
 

Entanglement and Rényi entropy of multiple intervals in
TT̄-deformed CFT and holography

Hyun-Sik Jeong ,* Keun-Young Kim ,† and Mitsuhiro Nishida‡

School of Physics and Chemistry, Gwangju Institute of Science and Technology,
123 Cheomdan-gwagiro, Gwangju 61005, Korea

(Received 26 July 2019; published 26 November 2019)

We study the entanglement entropy (EE) and the Rényi entropy (RE) of multiple intervals in two-
dimensional TT̄- deformed conformal field theory (CFT) at a finite temperature by field theoretic and
holographic methods. First, by the replica method with the twist operators, we construct the general
formula of the RE and EE up to the first order of a deformation parameter. By using our general formula, we
show that the EE of multiple intervals for a holographic CFT is just a summation of the single interval case
even with the small deformation. This is a nontrivial consequence from the field theory perspective, though
it may be expected by the Ryu-Takayanagi formula in holography. However, the deformed RE of the two
intervals is a summation of the single interval case only if the separations between the intervals are big
enough. It can be understood by the tension of the cosmic branes dual to the RE. We also study the
holographic EE for single and two intervals with an arbitrary cutoff radius (dual to the TT̄ deformation) at
any temperature. We confirm our holographic results agree with the field theory results with a small
deformation and high temperature limit, as expected. For two intervals, there are two configurations for EE:
disconnected (s-channel) and connected (t-channel) ones. We investigate the phase transition between them
as we change parameters: as the deformation or temperature increases the phase transition is suppressed and
the disconnected phase is more favored.
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I. INTRODUCTION

The AdS=CFT correspondence [1–3] is a mysterious
duality between field theories and gravity theories. It
gives a new geometric interpretation to a special class of
field theories. To check this correspondence, the con-
formal symmetry often plays an important role in explicit
computations of the partition function and correlation
functions. It is an interesting problem to make comput-
able examples for generalizations of the AdS=CFT
correspondence by deforming the conformal symmetry.
The authors of [4] proposed such an example: the
AdS3=CFT2 correspondence with the TT̄ deformation
and a finite radius cutoff.
Let us briefly review theTT̄ deformation of 2D conformal

field theory (CFT) on a flat spacetime [5–7]. Consider a
deformed CFT by the TT̄ operator with a deformation

parameter μ. The action (SðμÞQFT) of this deformed CFT is
defined via the differential equation,

dSðμÞQFT

dμ
¼
Z

d2xðTT̄Þμ; SðμÞQFT

���
μ¼0

¼ SCFT; ð1:1Þ

where SCFT is the action of the undeformed CFT, and ðTT̄Þμ
is a local operator which is constructed by the energy
momentum tensor of the deformed CFT. See Eq. (6.10)
in [7] for a simple example.
If we consider the first order perturbation in μ, the

perturbative action (SQFT) is given by

SQFT ¼ SCFT þ μ

Z
d2xTT̄; ð1:2Þ

where

T ≔ Tww; T̄ ≔ Tw̄ w̄; ð1:3Þ
are the energy momentum tensors of the undeformed CFT
and w and w̄ are complex coordinates.1 The TT̄ deforma-
tion of 2D CFT has a solvable structure. In particular, the
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1We omit the Θ2 ≔ Tww̄Tww̄ term because the correlation
functions which include Θ2 on the cylinder are zero.
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energy spectrum on a spatial circle can be computed non-
perturbatively [6,7]. For recent studies on the TT̄ deforma-
tion see, for example, [8–28]. Non-Lorentz invariant cases
are also studied in, for example, [29–34].
The proposal in [4] is that the gravity dual of the

TT̄-deformed 2D holographic CFT with μ > 0 is anti–de
Sitter (AdS3) gravity with a finite radius cutoff. This
proposal has been studied and checked by various methods.
In particular, the energy spectrum of the deformed CFT is
matched to the quasilocal energy in the cutoff space
time r ≤ rc [4]. See also recent development of this
holography in [35–42]. Another gravity dual of the
deformed CFT for vacua of string theory was proposed in
[43]; see also [44–55].
Holographic entanglement entropy [56,57] is a well

studied topic in the AdS=CFT correspondence. The entan-
glement entropy in the TT̄-deformed CFT and its holo-
graphic dual have been studied in [58–66]. Especially,
a perturbative computation of the entanglement entropy
in the TT̄-deformed 2D CFT on a cylinder [60] and its
nonperturbative computationwith a large central charge on a
sphere [59] are consistent with the holographic entangle-
ment entropy with a radius cutoff.
Without the TT̄ deformation, the entanglement entropy

of a single interval in the ground state of 2D CFT is
expressed by a well-known formula [67,68]. Even though it
has been reproduced by holography, we note that it is valid
in any CFT not only in the holographic CFT, where the
conditions for the holographic CFT are a large central
charge and sparse spectrum. This universality follows from
the universality of two point functions in CFT.
On the other hand, the entanglement entropy of multiple

intervals is related to higher point functions of the twist
operators, which depend on the details of CFT. Thus, in
order to check the AdS3=CFT2 correspondence for the
entanglement entropy of multiple intervals, we need to use

conditions for the holographic CFT. In [69], the entangle-
ment entropy of multiple intervals in the 2D holographic
CFT was computed by the dominant contribution (vacuum
conformal block) in the correlation functions, and it agrees
with the holographic entanglement entropy formula. This
agreement is an important consistency check for the holo-
graphic entanglement entropy formula because it is con-
firmed under the conditions of holographic CFT in the field
theory side.
With the first order TT̄ deformation, the Rényi entropy

of a single interval in the deformed 2D free fermions CFT
was studied at zero temperature [58,63] by using the twist
operators. In this paper, we develop a formula for Rényi
entanglement entropy of multiple intervals in 2D CFTwith
the first order TT̄ deformation at finite temperature by using
the twist operators. Our formula reproduces the Rényi
entropy of a single interval in the deformed 2D CFTat finite
temperature [60], where a different method, a conformal
map from a replica manifold to a complex plane, was used.
We find that the entanglement entropy of multiple

intervals in the deformed holographic CFT is a summation
of the one of the single interval because of the dominant
contribution from the vacuum conformal block. The Rényi
entropy of two intervals becomes a summation of the one of
the single interval if the distance between the intervals is
large enough. These “additivity” properties from the field
theory are consistent with the holographic computation
with a radius cutoff.
From the holographic perspective, the entanglement

entropy is identified with the minimal area of the surface
anchored at the boundary points of the interval at the cutoff
u ¼ uc. For two intervals, there are two configurations of
minimal surfaces: disconnected phase (s-channel) and con-
nected phase (t-channel) as shown in Fig. 1. By comparing
two areas of the minimal surfaces, we can determine “phase
transition” points of the holographic entanglement entropy.

