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Chiral-induced switching of antiferromagnet spins
in a confined nanowire
T.H. Kim1, S.H. Han2 & B.K. Cho1

In the development of spin-based electronic devices, a particular challenge is the manip-

ulation of the magnetic state with high speed and low power consumption. Although research

has focused on the current-induced spin–orbit torque based on strong spin–orbit coupling,

the charge-based and the torque-driven devices have fundamental limitations: Joule heating,

phase mismatching, and overshooting. In this work, we investigate numerically and theore-

tically alternative switching scenario of antiferromagnetic insulator in one-dimensional con-

fined nanowire sandwiched with two electrodes. As the electric field could break inversion

symmetry and induce Dzyaloshinskii-Moriya interaction and pseudo-dipole anisotropy, the

resulting spiral texture takes symmetric or antisymmetric configuration due to additional

coupling with the crystalline anisotropy. Therefore, by competing two spiral states, we show

that the magnetization reversal of antiferromagnets is realized, which is valid in ferromag-

netic counterpart. Our finding provides promising opportunities to realize the rapid and

energy-efficient electrical manipulation of magnetization for future spin-based electronic

devices.
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In the development of highly efficient spintronic devices, one
emerging issue is to discover and exploit novel phenomena
with strong spin–orbit coupling (SOC)1–4. Due to scientific

and technological interest, intensive research has focused on
current-driven spin–orbit torques (SOT) for manipulation of
magnetization. Most of experimental and theoretical works on
SOT switching have been performed in a magnetic multilayer
consisting of an ultrathin ferromagnets (FMs) or antiferro-
magnets (AFMs) and heavy metal layers5–20. Because SOT
devices use a current, charge scattering, and corresponding Joule
heating inevitably occur21. This intrinsic property is an obstacle
in reducing the switching power, although SOT efficiency is
significantly improved in nanoscale devices7,10,22–26. In hetero-
structures, especially with structural inversion asymmetry,
Dzyaloshinskii-Moriya (DM) interaction, which is also induced
by spin–orbit coupling, has received attention in spin dynamics
research. In the presence of DM interaction, the competition
between exchange and DM interaction allows for a nontrivial
topological spin configuration to exist as a ground state27–30, i.e.,
spiral configuration and skymion in a confined geometry.
Topological robustness has been exploited to enhance the per-
formance of SOT devices, such as DM interaction-stabilized Néel
domain wall motion31–34 and DM interaction-assisted current-
driven switching35. The DM interaction plays a secondary role in
current-driven dynamics. However, it is rarely studied as a
driving source to replace a current to initiate spin motion.
Actually, a few studies performed on electric field-induced DM
interactions found that the conversion efficiency is proportional
to the spin–orbit coupling strength as in SOT36–38.

Here, we report an electric field-induced magnetization
switching scenario through potential barrier modulation in a
nanowire, instead of the spin current. This switching is realized
by changing the ground spiral state and relaxing it into a switched
configuration by controlling the DM interactions. This switching
scenario is different from the precessional switching mechanism
driven by external torques, efficiency of which relies upon the
timing of the torque and magnetization precession.

Results
Figure 1 shows the spiral structure of antiferromagnetic insulator
(AFI). Here, AFMs are aligned along the z axis and sandwiched
by two electrodes of heavy and normal metal. We use two order

parameters: the Néel order l= (si− sj)/2 and the ferromagnetic
order parameterm= (si+ sj)/2, where each spin is normalized by
its magnitude si= Si/S0 with S0= |Si|. Therefore, the wire length
is defined as lw in Néel space. In heavy metal layer with strong
SOC such as Pt, Ta, and W, spin Hall current is typically gen-
erated when a charge current is applied in those materials1,2. The
magnetic crystalline anisotropy has an easy axis along the z axis
where anisotropy constant Kz is positive. The geometric inversion
asymmetry induces DM interaction along the y axis according to
Dij∝ bx×eij, where the x axis is normal to the interface and eij is
the unit vector connecting neighbor spins si and sj27,28. We ignore
this geometric DM interaction in the calculation and discuss it
later. When the electric field along the x axis breaks inversion
symmetry, the DM vector D, becomes effectively toward the y
axis due to Dij∝ Ebx × eij27,28,36–38. Also, we introduce an electric-
field-induced pseudo-dipolar anisotropy energy KE with easy
plane, and it is induced from SOC that gives rise to the DM
interaction27,28,36–38. An electric-field-induced anisotropy is an
effect of order of E2, but cannot be ignored in our switching
scenario. In other indirect exchange interactions, known as
double-exchange and Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction in metal, it has been reported that same SOC induces
the DM interaction and the anisotropy by the external electric
field39–41.

