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Abstract: Recent advances in lead halide perovskite quantum dots appeal with their potential 
in various optoelectronic devices such as photovoltaics, photodetectors, light-emitting diodes 
(LEDs) and lasers. However, lack of information on the intrinsic optical properties of lead 
halide perovskite quantum dots (QDs) lags the progress in device performances and further 
development in various applications. In this letter, the complex dielectric function of 
CH3NH3PbBr3 perovskite cubic colloidal QDs was determined from the UV-Vis absorption 
by using a modified iterative matrix inversion (IMI) method. The modified IMI method takes 
into account the dilute solution with cubic inclusions, while the conventional method only 
considers spherical or elliptical inclusions by Maxwell-Garnett (MG) effective medium 
theory. In addition, singly subtractive Kramer Kronig (SSKK) relations have also been 
considered to compensate for possible errors arising from the finite wavelength range of the 
experimental absorption data. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
The accurate optical constants of semiconducting materials are essential for designing 
optoelectronic devices, such as photovoltaic, photodetector, light emitting diodes (LEDs) and 
lasers. For example, the complex dielectric function, R Iiε ε= +ε and the complex refractive 

index, n iκ= +n  have already been widely used to determine the quantum confinement 
effect [1–3] and to estimate external quantum efficiency of LEDs [4–6]. Recently, perovskite 
quantum dots (QDs) have emerged as a potential candidate for various optoelectronic devices 
due to their excellent optical and electrical properties, such as high photoluminescence 
quantum yield (PLQY), high exciton binding energy and decent electrical conductivity, etcs 
[7–9]. In spite of their great experimental optoelectronic properties, however, quite limited 
information on the intrinsic optical constants of perovskite QDs is reported. Some recent 
reports on the optical constants of lead halide perovskites are for thin film and single crystal 
but not for QDs [10–14]. Moreover, those are mostly based on spectroscopic ellipsometry that 
usually requires pinhole-free and optically smooth surface samples on the standard glass or 
silicon substrates. 

In general, the data analysis of the spectroscopic ellipsometry requires an optical model 
defined by various sample conditions, such as chemical composition, grain size, crystallinity 
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 sol nε ν= +eff nε α  (1) 

where solε is the real part of the solvent dielectric function and fν is the volume fraction of 

QDs in the solution. For the dilute solution, its absorption is mostly due to the imaginary part 
of the dielectric function, or Im[ ]effε  which can be approximated as Im[ ] Im[ ]eff nε α . The 

polarizability of spherical QDs in normalized form is 

 3
2

sol
sol

sol

εε
ε

−
=

+
r

n
r

εα
ε

 (2) 

where R Iiε ε= +rε is the relative dielectric function of spherical QDs. Therefore, the 

imaginary part of the dielectric function, Im[ ]effε can be expressed as 
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Then the intrinsic effective absorption coefficient, iμ of the dilute ( 1)fν <  QDs solution can 

be related to the intrinsic dielectric function in analytical form as 
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which is also known as Maxwell-Garnett (MG) effective medium theory, where s soln ε=  is 

the real refractive index of the solvent and sqf represents local field factor for dielectric 

sphere [19]. Meanwhile, the absorption coefficient can also be determined from experimental 
absorbance, A by 

 
ln10

i
f f

A

L

μμ
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= =  (5) 

where μ  and L  are the experimental absorption coefficient and the optical path length, 

respectively. 

 

Fig. 2. Photoluminescence and absorption of CH3NH3PbBr3 perovskite cubic CQDs. 

As mentioned earlier, the idea is to repeat calculation of the theoretical absorption 
spectrum by varying dielectric function, until it becomes identical to the experimental values. 
The dielectric function is determined when the theoretical values converge to the 
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experimental values, and this is known as iterative matrix inversion (IMI) method. However, 
the conventional IMI method is valid only for spherical QDs which are not always true for the 
actual QDs that can be in any shape, such as polyhedrons, circular cylinder, ellipsoid, 
including spheres as well. For example, in our case, the optimized green emitting (510 nm) 
perovskite QDs are synthesized as ~10 nm cubic particles (Fig. 1(a) and Fig. 2) while the 
same synthesis with lower temperature gives spherical QDs (Fig. 1(b)). Therefore, the 
conventional method needs further modification for evaluating more accurate optical 
constants of cubic QDs. 

Researchers have already reported the accurate estimate for the normalized polarizability 
of a dielectric cube [18,20] 
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where rε  is the relative dielectric function of the cubic QDs, α∞  is 36.442 for a conducting 

cube and 0α is −1.6383 for an insulating cube. However, as the equation manifests, the 

polarizability of dielectric cube is expressed in numerical form. Therefore, it is very difficult 
to make analytic relation between iμ  and rε for the mixture of solution with cubic inclusions. 

 

Fig. 3. (a) The polarizability of dielectric sphere and cube. (b) The polarizability ratio of 
dielectric cube to sphere as a function of εr (inset: magnified for actual εr range). 