FIG. 1. The holographic entanglement entropy for two intervals ½x01; x02� ∪ ½x03; x04� at u ¼ uc: schematic pictures of minimal surfaces
(red curves).
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This phase structure of the holographic entanglement
entropy will be useful to understand the entanglement
entropy in the TT̄ deformed CFT.
In [66], the phase transition of the holographic entan-

glement entropy of two intervals with the same lengths at
zero temperature was investigated. In this paper, we
generalize it to two intervals with different lengths and
at finite temperature. At high temperature, our holographic
computation shows that s-channel is always favored so
there is no phase transition. We show that this agrees with
the field theory computations. However, at zero temper-
ature and intermediate temperature there is a phase tran-
sition between s-channel and t-channel. We also discuss the
cutoff dependence of the phase transition of the entangle-
ment entropy.
The organization of this paper is as follows. In Sec. II, we

provide the formulas of the Rényi entropy with the first
order TT̄ deformation by using the twist operators. Based
on this formulas, in Secs. III and IV, we explicitly compute
the entanglement entropy and the Rényi entropy respec-
tively. In Sec. V, we study the holographic entanglement
entropy of two intervals with the finite radius cutoff and its
phase structure. We conclude in Sec. VI.

II. FORMULAS OF THE RÉNYI ENTROPY
IN THE DEFORMED CFT

In this section, we develop a formalism to compute the
Rényi entropy in 2D CFT at a finite temperature with a first
order perturbation by the TT̄ deformation. We use the twist
operators to compute correlation functions on the n-sheeted
surface in the replica method. This formalism can general-
ize the computation of the Rényi entropy of a single interval
[60] to multiple intervals.
Consider the deformed CFT by TT̄ deformation living

on the manifold M. By the replica method [67,68], the
Rényi entropy of a subsystem A ∈ M can be expressed as
follows:

SnðAÞ ≔
1

1 − n
log

ZnðAÞ
Zn ; ð2:1Þ

where Z is the partition function defined on M and ZnðAÞ
is the one defined on the n-sheeted surfaceMnðAÞwhich is
constructed from sewing n copies of M cyclically along A
on each M. A vivid example of this n-sheeted surface is
displayed in Fig. 2. Note that this Rényi entropy (2.1)
reduces to the entanglement entropy in the n → 1 limit,

SðAÞ ¼ lim
n→1

SnðAÞ: ð2:2Þ

In this paper, we consider the deformed CFT by the first
order perturbation of TT̄ at finite temperature, i.e., on a
cylinder M. The perturbative action is

SQFT ¼ SCFT þ μ

Z
M

TT̄; ð2:3Þ

where T and T̄ are the energy momentum tensors in the
undeformed CFT. We use coordinate w ¼ xþ iτ and w̄ ¼
x − iτ on the cylinder M. Here, τ is periodic as τ ∼ τ þ β,
and β can be interpreted as the inverse temperature. Thus, the
integral sign in (2.3) is understood as

R
M ≔

R
∞
−∞ dx

R β
0 dτ.

With this perturbative action, the first order perturbation of
SnðAÞ is [60]

δSnðAÞ ¼
μ

n − 1

�Z
Mn

hTT̄iMn − n
Z
M
hTT̄iM

�
: ð2:4Þ

Since we consider the first order perturbation by μ, we can
use CFT techniques to compute the correlation functions
in (2.4).
Let us express

R
MnhTT̄iMn by the twist operators.

Consider m intervals A ¼ ½x1; x2� ∪ � � � ∪ ½x2m−1; x2m� as
the subsystem. In this subsystem,

R
MnhTT̄iMn is given by

[63,68,70]

Z
Mn

hTT̄iMn ¼
Xn
k¼1

Z
M

hTkðwÞT̄kðw̄Þ
Q

m
i¼1 σnðw2i−1; w̄2i−1Þσ̄nðw2i; w̄2iÞiM

hQm
i¼1 σnðw2i−1; w̄2i−1Þσ̄nðw2i; w̄2iÞiM

¼
Z
M

1

n
hTðnÞðwÞT̄ðnÞðw̄ÞQm

i¼1 σnðw2i−1; w̄2i−1Þσ̄nðw2i; w̄2iÞiM
hQm

i¼1 σnðw2i−1; w̄2i−1Þσ̄nðw2i; w̄2iÞiM
; ð2:5Þ

FIG. 2. Schematic picture of manifold M3.
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where σn and σ̄n are the twist operators and wi denotes an
end point of each interval. Note that k in the first line is a
replica index and TkðwÞT̄kðw̄Þ is defined from the kth
replica fields. In the second line, we use the following
identity in a correlation function:

Xn
k¼1

hTkðwÞT̄kðw̄Þ � � �i ¼
1

n
hTðnÞðwÞT̄ðnÞðω̄Þ � � �i; ð2:6Þ

where TðnÞðwÞ and T̄ðnÞðw̄Þ are the total energy momentum
tensors of n replica fields, which are defined as follows:

TðnÞðwÞ ≔
Xn
k¼1

TkðwÞ; T̄ðnÞðw̄Þ ≔
Xn
k¼1

T̄kðw̄Þ: ð2:7Þ

Note the (2.6) is valid when the operators “� � �” therein
have the cyclic symmetry under the change of replica
indices.

In order to compute the correlation functions on the
cylinder M, consider a conformal map,

z ¼ e
2πw
β ; z̄ ¼ e

2πw̄
β ; ð2:8Þ

from w on M to z on a complex plane C. Under this
transformation, the total energy momentum tensors of n
replica fields transform as

TðnÞðwÞ ¼
�
2π

β
z

�
2

TðnÞðzÞ − π2nc
6β2

;

T̄ðnÞðw̄Þ ¼
�
2π

β
z̄

�
2

T̄ðnÞðz̄Þ − π2nc
6β2

; ð2:9Þ

where c is the central charge of the undeformed CFT.
For the calculation of (2.5), we use (2.9) and the Ward
identity with the energy momentum tensor (see, for
example, [34]),

hTðnÞðzÞO1ðz1; z̄1Þ � � �O2mðz2m; z̄2mÞiC ¼
X2m
j¼1

�
hj

ðz − zjÞ2
þ 1

z − zj
∂zj

�
hO1ðz1; z̄1Þ � � �O2mðz2m; z̄2mÞiC;

hT̄ðnÞðz̄ÞO1ðz1; z̄1Þ � � �O2mðz2m; z̄2mÞiC ¼
X2m
j¼1

�
h̄j

ðz̄ − z̄jÞ2
þ 1

z̄ − z̄j
∂ z̄j

�
hO1ðz1; z̄1Þ � � �O2mðz2m; z̄2mÞiC; ð2:10Þ

where hi and h̄i are the conformal dimensions of primary operators Oi.
2 The conformal dimensions of the twist operators

are [67,68]