Two possible spiral states as a function of DM interaction.
However, before preceding to the electric-field-induced manip-
ulation of AFMs, we consider stationary states of AFMs as a
function of DM interaction energy. Figure 2 shows two spiral
structures with different DM interaction energies and these are
formed by additional coupling with crystalline anisotropy, which
is proportional to ~lz2 (see Eq. (1)). Under exchange approx-
imation where the exchange energy J is the larger than other
energies, or |J|≫Dy and Kz, we can assume that the spiral
structure has continuously varying spin texture, (li+1-li)/Δ∼ l′=
dl/dz and (mi+1-mi)/Δ∼m′= dm/dz, where Δ is the interspacing
of the nearest neighbors in Néel space. Therefore, the energy
density E1D is described as

E1D ¼ a=2jmj2 þ A=2jl′j2 þ Lðm � l′� l �m′Þ � Kz=2ðl �bzÞ2
þDyby � ðl ´ l′Þ:

ð1Þ
The a and A are the homogeneous and inhomogeneous exchange
constants, respectively, and L is a parity-breaking exchange
constant. Equation (1) is obtained in refs. 42,43, and the DM
energy is derived in the Supplementary Note 1. The parameters
are defined as A= Δ2J= J, a= 4J, L= ΔJ= J, Dy= Δdy/2= dy/2
when Δ is set to the unit length. To estimate the equilibrium state
of AFMs, we set the effective Néel vector as l= {lx, lz}= {sin[φ
(z)], cos[φ(z)]} because ly is the spiral axis. Therefore, E1D is
reduced as

E1D ¼ � cos½φ�2Kz þ dyφ′þΩφ′2
� �

=2; ð2Þ
where Ω≡ (−A+3L2/a)= J/4 is defined as the effective exchange
stiffness. After we use a standard variation of calculus to mini-

mize total energy, Etotal,1D=
R lw
1 E1Ddz, we obtained two equations

cos½φ� sin½φ�=Λ2 þ φ′′ ¼ 0; ð3aÞ

∂φ′
∂z

����
����
z¼1 or lw

¼ dy
2Ω

; ð3bÞ

where Λ � ffiffiffiffiffiffiffiffiffiffiffi
Ω=Kz

p
is the characteristic antiferromagnetic

domain wall width. Equation (3a) shows the stationary
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Fig. 1 Schematics for antiferromagnetic spiral structure in Néel space. In a
confined one-dimensional geometry, this spiral structure is formed by
Dzyaloshinskii-Moriya (DM) interaction. When electric field is applied
between two electrodes and DM interaction is induced, the DM vector
between neighboring spins takes the form of Dij∝ bx×eij, where eij is the unit
vector linking neighbor spins i and j and therefore, Dij is parallel to the y
axis. Here, spin–orbit torque with polarization along the y axis is applied to
perturb the antiferromagnets
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configuration of AFMs and takes the form of a time-independent
sine-Gordan (SG) model44. The solution of Eq. (3a) is given as a
the trivial solution φ= 0 or the nontrivial solution φ= am(u|m).
The nontrivial solution of SG equation is analytically obtained as
φ(z)= am[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ2C1

p
/Λ(z+C2)|1/(1+Λ2C1)], where am(u|m) is

a Jacobi amplitude function with the elliptic modulus m and the
elliptic integral of the first kind u. Especially, u is regarded as arc
length of the unit ellipse, defined as u= F(φ, m)=