Figure 3(a) shows the polarizability, nα  of dielectric sphere and cube calculated using 

Eqs. (2) and (6) with 1>rε . It is observed that the polarizability of a dielectric cube is always 

larger than that of sphere. This implies that the dielectric cube shows stronger response to an 
external field than the sphere. Hence, it is also assumed that the local field factor of dielectric 
cube must be stronger than that of sphere, which will later be discussed. Figure 3(b) 
represents the polarizability ratio of dielectric cube to sphere ( / )ncube nsphereα α  as a function of

rε . To simplify the polarizability of cube in analytical form, /ncube nsphereα α was approximated 

by following first order linear equation: 

 / 0.014 1+ncube nsphere rα α ε  (7) 

in 4.3 6.3≤ ≤rε  where the actual rε  of bulk CH3NH3PbBr3 perovskite varies in the visible 

wavelength region [10]. Therefore, the polarizability of cube can now be written in simple 
analytical form as 
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The calculated polarizability of dielectric cube using Eq. (8) is plotted as a solid line in Fig. 
2(a), which is almost the same as polarizability calculated by numerical form, Eq. (7). Then 
the imaginary part, Im[ ]ncubeα can be expressed as 
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The intrinsic effective absorption coefficient of the cubic QD solution, iρ is 
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where cqf  represents the local field factor for dielectric cube. This can be rewritten in terms 

of effective absorption coefficient of the spherical QD solution, iμ  

 
2

(0.042 ) (1 0.028 )i sol sol i
sn

πρ ε ε μ
λ

= + −  (11) 

The analytical form of theoretical absorption coefficient for dielectric sphere and cube is now 
defined as iμ and iρ , respectively. For its later use in the modified IMI method, iρ can be re-

arranged as 
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The modified IMI method considers singly subtractive Kramer-Kronig (SSKK) relation to 
estimate more accurate dielectric function from experimental absorption spectrum. The 
conventional KK relation requires the input Iε  values in infinite spectral range to obtain 

exact Rε which is not possible in actual experimental conditions. Bachrach and Brown firstly 

introduced SSKK relation [21] in order to reduce the errors caused by the finite spectrum as 
they calculated the real refractive index of a medium from a measured absorption spectrum. 
The modified IMI method starts with SSKK relations in the discrete frequency form 
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where 1ω  is the reference frequency at which we already know the value of 1( )Rε ω . As we 

take Iε and Rε as column vectors, the equation can be written in matrix form: 

 1

2
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π
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theoretical iμ continues until it converges to experimental value and the input Rε and Iε are 

renewed as R Rε ε+ Δ and I Iε ε+ Δ for each calculation. Once the theoretical iμ converges to 

experimental iμ , with root-mean-square error below 10−6, iteration stops and Iε  and Rε  are 

printed. 

 

Fig. 5. The convergence of theoretical i to the experimental i. (b) The local field factors. The 
comparison of resultant (c,d) complex refractive index and (e,f) complex dielectric function. 

Figure 5(a) shows the changes in iρ with modified IMI method. During each iteration, iμ
is recalculated and iρ is also updated. The theoretical iρ rapidly becomes close to the 

experimental iρ  in only 5 iterations and it completely converges to the experimental iρ after 

27 iterations. 
The results obtained by both conventional and modified IMI methods for our 

CH3NH3PbBr3 perovskite cubic CQDs are also compared. The conventional IMI method 
assumes our QDs be sphere, while the modified IMI assumes them to be cube. It is expected 
that cubic CQDs have larger local field factor than spherical CQDs because of their higher 

polarizability. Figure 5(b) represents the square of local field factors, 
2

sqf and
2

cqf  

calculated by conventional and modified IMI method, respectively. As expected, 
2

cqf is 

larger than 
2

sqf in most of wavelength range where the QDs absorb light. The stronger local 

field of dielectric cube implies that it interacts more strongly with external field. This makes 
dielectric cube absorb and retard more light than sphere when they have the same optical 
constants. However, our calculation is based on the same experimental absorption spectrum, 
which assumes that the dielectric cube and sphere had absorbed the same amount of the light. 
Therefore, the conventional IMI method should show overestimated κ  and Iε for dielectric 

sphere. The results are represented in Figs. 5(c)-5(f). The real and imaginary part of the 
complex refractive index are represented in Figs. 5(c) and 5(d), and the real and imaginary 
part of the complex dielectric function are plotted in Figs. 5(e) and 5(f). As expected, the κ  
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and Iε values for dielectric sphere are observed to be larger than those for cube. These results 

show that the modified IMI method reflects well the shape-dependent changes in dielectric 
function for cubic QDs compared to spherical QDs. 

4. Conclusion 
In summary, we have extracted the intrinsic optical constants of CH3NH3PbBr3 perovskite 
cubic CQDs directly from their absorption spectrum by using modified IMI method. The 
modified IMI method takes into account the dilute solution with dielectric cubes, while the 
conventional method only considers spherical or elliptical inclusions by MG effective 
medium theory. In addition, SSKK relations have also been considered to compensate 
possible errors arising from the finite wavelength range of the experimental absorption data. 
The developed method is applicable to analysis of various cubic colloidal QDs and 
understanding their fundamental properties. 
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