hσn ¼ h̄σn ¼
c
24

�
n −

1

n

�
: ð2:11Þ

Then, we obtain

hTðnÞðwÞT̄ðnÞðw̄ÞQm
i¼1 σnðw2i−1; w̄2i−1Þσ̄nðw2i; w̄2iÞiM

hQm
i¼1 σnðw2i−1; w̄2i−1Þσ̄nðw2i; w̄2iÞiM

¼ 1

hQm
i¼1 σnðz2i−1; z̄2i−1Þσ̄nðz2i; z̄2iÞiC

�
−
π2nc
6β2

þ
�
2π

β
z

�
2X2m
j¼1

�
cðn − 1

nÞ
24ðz − zjÞ2

þ 1

z − zj
∂zj

��

×

�
−
π2nc
6β2

þ
�
2π

β
z̄

�
2X2m
j¼1

�
cðn − 1

nÞ
24ðz̄ − z̄jÞ2

þ 1

z̄ − z̄j
∂ z̄j

���Ym
i¼1

σnðz2i−1; z̄2i−1Þσ̄nðz2i; z̄2iÞ
�

C
; ð2:12Þ

where the differential operators ∂zj and ∂ z̄j in (2.12) act only on the correlation function.
Finally, with (2.4), (2.5), and (2.12), we obtain an expression of the Rényi entropy in the deformed CFT of the multiple

intervals by using the twist operators,

2In the usual conformal ward identity, the number of operators Oi could be any number. But here we restrict it as an even number 2m
because our interest in this paper is the m-intervals.
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δSnðAÞ ¼ −
μc

12ðn− 1Þ
8π4

β4

Z
M

�
z2
X2m
j¼1

�
cðn− 1=nÞ
24ðz− zjÞ2

þ ∂zj logh
Q

m
i¼1 σnðz2i−1; z̄2i−1Þσ̄nðz2i; z̄2iÞiC

ðz− zjÞ
�

þ z̄2
X2m
j¼1

�
cðn− 1=nÞ
24ðz̄− z̄jÞ2

þ ∂ z̄j logh
Q

m
i¼1 σnðz2i−1; z̄2i−1Þσ̄nðz2i; z̄2iÞiC

ðz̄− z̄jÞ
��

þ μ

nðn− 1Þ
16π4

β4
1

hQm
i¼1 σnðz2i−1; z̄2i−1Þσ̄nðz2i; z̄2iÞiC

×
Z
M

z2
�X2m

j¼1

�
cðn− 1=nÞ
24ðz− zjÞ2

þ ∂zj

ðz− zjÞ
��

z̄2
�X2m

j¼1

�
cðn− 1=nÞ
24ðz̄− z̄jÞ2

þ ∂ z̄j

ðz̄− z̄jÞ
���Ym

i¼1

σnðz2i−1; z̄2i−1Þσ̄nðz2i; z̄2iÞ
�

C
:

ð2:13Þ

Taking the limit n → 1, the entanglement entropy δSðAÞ ≔ limn→1 δSnðAÞ is given by

δSðAÞ ¼ −μ
�
c
12

�
2 8π4

β4

Z
M

�
z2
X2m
j¼1

�
1

ðz − zjÞ2
þ lim

n→1

12∂zj logh
Q

m
i¼1 σnðz2i−1; z̄2i−1Þσ̄nðz2i; z̄2iÞiC
cðn − 1Þðz − zjÞ

�

þ z̄2
X2m
j¼1

�
1

ðz̄ − z̄jÞ2
þ lim

n→1

12∂ z̄j logh
Q

m
i¼1 σnðz2i−1; z̄2i−1Þσ̄nðz2i; z̄2iÞiC
cðn − 1Þðz̄ − z̄jÞ

��
: ð2:14Þ

If the correlation function is factorized as

�Ym
i¼1

σnðz2i−1; z̄2i−1Þσ̄nðz2i; z̄2iÞ
�

C
¼ fðz1;…; z2mÞgðz̄1;…; z̄2mÞ; ð2:15Þ

we can obtain a simpler expression of δSnðAÞ,

δSnðAÞ ¼ −
μc

12ðn − 1Þ
8π4

β4

Z
M

�
z2
X2m
j¼1

�
cðn − 1=nÞ
24ðz − zjÞ2

þ ∂zj logh
Q

m
i¼1 σnðz2i−1; z̄2i−1Þσ̄nðz2i; z̄2iÞiC

ðz − zjÞ
�

þ z̄2
X2m
j¼1

�
cðn − 1=nÞ
24ðz̄ − z̄jÞ2

þ ∂ z̄j logh
Q

m
i¼1 σnðz2i−1; z̄2i−1Þσ̄nðz2i; z̄2iÞiC

ðz̄ − z̄jÞ
��

þ μ

nðn − 1Þ
16π4

β4

Z
M

z2
X2m
j¼1

�
cðn − 1=nÞ
24ðz − zjÞ2

þ ∂zj logh
Q

m
i¼1 σnðz2i−1; z̄2i−1Þσ̄nðz2i; z̄2iÞiC

ðz − zjÞ
�

× z̄2
X2m
j¼1

�
cðn − 1=nÞ
24ðz̄ − z̄jÞ2

þ ∂ z̄j logh
Q

m
i¼1 σnðz2i−1; z̄2i−1Þσ̄nðz2i; z̄2iÞiC

ðz̄ − z̄jÞ
�
: ð2:16Þ

The correlation functions which are studied explicitly in
Secs. III and IV satisfy (2.15). From here, we set all τi are
the same, which is equivalent to set τi ¼ 0 because of the
periodicity of τ.

III. EXPLICIT COMPUTATION OF THE
ENTANGLEMENT ENTROPY δSðAÞ

In this section, we explicitly estimate δSðAÞ (2.14) of a
single interval, two intervals, and multiple intervals. We
show that δSðAÞ of multiple intervals is a summation of
δSðAÞ of the single interval if the correlation function of

multi intervals of the twist operators is factorized into the
two point functions, such as a dominant contribution from
the vacuum conformal block in the holographic CFT. This
property of δSðAÞ is consistent with the holographic
entanglement entropy.

A. Single interval

Let us first compute δSðAÞ of a single interval case
by the twist operator method (2.14). The correlation
function of the twist operators for the single interval
A ¼ ½x1; x2� is
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hσnðz1; z̄1Þσ̄nðz2; z̄2ÞiC ¼
cn

jz1− z2j2ðhσnþh̄σn Þ
¼ cn
jz1−z2jc6ðn−1

nÞ
;

ð3:1Þ

where cn is a constant and (2.11) is used. Thus, δSðAÞ
(2.14) of the single interval is

δSðAÞ ¼ −μ
�
c
12

�
2 8π4

β4

Z
M

�
z2
�

1

ðz − z1Þ2
þ 1

ðz − z2Þ2

þ −2
ðz − z1Þðz1 − z2Þ

þ −2
ðz − z2Þðz2 − z1Þ

�
þ H:c:

�

¼ −μ
�
c
12

�
2 8π4

β4

Z
M

�
z2ðz1 − z2Þ2

ðz − z1Þ2ðz − z2Þ2
þ H:c:

�

¼ −μ
π4c2ðx2 − x1Þ

9β3
coth

�
πðx2 − x1Þ

β

�
; ð3:2Þ

where we used zi ≔ e
2π
β xi with τi ¼ 0 in the last equality.