R φ
0 rðθ;mÞdθ

where r is radius of the unit ellipse. And the inverse function of u
is Jacobi amplitude: φ(z)= F−1(u, m)= am(u|m). Therefore, in
general (m ≠ 0), φ(z) is the nonlinear function whereas φ(z) is the
linear function if it is defined with reference to a circle (m= 0).
Here, C2 is related to the phase shift along z axis and C1 mod-
ulates u and m, respectively. With exchange interaction and
anisotropy fixed, DM interaction modulates the reference from a
circle to an ellipse. For example, when DM interaction that pre-
fers to be spiral dominates the effective anisotropy that prefers to
be uniform, m approaches to zero. Therefore, l= {cos[φ(z)], 0, sin
[φ(z)]} is described as the trigonometric function where φ(z) is
linearly proportional to z; φ(z)= am(u|0) ~ kz. However, when
the DM interaction does not dominate the anisotropy, m is
nonzero, so that φ(z) becomes the nonlinear function and l is
defined with Jacobi elliptic function; cos[φ(z)]= cos[am(u|m)] ≡

cn[u|m] and sin[φ(z)]= sin[am(u|m)] ≡ sn[u|m]. Also, the
nontrivial states have been classified into a quasi-uniformed state
and a pure spiral state by the critical DM energy, where dy > dc
changes a domain wall state into a spiral state30. In our system, dc
is derived as dc= 4(ΩKz)1/2/π= 2(JKz)1/2/π from inserting φ
(z)=−π/2+2arctan(exp(z+C2)/Λ) into Eq. (1). However, to
decrease the anisotropy energies in the confined geometry, the
nontrivial states are preferred to be of symmetric (S) or anti-
symmetric (AS) state for lz depending on the DM energy (see
Fig. 2). Each state is characterized by the first condition that is
given as φ(z= lw/2)= nπ for the S state or φ(z= lw/2)= (2n+ 1)
π/2 for the AS state where n is an integer. The second condition
becomes Neumann-type boundary condition as Eq. (3a):
|dφ/dz|z= 1 or lw= dy/(2Ω)= 2dy/J. Notably, as dy/dc is over ~ 2,
φ(z) approaches a linear function φ(z)= am[u|m] ~ kz with
wavevector k= 2dy/J. And k is compatible with the edge condi-
tions because it enters into a pure spiral regime or m → 0. For
example, φ(z)= am[0.1z|−0.1] ~ 0.11z for dy/dc= 6.5 (See
Fig. 2a, S state, red open symbols) and φ(z)= am[0.14z|−0.06] ~
0.14z for dy/dc= 5 (See Fig. 2a, AS state, blue open symbols).
Therefore, l is expressed as a trigonometric function; for example,
lz= cos[kz+ nπ] or lz= cos[kz+ (2n+ 1)π/2]. However, when
dy/dc goes to zero, φ(z) becomes a nonlinear Jacobi amplitude
function, where φ(z)= am[0.02z|−2.47] for dy/dc= 1 and φ(z)=
am[0.29(z−101/2)|−1.40] for dy/dc= 1.3, respectively, because
DM energy competes with anisotropy energy.

Next, we derive the dynamics of the soliton in the pure spiral
regime because it provides the information about the potential
barrier between two symmetric states. To understand soliton
dynamics driven by damping-like SOT, the Landau Lifshitz
Gilbert (LLG) equations are derived from Eq. 1 in terms of m
and l:

l
:

¼ ðωm � αm
: Þ ´ lþ ΠSOT;1; ð4aÞ

m
: ¼ ðωl � α l

:

Þ ´ lþΠSOT;m; ð4bÞ
where the effective magnetic field is obtained from the functional
derivative of energy density as ωm=γ � heff ¼ �∂U1D=∂m ¼
�am� Ll′ and ωl=γ � heff � ∂U1D=∂l ¼ Al′′þ Lm′þ Kzlzbzþ
l′ ´D, and the damping-like SOTs for m and l are given as
ΠSOT;m ¼ ωs ½m ´ ðm ´ pÞ þ l ´ ðl ´ pÞ� and ΠSOT;l ¼ ωs ½m ´
ðl ´ pÞ þ l ´ ðm ´ pÞ�, respectively45. γ is the gyromagnetic ratio,
p is the unit polarization of the spin current, ωs is the SOT
strength with an angular frequency unit, and α is a phenomen-
ological damping constant. The stationary state is calculated from
the LLG equation when the time goes to infinity and therefore is
the solution of the SG model as shown in Fig. 2.

