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Abstract: Two main spatial cues that can be exploited for dual microphone voice activity detection
(VAD) are the interchannel time difference (ITD) and the interchannel level difference (ILD).
While both ITD and ILD provide information on the location of audio sources, they may be impaired
in different manners by background noises and reverberation and therefore can have complementary
information. Conventional approaches utilize the statistics from all frequencies with fixed weight,
although the information from some time–frequency bins may degrade the performance of VAD.
In this letter, we propose a dual microphone VAD scheme based on the spatial cues in reliable
frequency bins only, considering the sparsity of the speech signal in the time–frequency domain.
The reliability of each time–frequency bin is determined by three conditions on signal energy,
ILD, and ITD. ITD-based and ILD-based VADs and statistics are evaluated using the information
from selected frequency bins and then combined to produce the final VAD results. Experimental
results show that the proposed frequency selective approach enhances the performances of VAD in
realistic environments.

Keywords: dual microphone; interchannel level difference; interchannel time difference; frequency
selection; voice activity detection

1. Introduction

Voice activity detection (VAD) which decides if the speech signal is present in the current frame
of the input signal has become a crucial part of the speech enhancement, noise estimation, pitch
extraction, and the variable rate speech codecs [1–32]. Single microphone VAD usually utilizes
energy-related features, statistical model-based statistics including signal-to-noise ratios (SNRs) and
likelihood ratios [8–11], or speech-specific features such as linear predictive coefficients, formant shape,
zero-crossing rate, and cepstral features [12–20]. Recently, single microphone VADs using deep neural
networks are also proposed [22–26], although some of the application scenarios such as mobile devices
may not accommodate much computation. These single channel approaches, however, cannot utilize
spatial diversity of the sound sources and therefore the performance is limited when strong speech-like
interference is present. Since the devices with multiple microphones have become popular these days,
reliable multi-microphone VAD becomes more important.

Like the human binaural perception, two main cues that capture the spatial information may be
the differences of the arrival times and signal levels in the microphones. These statistics, which are
called interchannel time difference (ITD) and interchannel level difference (ILD), can be exploited
for dual microphone VAD. When the range of the direction-of-arrival (DoA) of the desired signal is
known in advance as in the case of the handset mode of the mobile phone, the VAD can be constructed
based on the estimated DoAs. There have been several approaches to the DoA estimation and the
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VAD based on ITD. The generalized cross correlation with phase transform (GCC-PHAT) [33] may be
the most popular approach for DoA estimation and it can be utilized for ITD-based VAD. The long
term information of interchannel phase difference (LTIPD) was also proposed as a test statistics for
ITD-based VAD, which measures how consistently the signal energy is concentrated in a small DoA
range [27]. ILD can also be utilized for VAD when the target source is located close to one of the
microphones or there are obstacles between the target source and one of the microphones. In [28],
the normalized difference of power spectral density (NDPSD) was proposed as a test statistic for
VAD. Choi and Chang [29] proposed two step power level difference ratio (PLDR) using two different
smoothing factors as an alternative measure of ILD. There have also been approaches exploiting both
ITD and ILD information, as they reflect different characteristics of spatial diversity. In [30], voice
activity is decided using a support vector machine (SVM) for which the inputs include both ITD-based
and ILD-based features. This approach can configure the relative importance of the ILD or ITD related
features in different frequency bins based on the training data, but cannot modify it dynamically
according to the input signal. Statistical model-based approaches were also proposed for multichannel
VADs adopting complex Gaussian model [31] or the spherically invariant random process [32] for the
distribution of each frequency component.

As speech signal is sparse in the time–frequency (TF) domain in nature, there are always TF bins
with SNRs in which the ILD or ITD information are more reliable and those with low SNRs where
the ILD or ITD information may not be useful at all in noisy environments. In this letter, we propose
a VAD based on both ITD and ILD information from reliable frequency bins only. The reliability
is determined for each TF bin by three conditions on signal energy, ILD, and ITD. ITD-based and
ILD-based VADs or statistics evaluated using only the reliable frequency bins are combined together
to construct final voice activity decision. The long term spectral divergence [17] and the subband order
statistics filter [18] uses the energies in the specific percentiles among the neighboring frames for the
given subband to evaluate the statistics for VAD. In [21], a subset of the frequency bins are utilized
for the SNR-based VAD, but the selection criterion is only based on the energies unlike the proposed
approach. Experimental results showed that the proposed approach can enhance the performance of
the dual microphone VAD.