For a detailed calculation of the integration in (3.2), see the
Appendix. Note that “−2” in the numerator of the first
equality comes from the derivative of the logarithm term in
(2.14); i.e., we only need to read off the power of z1 − z2 in
(3.1), −c

12
ðn − 1

nÞ.3 Finally, by considering the remaining
factor 12

cðn−1Þ in (2.14) we have 12
cðn−1Þ ×

−c
12
ðn − 1

nÞ ¼ − nþ1
n

which becomes “−2” in the n → 1 limit. Taking x1 ¼ 0,
x2 ¼ l in (3.2), we reproduce the same result in [60], where
a different approach is used: a conformal map betweenMn

and C.

B. Two intervals

Let us turn to compute δSðAÞ of two intervals
A ¼ ½x1; x2� ∪ ½x3; x4�. The correlation function of the twist
operators for two intervals is the four point function
hσnðz1; z̄1Þσ̄nðz2; z̄2Þσnðz3; z̄3Þσ̄nðz4; z̄4ÞiC. Generally, four
point functions in CFT are not universal and depend on the
details of CFT. Thus, to proceed, we consider the holo-
graphic CFT, because in the holographic CFT, it was
argued that the vacuum conformal block is a dominant
contribution in the four point function of the twist operators
[69].4 Furthermore, the four point function in the limit
n → 1 is factorized into the two point functions in the
leading order (see, also [71,72]).
In more detail, let us consider the four point function in

the holographic CFT classified by the cross ratio5 η,

η ≔
ðz1 − z2Þðz3 − z4Þ
ðz1 − z3Þðz2 − z4Þ

: ð3:3Þ

This cross ratio is invariant under the global conformal
transformation [73], and it plays a role in classifying
convergence of the conformal block expansion in each
channel (see, for example, [74]). We will call the region
of 0 ≤ η ≤ 1=2 “s-channel” and the region of 1=2 ≤ η ≤ 1
“t-channel”.
The four point function can be approximated by the

vacuum conformal block as,6 for example in the s-channel7

[71,72],

loghσnðz1; z̄1Þσ̄nðz2; z̄2Þσnðz3; z̄3Þσ̄nðz4; z̄4ÞiC
∼ −

nc
6
fvacðz1; z2; z3; z4Þ þ H:C:; ð3:4Þ

with

fvacðz1; z2; z3; z4Þ ¼ ϵn

�
2 log½z2 − z1� þ 2 log½z4 − z3�

−
ϵn
3
η22F1ð2; 2; 4; ηÞ

�
þOððn − 1Þ3Þ;

ϵn ≔
6

nc
hσn ¼

nþ 1

4n2
ðn − 1Þ; ð3:5Þ

where 2F1ðα; β; γ; δÞ is the hypergeometric function and
hσn is defined in (2.11). In the limit n → 1, we can ignore
ϵ2nη

2
2F1ð2; 2; 4; ηÞ and the higher order terms of n − 1 in

(3.5). Thus, for the case n → 1, the four point function in s-
channel ð0 ≤ η ≤ 1=2Þ is factorized as

hσnðz1; z̄1Þσ̄nðz2; z̄2Þσnðz3; z̄3Þσ̄nðz4; z̄4ÞiC
∼

1

jz1 − z2j2ðhσnþh̄σn Þjz3 − z4j2ðhσnþh̄σn Þ
: ð3:6Þ

Similarly, the four point function in t-channel ð1=2≤η≤1Þ
is factorized as

hσnðz1; z̄1Þσ̄nðz2; z̄2Þσnðz3; z̄3Þσ̄nðz4; z̄4ÞiC
∼

1

jz1 − z4j2ðhσnþh̄σn Þjz3 − z2j2ðhσnþh̄σn Þ
: ð3:7Þ

3It is not c
6
ðn − 1

nÞ because jz1 − z2j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz1 − z2Þðz̄1 − z̄2Þ

p
.

4Rigorously speaking, there is a possibility that the vacuum
conformal block is not dominant in some region of η defined in
(3.3). In this paper, we assume that the vacuum conformal block
is dominant in the entire region 0 ≤ η ≤ 1.

5In this paper, η is real such that η ¼ η̄.

6We omit constant terms in the normalization of the correlation
functions.

7For the t-channel, we exchange z2 ↔ z4 (in this case η
becomes 1 − ηÞ.
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Substituting (3.6) and (3.7) into (2.14), we obtain

δSs-chðAÞ

∼ −μ
�
c
12

�
2 8π4

β4

Z
M

��
z2ðz1 − z2Þ2

ðz − z1Þ2ðz − z2Þ2
þ H:c:

�

þ
�

z2ðz3 − z4Þ2
ðz − z3Þ2ðz − z4Þ2

þ H:c:

��

¼ −μ
π4c2ðx2 − x1Þ

9β3
coth

�
πðx2 − x1Þ

β

�

− μ
π4c2ðx4 − x3Þ

9β3
coth

�
πðx4 − x3Þ

β

�
ð3:8Þ

and

δSt-chðAÞ¼ z2↔ z4 and x2↔ x4 in δSs-chðAÞ: ð3:9Þ

Equations (3.8) and (3.9) can be considered as a double
summation of (3.2). Therefore, in the deformed holo-
graphic CFT, δSðAÞ of two intervals is the summation
over δSðAÞ of the single interval. Indeed, this additive
property comes from the log term in (2.14) with the
factorization in (3.6) and (3.7).
The author in [69] argued that, by using the vacuum

conformal block approximation, δSðAÞ of the two intervals
in the undeformed holographic CFT is the summation of the
single interval case. This additive property is also shown in
[56,57,75] within a holographic framework without intro-
ducing cutoff. Here, we have shown that this additive
property still holds in the TT̄ deformed holographic CFT
by the field theory computation from (3.8) and (3.9). In
Sec. V, we will show this additive property works also in
the holographic theory (with a finite cutoff dual to TT̄
deformation) and is consistent with the field theory
results here.