By taking the cross product of l in Eq. (4a), we obtained the
analytical relation between m and l:

m ¼ l
:

´ l=ðaγÞ � L=aðl ´ l′Þ ´ l: ð5Þ
To set a trial function for l, we introduced the collective
coordinates θ(t) for the dynamic phase and k for the pure spiral
soliton profile: φ(z, t)= k(z-(lw+ 1)/2)+ θ(t), where we arbitrary
shift the soliton profile by (lw+ 1/2) so that θ(t) represents the
phase at center or φ(z= (lw+ 1) /2, t)= θ(t). Inserting Eq. (5)
into Eq. (4b) and integrating the sublattice number N from N= 1
to N= lw, the soliton equation of motion is derived as:

θ
::

ðtÞ=ðaγÞþα θ
:

ðtÞ � Γðdy; lwÞsinð2θðtÞÞγ=2 ¼ wspyðtÞ ð6Þ
Equation 6 represents the equation of motion on θ(t), driven

by SOT. When SOT with spin polarization of the y axis applies to
the antiferromagnetic chain, the soliton phase oscillates with
decay as in pendulum. When SOT is strong enough for θ(t) to go
over the potential barrier, Ebarrier, the Néel spiral soliton
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Fig. 2 Equilibrium configurations of antiferromagnets in a confined structure.
Depending on the Dzyaloshinskii-Moriya (DM) interaction, lz= cos(φ) takes
a (a) symmetric (S) or (b) antisymmetric (AS) configuration. Here, φ is
described as a Jacobi amplitude function φ= am(u|m) with elliptic modulus
m that is the solution of the sine-Gordan (SG) equation. The exact solution
is obtained with two conditions: 1) φ(lw/2)= π or 0 and 2) dφ/dz= 2dy/J at
z= 1 or z= lw where lw is wire length in Néel space. The stationary state is
calculated from the Landau Lifshitz Gilbert equation when the time goes to
infinity and therefore is the solution of the SG model (solid line). As the DM
energy increases, lz becomes a pure spiral configuration of φ= kz with
wavevector k= 2dy/J (solid line and open circle for n= 5). However, as the
DM energy decreases, there is a deviation between the pure spiral
approximation and the SG model (solid line and open circle for n= 2). Here,
dc is the critical DM energy where dy > dc changes a domain wall state into a
chiral state
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propagates as a wave in medium. Here, Ebarrier is interpreted as
Γðdy; lwÞ ¼ �Kzsinc½2dy=Jðlw � 1Þ�, which is calculated by inte-
grating the third terms of Eq. (6) from θ= nπ to θ= (n+ 1)π/2

or
R ðnþ1=2Þπ
nπ Γsin½2θ�dθ ¼ Γ. As shown in Fig. 3a, this potential

barrier modulation effect will be negligible with large dy (or large
lw) because Γ(dy, lw) follows the cardinal sine or sinc function.
With _θð0Þ ¼ 0and Γðdy; lwÞ ¼ 0, the soliton phase propagates
with steady state velocity v= ws/α as in domain wall motion
driven by SOT. Note that in Fig. 3a, Enorm

barrier is calculated from the
normalized anisotropy difference between two states in Fig. 3b
and is comparable to Г in the pure spiral regime, as shown in
Fig. 3a. For example, when dy/dc= 3.5, Γ < 0, θ(∞) would be nπ
(S state), which is located at potential minimum; thus, θ(∞)=
(n+ 1/2)π corresponds to potential maximum (AS state).
Therefore, the anisotropy energy difference between the S and
AS states are interpreted as Ebarrier. The former is enable us to
calculate Enorm

barrier in all ranges of DM energies, as shown by the
solid line in Fig. 3a, without deriving equations of motion in low
DM energy. It is difficult to derive equations of motion for
soliton dynamics in cases of low dy/dc because the soliton
configurations for the S and AS states consist of different
wavepackets [see the Supplementary Note 2 for S and AS states
when dy/dc= 1] and there is a deviation between the SG model
and the pure spiral model (see Fig. 3a).

Electric-field-induced switching of antiferromagnetic solitons.
Now, the electric-field-induced DM interaction and easy-plane
anisotropy are considered. Firstly, the anisotropy in Eq. (1) is recast
into

P
EK ¼ �Keff=2ðl � bzÞ2 � KE=2ðl � byÞ2 where Keff=Kz+KE.