2. Dual Microphone VADs Based on Spatial Cues

The dual microphone VAD can perform better if prior knowledge on the location of the desired
speaker is available. One example of the scenarios in which the range of the locations of the desired
signal source is known in advance is the handset mode of the mobile phone, where user’s mouth is
much closer to the primary microphone.

Let Y1(l, k) and Y2(l, k) be the K-point short-time Fourier transform (STFT) coefficients of the
signals from the primary and secondary microphones for the kth frequency bin at the lth frame,
respectively. The test statistics for the NDPSD-based VAD [28] are the difference of the powers
normalized by the average power of two microphone signals, which are not dependent on the absolute
signal level. The NDPSD for each frequency bin is given as

∆Φ(l, k) =
|Y1(l, k)|2 − |Y2(l, k)|2
|Y1(l, k)|2 + |Y2(l, k)|2 , (1)

where | · | denotes the magnitude. The voice activity is decided by comparing the NDPSD averaged
over all frequency bins with a threshold ξNDPSD as

VNDPSD(l) =

1, if 2
K

K/2
∑

k=1
∆Φ(l, k) ≥ ξNDPSD

0, otherwise
. (2)
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It is noted that each frequency bin contributes to the final test statistic equally, although the
absolute values of ∆Φ(l, k) do not have much information on the presence of speech in the current
frame if ∆Φ(l, k) is negative.

The two step PLDR method [29] also takes the difference of the powers in microphone signals
as basic information. The power differences of the input signals and noises in the microphones for
each frequency are recursively smoothed with two different smoothing factors to produce long-term

and short-term smoothed input and noise power level difference, ∆̂P
LT
Y (l, k), ∆̂P

ST
Y (l, k), ∆̂P

LT
N (l, k),

and ∆̂P
ST
N (l, k), with the help of estimated speech presence probability. Then, the log ∆̂P

j
Y(l,k)

∆̂P
j
N(l,k)

are

averaged over all frequency bins to produce two PLDRs. They are converted to two a posteriori
probabilities of speech presence, and then thresholded to determine voice activity. Like NDPSD, PLDRs
can also be strongly affected by the presence of the interfering source near the secondary microphone.

Another important source of information about the location of the sound sources is ITD. Ref. [27]
proposed LTIPD which measures how much energy is concentrated in the frequency bins for which
the DoA estimates for nearby frames fall into the same small DoA sector. The target DoA range is
divided into U overlapped sectors of which the width are equal. LTIPD is then defined as

E(l) = max
1≤i≤U

∑
k:Ci(l,k)>κi

|Y1(l, k)|2, (3)

where i denotes the indices of the sectors, Ci(l, k) is the number of frames in which DoA estimate for
the k-th frequency bin indicates the ith sector among the last L frames, and κi is the threshold of the
concentration of DoAs. The VAD based on LTIPD is given as

VLTIPD(l) =

{
1, if E(l) ≥ ξLTIPD

0, otherwise
. (4)

It is noted that the LTIPD-based VAD includes the reliable frequency selection, but the selection
criterion is based only on the ITD information.

The performance of VAD may be improved by utilizing both ITD and ILD information
simultaneously, as two statistics provide different information on the spatial diversity. In [30], the VADs
based on both ITD and ILD information are proposed. The simplest way proposed in [30] is the logical
combination of the ITD-based and ILD-based VADs. The VAD using the logical “and” operation of the
voice activities from ITD and ILD is given as

VAND(l) =

{
1, if VITD(l) = 1 and VILD(l) = 1

0, otherwise
, (5)

which was found to be more effective than the “OR” operation from several experiments. Among the
candidates for the VITD and VILD, the combination of the LTIPD-based VAD and the NDPSD-based
VAD performed the best [30]. Another method proposed in [30] is to build a VAD using SVM for which
the input includes both the ILD-based and ITD-based features. After training with the clean speech
data mixed with various noises, the output of the SVM, y

(
x(l)