C. Multiple intervals

Finally, we compute δSðAÞ of multiple intervals
A ¼ ½x1; x2� ∪ � � � ∪ ½x2m−1; x2m�. Consider the holographic
CFT in which the correlation function of the twist operators
in the limit n → 1 is factorized into the two point functions
because of the dominant vacuum conformal block [69] as

�Ym
i¼1

σnðz2i−1; z̄2i−1Þσ̄nðz2i; z̄2iÞ
�

C

∼
Ym
i¼1

1

jzki − zli j2ðhσnþh̄σn Þ
ðn → 1Þ; ð3:10Þ

where ki and li are determined by configuration of the
multiple intervals in the same manner as the correlation
function for the two intervals. Substituting (3.10) into
(2.14), we obtain

δSðAÞ∼−
Xm
i¼1

μ

�
c
12

�
2 8π4

β4

Z
M

�
z2ðzki − zliÞ2

ðz− zkiÞ2ðz− zliÞ2
þH:c:

�

¼−
Xm
i¼1

μ
π4c2ðxki −xliÞ

9β3
coth

�
πðxki −xli

Þ
β

�
:

ð3:11Þ

Therefore, δSðAÞ of multiple intervals in the deformed
holographic CFT which has the property (3.10) is the
summation of δSðAÞ of the single interval. This additive
property comes from the log term in (2.14) with the
factorization in (3.10). This property of δSðAÞ is consistent
with the Ryu-Takayanagi formula with the radius cutoff.

IV. EXPLICIT COMPUTATION OF THE
RÉNYI ENTROPY δSnðAÞ

In this section, we evaluate the Rényi entropy δSnðAÞ.
First, we compute δSnðAÞ of single interval case by using
our twist operator method (2.16). Our result agrees with the
one in [60], where a different method was used. Second, we
consider the two interval case and show that δSnðAÞ of two
intervals can be expressed as a summation of a single
interval case in some limit. Finally, we make some com-
ments about a holographic interpretation of our results.

A. Single interval

Consider δSnðAÞ of a single interval A ¼ ½x1; x2�.
Substituting (3.1) into (2.16), we obtain

δSnðAÞ¼−
ðnþ1Þμ

2n

�
c
12

�
2 8π4

β4

×
Z
M

�
z2ðz1− z2Þ2

ðz− z1Þ2ðz− z2Þ2
þH:c:

�

þðnþ1Þ2ðn−1Þμ
2n3

�
c
12

�
2 8π4

β4

×
Z
M

z2ðz1−z2Þ2
ðz− z1Þ2ðz−z2Þ2

z̄2ðz̄1− z̄2Þ2
ðz̄− z̄1Þ2ðz̄− z̄2Þ2

: ð4:1Þ

Here the first term comes from the first and second terms in
(2.16), and the second term comes from the third term in
(2.16). This second term is a “mixing term” between
holomorphic and antiholomorphic part and will play an
important role when we discuss the additivity of δSnðAÞ for
two intervals. Note also that it gives the same result as (3.2)
for n ¼ 1 as expected, and in this case the mixing term
vanishes.
The integration in the second term in (4.1) needs a

regularization procedure.8 One can see this divergence from

8See [60] for the result after performing a regularization. In this
paper, we will not do the regularization because our interest is to
study the additive property of the Rényi entropy.
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the more general form in (A12): By substituting z̄3 → z1
and z̄4 → z2 in (A12), we find a divergency. The upshot of
this twist field method is that our results for δSnðAÞ of a
single interval (4.1) reproduces the same consequence
reported in [60], where a direct conformal map between
Mn and C is used (while here we used a map between M
and C, and Mn and M are related by the twist operators.).

B. Two intervals

Consider δSnðAÞ of two intervals A ¼ ½x1; x2� ∪ ½x3; x4�.
In general, δSnðAÞ of two intervals can not be expressed as
a summation of a single interval case because of two
reasons.
Firstly, the four point function of the twist operators with

n ≠ 1 in the holographic CFT is not factorized into the two
point functions as can be seen in (3.5), where ϵn ∼ n − 1 but
n ≠ 1. If we instead consider a limit that the cross ratio η
behaves as η → 0 or η → 1 the four point function is

factorized into two point functions. Note that this factori-
zation is valid not only in holographic CFT but also in any
CFT which obeys the cluster decomposition [75,76].
Secondly, even if the four point function is factorized,

δSnðAÞ of two intervals may not be the sum of the single
interval’s because of the “mixing term” between holomor-
phic and antiholomorphic part, the third term in (2.16). We
will show that this mixing vanishes only for η → 0 but does
not vanish for η → 1.
Let us first consider the limit η → 0. By substituting (3.6)

into (2.16), we obtain δSnðAÞ of the two interval,

δSnðAÞjη→0 ∼ δSsinglen ðAÞ þ δSsinglen ðAÞjz1→z3;z2→z4

þ δSmixing
n ðAÞ; ð4:2Þ

where δSsinglen ðAÞ denotes the Rényi entropy of a single
interval (4.1) and

δSmixing
n ðAÞ ¼ ðnþ 1Þ2ðn − 1Þμ

2n3

�
c
12

�
2 8π4

β4

Z
M

�
z2ðz1 − z2Þ2

ðz − z1Þ2ðz − z2Þ2
z̄2ðz̄3 − z̄4Þ2

ðz̄ − z̄3Þ2ðz̄ − z̄4Þ2
þ H:c:

�
: ð4:3Þ

Note that if n ¼ 1, i.e., for entanglement entropy, the mixing term vanishes always. However, in general, if n ≠ 1, it looks
that δSnðAÞ of two intervals can not be expressed as a summation of a single interval case because of the mixing term (4.3).
To see when this mixing term is negligible, we compute the integral in the Appendix, and it boils down to

δSmixing
n ðAÞ
c

¼
�ðnþ1Þ2ðn−1Þ

n3
π3

72

�
μ̂×M;

μ̂≔
μc
β2

;

M≔
�

z21þ z̄23
ðz1− z̄3Þ2

þ z21þ z̄24
ðz1− z̄4Þ2

þ z22þ z̄23
ðz2− z̄3Þ2

þ z22þ z̄24
ðz2− z̄4Þ2

−4þ2
ðz1þ z2Þðz̄3þ z̄4Þ
ðz1− z2Þðz̄3− z̄4Þ

ln
ðz1− z̄4Þðz2− z̄3Þ
ðz1− z̄3Þðz2− z̄4Þ

�
; ð4:4Þ

where μ̂ is a dimensionless parameter. Let us choose the
parameters (0 ¼ x1 < x2 < x3 < x4) as

l12≔ x2−x1; l23≔ x3−x2; l34≔ x4−x3: ð4:5Þ
If we fix x2 and l34; and take x3ðx4Þ → ∞, it implies z1 and
z2 are fixed and z̄3ðz̄4Þ → ∞ with the relation (τi ¼ 0),

z̄4 ¼ e
2π
β x4 ¼ e

2π
β ðx3þl34Þ ¼ z̄3e

2π
β l34 : ð4:6Þ

Thus, the first five terms inM in (4.4) sums up to zero. The
last term also vanishes (∼ ln 1) by itself. In other words,
when two intervals are far from each other, δSmixing

n ðAÞ
vanishes, so δSnðAÞ of the two intervals is the summation of
δSnðAÞ of the single interval. This is indeed the requirement
η → 0, which is the condition we have already imposed to
have a four point function factorized. On the other hand, if
two intervals become close (x3 → x2) the mixing term
blows up because of the third term in M.

