource-/Flow-Level Visibility for APM
Over OF@TEIN SDN-Enabled Multi-site Cloud. In Quality, Reliability, Security and Robustness in Heterogeneous
Networks; Lee, J.H., Pack, S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 199,
pp. 478–484.

46. Risdianto, A.C.; Tsai, P.W.; Ling, T.C.; Yang, C.S.; Kim, J. Enhanced Onos Sdn Controllers Deployment for
Federated Multi-Domain Sdn-Cloud with Sd-Routing-Exchange. Malays. J. Comput. Sci. 2017, 30, 134–153.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.elastic.co/guide/en/kibana/current/introduction.html
https://sflow.org/about/index.php
http://dx.doi.org/10.22452/mjcs.vol30no2.5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Requirements of Flow-Centric Visibility
	OF@TEIN Playground as an SDN-Enabled Multisite Cloud Playground
	Flow-Centric Visibility Requirement for Unified Monitoring
	Network Packet-Precise Collection
	Visibility Data Aggregation and Tagging
	Multi-Layer Visibility Data Integration
	Network Packets Flow Classification
	Visibility Data Visualization

	Related Work

	SmartX MVF with Flow-Centric Visibility: Design and Implementation
	Network Packet-Precise Collection
	Visibility Data Aggregation and Tagging
	Multi-Layer Visibility Data Integration
	Network Packets Flow Classification
	Visibility Data Visualization

	SmartX MVF with Flow-Centric Visibility: Verification
	Verification Setup
	Visibility Overhead Results
	Network Packets Flow Classification and Visualization Results
	Discussion

	Conclusions
	References