)
= wT

o x(l) + bo where x(l) is the input
of the SVM and wo and b0 are the weight vector and the bias for the optimal hyperplane given the
training set, respectively [34], is used to estimate the a posteriori probability p(VSVM = 1|x(l)) in the
test phase. Then, the decision rule becomes

VSVM(l) =

{
1, if p(VSVM = 1|x(l)) ≥ ξSVM

0, otherwise
. (6)
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As for the input of the SVM, it is reported that |Y1(l, k)|2, |Y2(l, k)|2, and the phase difference
between Y1(l, k) and Y1(l, k), ∆ψ(l, k), showed the best performance among a number of ILD- and
ITD-related features [30]. However, in our experiments, including pLT(l) and pST(l) from the two-step
PLDR approach on top of |Y1(l, k)|2, |Y2(l, k)|2, and ∆ψ(l, k) slightly improved the performance of
VSVM. Although the SVM can put different importance on the statistics from different frequency bins,
the weights are fixed in the test phase and cannot be dynamically changed from frame to frame.

The performance of each VAD can be significantly enhanced by introducing the hangover scheme,
which requires several consecutive frames with instantaneous VAD of 0 to make the final VAD to be 0.
The number of hangover frames remains as a tunable parameter along with the thresholds for each
VAD. For VAND, the hangover scheme is applied when evaluating VITD, VILD, and VAND with three
separate hangover parameters.

3. Dual Microphone VAD Using Reliable Spatial Cues

As speech components are sparsely distributed in the TF domain, the spatial cues in some of
the TF bins are useful while those from other TF bins are not reliable. In this paper, we propose a
dual microphone VAD based on the spatial information from the selected frequency bins with high
reliability, which is determined in each frame by signal energies, ILDs, and ITDs for the corresponding
frequency bins. After we determine the reliability of information from each TF bin, the test statistics
for conventional VAD approaches are modified to consider reliable TF bins only.

Let us denote the spectral mask to select reliable frequency bins for the k-th frequency bin at the
l-th frame as m(l, k), i.e., m(l, k) = 1 for the TF bins with reliable spatial information and m(l, k) = 0
for other TF bins. The first condition to determine the reliability of the spatial information in each TF
bin is on the signal energy. If the energy of the input noisy signal in the primary microphone is not
high enough, the probability of speech presence is low and the ILD and ITD information is vulnerable
to measurement noises. Thus, the first sub-mask m1(l, k) is constructed based on the input signal
energy as follows:

m1(l, k) =

{
1, if |Y1(l, k)|2 ≥ η1

0, otherwise
, (7)

where η1 is the threshold.
The second and third conditions determine the reliability in each bin with ILD and ITD

information, respectively. The second sub-mask m2(l, k) becomes 1 if the instantaneous ILD for
the frequency is high enough:

m2(l, k) =

1, if log |Y1(l,k)|2
|Y2(l,k)|2

≥ η2

0, otherwise
, (8)

where η2 is the threshold for the level difference. Since this sub-mask is only used to select reliable
spectral bins from which the test statistics for the dual microphone VAD are computed, the threshold
η2 is not set to maximize the performance of the VAD, but is configured to discriminate the frequency
bins that may contain desired speech signals and those in which there is definitely no speech signal.
This sub-mask would enhance the robustness of the VAD to the noise sources that are close to the
secondary microphone, which may have a huge adverse impact on the ILD statistics. The frequency
bins with low enough ILD will not have the desired speech and should be excluded in the computation
of the ITD-based test statistics. The third condition based on ITD also aims to eliminate the TF bins
in which the speech is absent for sure. The third sub-mask m3(l, k) is 1 only if ITD in the TF bin is
between τ1 and τ2 which correspond to the time differences of arrival (TDoAs) when the source is
located at the boundaries of the target DoA range:
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m3(l, k) =