These two extreme limit will be interpolated as we dial
l23. To see this we make a plot of theM in (4.4) in Fig. 3(a),
where we choose

l12 ¼ l34 ¼ 0.01; β ¼ 2π: ð4:7Þ
Because we are considering η → 0 limit, l23=l12 should be
large so only the range l23 ≫ 1

9 is valid.
In the limit η → 1, by using a relation of the correla-

tion function in 2D CFT under η → 1 − η as explained in
[75,76], one can perform a similar analysis. Thus, δSnðAÞ
of the two intervals is obtained by exchanging z2 ↔ z4 in
(4.2). In Fig. 3(b) we display the M in (4.4) after
exchanging z2 ↔ z4 with

9More precisely, l23=ðβ=2πÞ ≫ 1. In fact, our choice of β ¼
2π corresponds to using the rescaled parameter l̃ij ≔ 2πlij=β.
With this understanding, not to clutter, we use lij without a tilde.
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l23 ¼ 0.01; β ¼ 2π: ð4:8Þ

Here, we chose a small l23 because we are considering
η → 1 limit, which is equivalent to l23 ≪ 1 with a fixed
l12. M saturates to 4 when l12 ¼ l34 increase while it
diverges if l12 ¼ l34 decreases. This divergence is origi-
nated from the second and third term in M in (4.4), after
exchanging z2 ↔ z4. Note that, roughly speaking, η → 1
restricts the range of l12 ≫ 1.
We noted that, in Fig. 3, only the right part of both

figures (large l23 in (a) and large l12 in (b)) is valid in order
to satisfy the conditions η ∼ 0 (a) and η ∼ 1 (b). To
demonstrate it more clearly we made a plot of the M in
(4.4) versus η in Fig. 4 for l12 ¼ 0.5, 1, 5. If η ∼ 0, M is
very small and vanishes as η → 0, while if η → 1, M
saturates to the finite value, which depends on l12. The
saturation value for a given l12 is approximately the same
as the value in Fig. 3(b) since η → 1 corresponds to
l23 → 0. There are two interesting facts in the limit
of η → 1:

(i) M is nonzero
(ii) M is saturated to the minimum value (∼4) as l12

increases as shown in Fig. 3(b).
These two properties can be intuitively explained by
holography. See the end of the next section.

However, there is one subtlety in our results.10 The
numerical value ofM can be very large as l12 becomes very
small as shown in Fig. 4. In this case, the perturbation
theory will break down if M reaches the value of order
1=μ̂.11 Note that this is problematic only if l12 is small.
Thus, we suspect that our perturbation theory may be
justified by the existence of the lower bound of l12

provided by the cutoff μ̂ scale; i.e., because l12 needs to
be much longer than μ12 it is bounded below so M may be
well below 1=μ̂. Currently, we do not have a more rigorous
understanding on this issue and leave it as a future work.

C. Holographic interpretation

The author of [80] proposed the gravity dual of Rényi
entropy in the holographic CFT as

n2∂n

�
n − 1

n
SnðAÞ

�
¼ area ðcosmic branenÞ

4G
; ð4:9Þ
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(b)

FIG. 3. The mixing effect M in (4.4) of symmetric configuration, l12 ¼ l34, where l12 ≔ jx2 − x1j and l34 ≔ jx4 − x3j. In
order to satisfy the condition η → 0 (a) and η → 1 (b) only the ranges of l23 ≫ 1 (a) or l23 ≪ 1 with a fixed
l12 (b) are valid.
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FIG. 4. The mixing effect M in (4.4) vs η: l12 ¼ 0.5, 1, 5 (red, green, blue).

10We thank the referee for pointing out this issue.
11The numerical value of the square bracket in the first line

of (4.4) is around 0.5. It does not vary much as n changes.
12The effective field theory at small scale comparable to the

deformation becomes nonlocal, where it is not clear that the
entanglement entropy makes sense; e.g., see [77–79].
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where G is the Newton’s constant, and the cosmic branes
are anchored at the boundary of A. In order to compute the
area of the cosmic branes, we need to consider the back-
reaction from the cosmic branes to the bulk geometry.
Thus, generally, the holographic Rényi entropy of two
intervals with n ≠ 1 is not summation of the one of the
single interval because of the backreaction between the two
cosmic branes.
However, if two cosmic branes are far from each other,

the backreaction between them is negligible. This is the
limit of η → 0. In this limit, the holographic Rényi entropy
of the two intervals becomes summation of the one of the
single interval. Even though we introduce the radius cutoff,
which corresponds to the TT̄ deformation of the holo-
graphic CFT, this property of the holographic Rényi
entropy will be still valid. Thus, it is consistent with our
field theory result in the previous subsection.
Away from the limit η → 0, δSnðAÞ of the two intervals

in the deformed holographic CFT includes corrections to
(4.4) and higher order terms of η in the vacuum conformal
block. These corrections may be related to the back-
reaction between the two cosmic branes in the holographic
Rényi entanglement entropy formula with the radius
cutoff.
Let us turn to the holographic interpretation of the two

properties (a) and (b) in the previous section. For η → 1,
our field theory result shows, at given temperature β, there
is a saturation of the mixing term when l12 increases. It
may be understood holographically as follows: i) the
cosmic brane for the range l23 is almost a point at the
cutoff because η ∼ 1means l23 ∼ 0, ii) the cosmic brane for
the range l14 will be close to and bounded by the horizon if
l12 ≫ 1ðl14 ∼ 2l12Þ. Thus, the effective distance between
two cosmic branes is saturated, which is basically the
distance between the cutoff and the horizon. Thus,
the effect of the backreaction is also saturated. Only if
the cutoff or temperature becomes zero, the effective
distance between two cosmic branes becomes infinite
and their backreaction may be negligible. This information
is encoded in μ̂ in (4.4). Note that if η → 0, two cosmic
branes are far away always so their interaction is negligible
regardless of the cutoff.

V. HOLOGRAHIC ENTANGLEMENT ENTROPY
AND PHASE TRANSITIONS

In this section, we study the holographic entanglement
entropy with a finite cutoff and compare it with the previous
field theory result. While the perturbative field theory is
valid only for small deformations, the holographic method
can be used for general deformations. We specify the
parameter regime that the field theory and holographic
results agree. We also investigate the phase transitions
between the s-channel and the t-channel for the two interval
cases with a finite radius cutoff in the holographic
framework.