The y component of the easy plane anisotropy does not con-
tribute to the stability of spiral states because of Keff >KE. And we
reformulate the easy plane anisotropy energy as a function of dy;

for example, if the DM interaction is induced by electric field as
like dy= 0.1 J, KE= 0.12J or KE= (dy/J)2J. Now, dc and Λ are as a
function of dy; in large dy, Keff ~ KE and dc= 2(JKE)1/2/π= 2dy/π,
and Λ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω=Keff

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
J=Keff

p
=2 ¼ J=ð2dyÞ � 0. It means that in

all ranges of dy, the pure spiral configuration is not formed, so
that all soliton states are not described as θ(t) because dy/dc < 1.5.
However, the S and AS states are calculated numerically using
two conditions in SG model (see Fig. 4a, b). The curves of the
anisotropy energy and the potential barrier are not derived
analytically.

To switch Néel magnetization, our strategy is to modulate
potential barriers by controlling ratio dy/J through several steps in
which SOT plays a perturbation role. As shown in Fig. 4b, the
stationary soliton state is alternatively changed from S to AS
states (Ebarrier < 0 to Ebarrier > 0 in Fig. 4a) and then from AS to S
states (Ebarrier > 0 to Ebarrier < 0 in Fig. 4a) as the DM energy
increases. It completes the Néel arrangement switch in the five
steps. In dy/J= 0 (step 1), the uniform antiferromagnetic state
along the +z axis is interpreted as an S state with φ(lw/2)= 0.
Although the DM energy turns on when dy/J= 0.043 (step 2), the
soliton state is not changed because φ(lw/2)= 0 and Ebarrier < 0.
When the DM energy is lowered by dy/J= 0.03 (step 3), the S
state is unstable because Ebarrier > 0 [see Fig. 4a, AS-state] but,
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interestingly, does not go into the AS state because it is a
metastable state located at a potential maximum (see Fig. 4c),
which implies the necessity of small perturbation such as SOT.
Therefore, small SOT with unidirectional polarization is neces-
sary for deterministic switching. For example, with a spin current
with -py, the soliton would go to an AS state with φ(lw/2)=−1/
2π; if spin polarization is of py, AS state would be of φ(lw/2)=
1/2π. Next, in the lowered dy/J= 0.015 (step 4), AS state with φ
(lw/2)=−1/2π is required to go S state with φ(lw/2)=−π.
Eventually, as DM energy shuts down (step 5), final S state is
maintained with θ=−π. All processes are described in Fig. 5a.
Note that our solitonic approach allows for simplifying the
multistep manipulation of AFMs; because the first two steps and
the fourth and fifth steps are in the same state of φ(lw/2)= 0 and
φ(lw/2)=−π, so these overlapping steps could be omitted. As
shown in Fig. 5b, only the first, third and fifth steps that form the
single pulse shape can switch an AFM. In addition, the dy
variation from step 1 to step 2 results in spreading and shrinkage
of k, i.e., breathing motion due to inertia. However, this motion
does not lead to the phase propagation. In addition, it is desirable
to consider the field-like torque taking place during working in
the real devices. When the magnetic field is applied along
arbitrary directions, we can add the Zeeman interaction energy
E1D, Z= γħH·m into the total energy density, where γ is the
gyromagnetic ratio and ħ is the reduced Plank constant. And Eq.

(5) is modified as m ¼ l
:

´ l=ðaγÞ � L=aðl ´ l′Þ ´ lþγ�h=aH43. If
the magnetic field is time-varying, the spiral soliton is driven by
field-like torque, ~ dhy/dt46, which is derived after inserting Eq.
(5) into Eq. (4b). To suppress field-like torque, the proper
strength of SOT should be applied.

Discussion
Our proposal is dependent of the proper size (lw= 100 or 2N=
200 spins in this calculation) and electric field strength; the

necessary electric field can be easily estimated. The characteristic
spin–orbit coupling energy ESO of Y3Fe5O12 garnet is 3 eV38 and
in transition metal compounds, ESO is typically on the order of
~3 eV. Therefore, the electric field, required to generate dy/J=
0.043 can be estimated as |E|=ESOD/(Jeda) ~ 0.13 V nm−1, where
da is the distance between the nearest neighbor magnetic ions and
is set to be ~1 nm. To estimate switching power in our work, we
suppose simple magnetic pad geometry with thickness t (=5 nm),
width w (=60 nm) and pad length (2lw= 200 nm). In the nano-
pad with finite w, the two DM vectors (Dy and Dz) are induced,
according to Dij∝ Ebx×eij, However, the effective anisotropy is
along z axis, so that Dz induces magnon splitting in momentum
space, not spiral structure along y axis. Possible candiates are
MnF247, and YFeO3

48; all are G-type antiferromagnetic insulators
with dominant easy axis and the ratio K/J ~ 10-4. For example, at
room temperature, the resistivity of YFeO3 is ρ ~ 106Ω·m49

and the resistance R= ρt/(wlw) ~ 4.17 × 1011Ω. Therefore, power
W=V2/R ~ 1 pW.