1, if τ1 ≤ ∆ψ(l,k)K
2π fsk ≤ τ2 or k > K2 or k < K1

0, otherwise
, (9)

where (K1, K2) is the range of the frequency bin index. K1 is set to exclude low frequency bins in
which the DoA estimate is too sensitive to the small errors in phase measurement, whereas K2 is set to
avoid spatial aliasing with a certain margin. It essentially means that we will not consider ILD or ITD
information from the TF bins for which the TDoA is out of (τ1, τ2) range. The combined spectral mask
is given as m(l, k) = m1(l, k)m2(l, k)m3(l, k), which passes through only the spectral information from
TF bins satisfying all the three conditions to prevent the disturbance from the TF bins with interferences
only. In addition, the frames with few valid bins are regarded as non-speech frames, i.e., the final voice
activity is 0 if the number of valid frequency bins, Km(l) = ∑k m(l, k), is less than a certain threshold,
Kmin. It is noted that η1, η2, τ1, and τ2 are set to reject only TF bins with definitely no speech signals
considering the following combination with other masks.

The proposed frequency selective approach using the spectral masks m(l, k) can be applied to any
frequency domain VAD methods that summarize the information from each frequency. The frequency
selective version of the NDPSD-based VAD becomes

VFS
NDPSD(l) =

1, if
K/2
∑

k=1

m(l,k)
Km(l) ∆Φ(l, k) ≥ ξNDPSD and Km(l) ≥ Kmin

0, otherwise
. (10)

Similarly, the Equation (3) for the LTIPD-based VAD is modified to consider only reliable frequency
bins as EFS(l) = max

1≤i≤U
∑

k:Ci(l,k)>κi

m(l, k)|Y1(l, k)|2, and then VFS
LTIPD(l) can be constructed in a similar

manner with the Equation (4). It is not straightforward to modify the two step PLDR method
incorporating m(l, k). The adaptation of short-term and long-term smoothing factors are originally
governed by the speech presence probability, which is computed based on the ILD and the ILD for
noise only period. As the smoothing factor control part can be viewed as a soft-decision version of
the frequency selective approach although it relies solely on ILD information, we did not construct
the frequency selective version of it. The frequency selective version of VAND is simply obtained
by “AND" operation of VFS

NDPSD(l) and VFS
LTIPD(l). As for the VAD based on SVM, the input features

corresponding to the TF bins with m(l, k) = 0 are set to 0 so that they do not contribute to the output
of the SVM, y(x(l)) = wT

o x(l) + bo. Then, VFS
SVM(l) is constructed based on the a posteriori probability

computed from the output of the SVM with masked input vectors.

4. Experimental Result

To demonstrate the performance of the proposed algorithm, we have recorded the desired speech,
directional interferences, and diffuse noises with two microphones located on a commercial mobile
phone, Samsung Galaxy S7. The placement of the user and the loudspeakers are illustrated in Figure 1.
The size of the room was 3119 × 3232 × 2080 mm3 and the reverberation time of the room was
approximately 120 ms. In the center of the room, one of the two male and two female speakers stood
holding the mobile phone with the right hand in the handset mode. The desired near-end speech
was spoken by those speakers in English. The distance between the microphones was about 140 mm.
The diffuse noise field was generated by playing back white, babble, or car noises from NOISEX-92
database [35] with four loudspeakers facing the corners of the room to incur complex reflections as
shown in Figure 1. Directional interferences were the speech utterances spoken by four male and four
female speakers chosen from the TIMIT database, and were played from one of the four loudspeakers
located 1000 mm away from the user at the directions {45◦, 135◦, 225◦, 315◦} facing the users as
depicted in Figure 1. Two minutes of near-end speech spoken by one male and one female speakers
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was used for the training of the SVM and the parameter setting of other approaches, while another
six minute long speech spoken by the other male and female speakers was used to generate the test
data. The near-end speech was mixed with a directional interference coming from one of the four
loudspeakers or one of the diffuse noises at the SNR level out of {−5, 0, ..., 20} dB on the primary
microphone, which makes the total length of the training and test data 84 and 252 min, respectively.
The sampling rate was 8 kHz, and 256 point Hamming window was applied with 10 ms frame shift.
The frequency index range (K1, K2) considered in m3(l, k) and LTIPD was (4, 31), which corresponds to
(125 Hz, 968.75 Hz), considering that the microphone distance was 140 mm. The range of the target
DoA for the ITD-based VAD statistics was set to be (10◦, 70◦) when 0◦ corresponds to the end-fire
direction to the primary microphone side. The range of the target DoA for the reliable frequency
selection that determines τ1 and τ2 in Equation (9) was (0◦, 80◦), which was a bit wider than that for
VAD. These values were set to allow the deviation of the estimated DoA due to the noises and the
individual variability in how to hold the phone. The thresholds for m1(l, k) and m2(l, k), η1 and η2 ,
were set to minimize the equal error rate on training set. The parameters for the LTIPD-based VAD, L
and U, were set to 12 and 10, respectively. Kmin was set to 3.