A. Holography: Single interval

Let us consider a planar Banados-Teitelboim-Zanelli
(BTZ) black hole,

ds2 ¼ r2 − r2h
L2

dt2 þ L2

r2 − r2h
dr2 þ r2

L2
dx̃2; ð5:1Þ

where L is the AdS radius, and rh is the horizon radius. At
the cutoff radius r ¼ rc,

ds2 ∼ dt2 þ 1

1 − r2h=r
2
c
dx̃2 ¼ dt2 þ dx2; ð5:2Þ

where

x ≔
x̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − r2h=r
2
c

p : ð5:3Þ

The holographic entanglement entropy of a single
interval between x̃ ¼ x̃i and x̃ ¼ x̃j at the cutoff radius r ¼
rc in this black hole geometry is [56,60]

SHðlijÞ ¼
L
4G

log ðAðlijÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðlijÞ2 − 1

q
Þ;

AðlijÞ∶ ¼ 1þ 2
u2h
u2c

sinh

�
lij

2L2uh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

u2c
u2h

s �2

; ð5:4Þ

whereG is the Newton constant, uc ≔ 1=rc, and uh ≔ 1=rh
is proportional to the inverse temperature,

β ¼ 2πL2uh: ð5:5Þ

The length lij ≔ jx̃i − x̃jj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2c=u2h

p
corresponds to the

length of the single interval jxi − xjj in the dual field theory.
Equation (5.4) reduces to the usual holographic entangle-
ment entropy in [56] as uc → 0.
To compare this with the field theory result (3.2), let us

consider a small deformation or cutoff (uc ≪ uh) [60],

SHðlijÞ¼
L
2G

log

�
2uhsinhð lij

2L2uh
Þ

uc

×

�
1−

u2c
4L2u3h

�
lijcoth

�
lij

2L2uh

�
−

L2uh
sinhð lij

2L2uh
Þ2
��

þO
�
u3c
u3h

��

∼
L
2G

log

�
2uhsinhð lij

2L2uh
Þ

uc

�

−
u2c

8GLu3h

�
lijcoth

�
lij

2L2uh

�
−

L2uh
sinhð lij

2L2uh
Þ2
�
:

ð5:6Þ
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By further considering the “high temperature” limit

(β ¼ 2πL2uh ≪ lij), that is to say, uc ≪ uh ≪
lij
2πL2, the

holographic entanglement entropy SHðlijÞ in (5.4)
becomes

SHHighTðlijÞ∼
L
2G

log

�
2uh sinhð lij

2L2uh
Þ

uc

�

−
liju2c
8GLu3h

coth

�
lij

2L2uh

�

¼ c
3
log

�
βsinhðπlijβ Þ

πϵ

�
−μ

π4c2lij

9β3
coth

�
πlij

β

�
;

ð5:7Þ

with [4,60,81]

c ¼ 3L
2G

; ϵ ¼ L2uc; μ ¼ 6L4

πc
u2c; ð5:8Þ

where c is the central charge and ϵ is the corresponding
UV cutoff in the dual field theory. Note that the second term
of (5.7) agrees with (3.2); i.e., the first order correction in μ
to the holographic entanglement entropy only at high
temperature limit (β ≪ lij) matches with the field theory
result [60].

B. Field theory: Two intervals and phase transition

In Sec. III B, for two intervals, we find that there are two
phases of the entanglement entropy: s-channel and t-channel.
In the 2D holographic CFT without the deformation, it has
been shown that η ¼ 1=2 is the transition point between two
channels [69] with the assumption that there are no other
phases. We may ask what the effect of the small deformation
on the phase transition is.Does it enhance the phase transition
or not? To answer this question in the perturbed field theory
we express the entanglement entropy of the deformed
holographic CFT up to first order perturbation,

Ss-chðAÞ¼
c
3
log

�
β sinhðπjx2−x1jβ Þ

πϵ

�
þc
3
log

�
βsinhðπjx4−x3jβ Þ

πϵ

�
þδSs-chðAÞ;

St-chðAÞ¼ x2 ↔ x4 and s-ch→ t-ch in Ss-chðAÞ: ð5:9Þ

Here, Ss-chðAÞ and St-chðAÞ are the entanglement entropy of
the s-channel and t-channel up to first order perturbation,
respectively, where δSs-chðAÞ and δSt-chðAÞ are the first order
correction of the entanglement entropy given in (3.8) and
(3.9), respectively.
In the previous subsection we see that the field theory

results match the holographic entanglement entropy in the
high temperature limit: β ≪ lij ¼ jxi − xjj. Thus, we
expand (5.9) in terms of β=lij,

Ss-chðAÞ ¼
c
3

�
πðjx2 − x1j þ jx4 − x3jÞ

β
− 2 log

�
2πϵ

β

��

− μ
π4c2ðjx2 − x1j þ jx4 − x3jÞ

9β3
;

St-chðAÞ ¼ x2 ↔ x4 in Ss-chðAÞ; ð5:10Þ

where we used that sinhðlij=βÞ ∼ elij=β

2
and cothðlij=βÞ ∼ 1.

Then we have

Ss-chðAÞ−St-chðAÞ¼−
2cπðx3−x2Þ

3β

�
1−μ

cπ3

3β2

�
< 0:

ð5:11Þ

Because our field theory method is only reliable in the
small μ=β2 regime, (5.11) is always negative so there is no
phase transition: the s-channel is always dominant in the
high temperature.

C. Holography: Two intervals (symmetric case)

As we showed in the previous section, our field theory
computation cannot capture any phase transition in its
validity regime: the small deformation and high temper-
ature regime. However, since the holographic entanglement
entropy formula (5.4) can be defined at any temperature
[any uh > 0 via (5.5)] and any cutoff uc < uh,

13 we can
explore the transition in the whole region 0 < uc < uh.
Note that, from the field theory point of view, (5.4) may not
make sense for the entanglement entropy when lij < uc
(see footnote 12). Therefore, if the cutoff becomes bigger,
the holographic entanglement entropy may not be dual to
the field theory entanglement entropy even though the
holographic entanglement entropy is a well-defined object
in gravitational language. Because our purpose in this
section is to investigate the phase transition of the holo-
graphic entanglement entropy (5.4) [56,60] itself, our
computation includes lij < uc case. However, at least
we do not need to worry about this issue in the high
temperature limit (lij ≫ uh > uc).
In the case of two intervals, we have two configurations

of minimal surfaces as shown in Fig. 1. Then, the holo-
graphic entanglement entropy is chosen as the one having a
smaller minimal surface,

SH ¼ min fSHs-ch; SHt-chg; ð5:12Þ

where

SHs-ch ≔ SHðl12Þ þ SHðl34Þ;
SHt-ch ≔ SHðl14Þ þ SHðl23Þ; ð5:13Þ

13This inequality comes from the positive definite condition
in (5.4).
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and here SHðlijÞ is the holographic entanglement entropy
for the single interval lij ¼ jxi − xjj. For convenience, we
assume x1 < x2 < x3 < x4.
In summary, to find SH our task is i) to compute SHs-ch and