Table 1, we compare the critical switching power estimated
from our scenario and SOT or spin transfer torque (STT)
devices in the different magnetic tunnel junction structures.
The different types of SOT and STT devices is characterized
to be of comparable order from ~ μW to ~ mW where SOT
devices have the mimimum size as determined by thermal
requirements50,51.

As noted in introduction, structural DM interaction strength by
asymmetric electrodes could be reduced below dc by engineering its
thickness52 or utilizing symmetric electrodes, compared with
electric field-induced DM energy. However, the structural DM
interaction, weak enough to form a quasi-uniform configuration,
reduces the required electric field strength. The above statements
are also valid in ferromagnetic counterparts because a ferromag-
netic spiral structure is formed by competition between anisotropy
sand DM energy and is excited by SOT; in ferromagnetic nanowire,
two conditions are given as φ(z= lw/2)= nπ for the S state or
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φ(z= lw/2)= (2n+ 1)π/2 for the AS state and dφ/dz|z=1 or lw= dy/
(2A) and dc= 4(AKeff)1/2/π30. Finally, it remains to be seen if there
is the electric field effect in different magnetic systems. In magnetic
metal system with broken inversion symmetry, the generation
mechanisms of DM interaction are two folds: (1) Fert-Levy
mechanism53 and (2) Rashba SOC39–41,54. In the Fert-Levy
mechanism, itinerant electron is mainly exchange-coupled with
magnetic ion by RKKY interaction. An additional coupling leads to
the DM interaction by scattering of itinerant electron with heavy
metal. As aforementioned, the Rashba SOC is related to also itin-
erant electron in the material with strong SOC. Another electric
field induced modulation of anisotropy is reported in the ferro-
magnetic metal/oxide interface or Ta/ultrathin CoFeB/MgO55, the
perpendicular magnetic anisotropy (PMA) is originated from
hybridization of oxygen p-orbital and iron d-orbital. In this case,
the electric field induces charge redistribution of electron of
magnetic metal, resulting in modulation of PMA21,55,56. However,
the magnetic insulator is lack of conduction electron and it is hard
to expect the charge redistribution by electric field and its related
anisotropy modulation.

In conclusion, we investigated spiral dynamics in the presence
of DM interaction. In soliton-based spin dynamics, there are two
states (symmetric and antisymmetric state) due to competition
between anisotropy energy and DM interaction, in which one is
stable at a potential minimum, and the other is metastable at a
potential maximum, implying that external (or internal) pertur-
bation is necessary for viable applications. Also, all points with
potential barrier of zero should be avoided because a single state
is not determined energetically. Electric field control of DM
interaction is promising for manipulation of AFM because it
overcomes the challenging issues of phase matching and over-
shooting by conventional external torque and does not induce
charge-carrying issues such as Joule heating. Finally, by tuning
the DM energy and interpreting spiral behavior on soliton pic-
ture, we show that the AFM switching can be performed with an
effective single-pulse scheme.

Method
Numerical simulations. Numerical simulations (Landau Lifshitz Gilbert model,
Eqs. (4a) and (4b)) were conducted from 0 to 500 picosecond (ps) with a 0.1 ps
interval using proper parameters for antiferromagnetic insulators with terahertz
precessional frequency: J= 41.4 meV (1013 s−1, 10 THz), Kz= 0.0003 J or 4.14 μeV
(109 s−1, 1 GHz), ωs= 2π×104 s−1 (≪Kz), α= 0.0008 and lw= 100. The magneto-
static interaction is neglected for clear oscillating behavior of phase. The rising
and falling times of the time-varying electric field pulse were set to 1 ps so that
the oscillating phase does not experience unwanted effects during electric field
change.

Data availability
The data that supports the findings of this study is available from the corresponding
author upon request.
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