3119 𝑚𝑚𝑚𝑚

32
32

𝑚𝑚
𝑚𝑚

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑀𝑀𝑀𝑀𝑆𝑆.

𝑃𝑃𝑆𝑆𝑀𝑀𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆
𝑀𝑀𝑀𝑀𝑆𝑆.

1000 𝑚𝑚𝑚𝑚

Figure 1. Geographical placement of the noise sources and the receiver.

The performances of the various ILD- and ITD-based VAD methods with and without the
proposed reliable frequency bin selection for the whole test data are shown in Figure 2 in the form
of the receiver operating characteristics (ROC) curves. The original ROC curves are the collection
of the (Hit rate, FAR) pairs with different threshold parameters, so one ROC curve can be drawn
for each number of hangover frames for each VAD. The curves shown in Figure 2 are the collection
of the leftmost points among all ROC curves with different hangover parameters given the hit rate
for each VAD method. Adaptive multi-rate (AMR) VAD option 2 was also shown as a performance
benchmark [7]. The performances of the original VAD methods using all frequency bins are shown as
dashed lines, while the solid lines indicate the performances of the frequency selective versions of the
corresponding methods. The VADs with the proposed frequency selective approach outperformed
the original VAD methods. Among all the methods, VFS

AND, the frequency selective version of VAND,
performed the best when the false alarm rate (FAR) was less than 29.02%, while VFS

SVM was the best
when we need a hit rate higher than 98.06% in the expense of a higher FAR. Figure 3 shows the ROC
curves for different SNRs averaged over all noise types. The tendency that the reliable frequency
selection improves the performance was similar in all cases except some regions with very low hit
rates. The performance difference between VAND and VSVM was not as large as in [30], possibly due to
the mismatch in the near-end speakers in the training and the test. VFS

SVM could further enhance the
performance of the VSVM with dynamic frequency selection, especially for the lower SNRs. Table 1
shows the performance of each VAD in terms of accuracy, precision, and recall at the operating point
minimizing the overall error rate EOVR defined as EOVR = α× FRR+(1− α)× FAR [30], in which FRR
denotes the false rejection rate. α was set to 0.8 as the false rejection may be more critical for variable
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rate speech codecs or speech enhancement. Experimental results in a more reverberant environment
are also available at the demo page (https://mspl.gist.ac.kr/vad_demo/dualchannelVAD.html).
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Figure 2. Receiver operating characteristics curves for various voice activity detection (VAD) with and
without the proposed frequency selective approach.
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Figure 3. Receiver operating characteristics curves for various VADs with and without the proposed
frequency selective approach for each signal-to-noise ratio (SNR).

Table 1. Performance of accuracy, precision, and recall at the operating point minimizing EOVR.

METHOD AMR PLDR NDPSD NDPSDFS LTIPD LTIPDFS SVM SVMFS AND ANDFS

Accuracy 83.28 94.35 87.79 90.19 93.38 96.17 94.40 94.46 96.42 97.13
Precision 76.91 92.09 84.14 87.48 92.37 95.83 92.16 92.11 96.93 97.00

Recall 99.64 98.20 95.97 95.97 95.94 97.31 98.22 98.40 96.58 97.82

5. Conclusions

In this letter, we have proposed a dual microphone VAD scheme based on the spatial information
from reliable TF bins only. The frequency selection masks are constructed based on three criteria on
signal energy, ILD, and ITD. Conventional ITD- and ILD-based VADs and the combination of them
are modified to consider the spatial information from the reliable spectral bins only. Experimental
results with a commercial smartphone showed that the frequency selective approach can enhance the

https://mspl.gist.ac.kr/vad_demo/dualchannelVAD.html
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performance of the ILD- and ITD-based VADs, the logical combination of them, and the SVM-based
VAD in various noise environments.
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