SHt-ch in (5.13) by using the single interval formula (5.4),
ii) to compare them and pick up the one with a smaller
value, which is (5.12). In order to quantify the transition
points we define

Sc ≔
SHs-ch
SHt-ch

: ð5:14Þ

Thus, if Sc > 1, SH ¼ SHt-ch, while if Sc < 1, SH ¼ SHs-ch.
The curves of Sc ¼ 1 are the transition points or the phase
boundaries. Setting l12 as a scaling parameter we deal with
the following scaled parameters:

l̄34 ≔
l34

l12

; l̄23 ≔
l23

l12

; L̄ ≔
L
l12

;

ūc ≔ ucl12; ūh ≔ uhl12: ð5:15Þ

From here, we take L̄ ¼ 1 without loss of generality.
Let us first consider a symmetric case (l̄34 ¼ 1). Figure 5

shows the curves of Sc ¼ 1 [see (5.14)] in the plane of l̄23

and ūc at fixed temperature ūh. Figure 5(a) is for ūh ¼ 2
and Fig. 5(b) is for ūh ¼ 2 (blue), 0.5 (green), 0.1 (red). The
region above(below) the solid curves correspond to the
sðtÞ-channel. The black dashed curves display the approxi-
mate results near ūc ¼ 0 in (5.16). From Fig. 5 we find the
followings.
Field theory results: The perturbative field theory regime

we studied in Sec. V B qualitatively corresponds to the left-
upper corner of Fig. 5. Qualitatively speaking, “left”
corresponds to the small deformation and “up” corresponds
to the high temperature limit.14 The left-upper corner is

always the s-channel, which is consistent with the field
theory result.
Separation dependence: For fixed ūc and ūh, as the

separation l̄23 increases, the s-channel is favored. Note that
there is always a phase transition because ūc < ūh.
Cutoff dependence: Let us first define l̄ð0Þ

23 by the
maximum l̄23 for fixed ūh allowing the phase transition.

For example, l̄ð0Þ
23 ≈ 0.4 in Fig. 5(a). If l̄23 > l̄ð0Þ

23 , there
is no phase transition; always the s-channel is favored

[Fig. 6(a)]. If l̄23 < l̄ð0Þ
23 , as the cutoff ūc increases, the

s-channel is favored [Fig. 6(b)]. Even for l̄23 ∼ 0 it
undergoes a phase transition near ūc ∼ ūh [Fig. 6(c)].
Temperature dependence: Our result at low temperature

is qualitatively consistent with the one at zero temperature
[66]. In general, a large separation and large cutoff favor the
s-channel. There are some ranges for the t-channel around
the corner ūc ∼ l̄23 ∼ 0. However, as the temperature
increases [blue to green to red in Fig. 5(b)], this t-channel
range shrinks towards ūc ∼ l̄23 ∼ 0, and finally vanishes for
all cutoff (ūc) and the separation l̄23 at ūh ¼ 0.
Maximum separation for the phase transition: By

expanding (5.14) in terms of ūc ≪ 1, we obtain an
approximate formula l̄c

23ðūc; ūh; l̄34Þ for transition points
Sc ¼ 1,

l̄c
23ðūc; ūh; l̄34 ¼ 1Þ

¼ l̄ð0Þ
23 þ ū2c

2ū2h

 
l̄ð0Þ
23 þ 1þ 1 − 2ūh − ð1þ 2ūhÞe

2
ūhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð−1þ e
1
ūhÞ2ð1þ e

2
ūhÞ

q
!

þOðū4cÞ; ð5:16Þ

where l̄ð0Þ
23 ¼ l̄23ð0; ūh; 1Þ is the value without a cutoff,

l̄ð0Þ
23 ¼−2þ ūh log

�
1−e

1
ūh þe

2
ūh þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−1þe

1
ūhÞ2ð1þe

2
ūhÞ

q �
;

ð5:17Þ
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−
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−uc

_

23

(a) (b)

FIG. 5. Transition curves of symmetric case (l̄34 ¼ l34=l12 ¼ 1), where l̄23 ¼ l23=l12, ūc ¼ ucl12 and ūh ¼ uhl12. All solid curves
represent phase transition points satisfying Sc ¼ 1 [see (5.14)] with the various temperature ūh, and the black dashed curves represent
approximate formulas (5.16). The region above (below) the solid curves corresponds to the sðtÞ-channel.

14Rigorously speaking, the high temperature limit also in-
cludes ūh ≪ 1.
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∼

 ffiffiffi

2
p

− 1; ðūh ≫ 1Þ;
ðlog 2Þūh; ðūh ≪ 1Þ: ð5:18Þ

The asymptotic formula (5.16) is shown as black dashed

curves in Fig. 5. At a given temperature, l̄ð0Þ
23 is the

maximum separation which allows the t-channel. If two

intervals are farther from each other than l̄ð0Þ
23 only the s-

channel is allowed. Note that l̄ð0Þ
23 ∼ 0.4 at the zero temper-

ature limit (ūh → ∞), which is already close to the case at
ūh ¼ 2 in Fig. 5(a).

D. Holography: Two intervals (asymmetric case)

Next, we consider the asymmetric case (l̄34 ≠ 1).
Figure 7 shows the phase transition surface for
l̄34 ¼ 0.1, 1, 10. The region above the transition surface
is for the s-channel. Figure 7(b) in particular corresponds to
the symmetric case (l̄34 ≠ 1) which is the three-dimen-
sional version of Fig. 5(b). As l̄34 decreases, the t-channel
is more suppressed. As l̄34 increases, the parameter region
for the t-channel increases and saturates to the maximum
region.

Maximum separation for the phase transition: Similarly
to the symmetric case, there is the maximum separation for
the phase transition. If the separation is bigger than this,
only the s-channel is available. From Fig. 7 we find that the
transition point at ūc ¼ 0 at ūh → ∞ has the maximum
separation. By collecting these points for various l̄34

(ūc ¼ 0, ūh ¼ 100), we make a black curve in Fig. 8.
The maximum point increases as l̄34 increases, but it does

FIG. 6. Cutoff (ūc) dependence of the phase transition. (a) If the separation is big enough [l̄23 > l̄c
23, see (5.16)] there is no phase

transition. The s-channel is always favored. (b)(c) Otherwise, there is a phase transition from the t-channel to the s-channel as the cutoff
ūc increases.

FIG. 7. The transition surface in (ūc, ūh, l̄23) space for l̄34 ¼ 0.1, 1, 10. The region above (below) the transition surface is for the
sðtÞ-channel. As l̄34 increases, the parameter region for the t-channel increases.

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

34

23
max

FIG. 8. l̄max
23 vs l̄34. If the separation (l̄23) is bigger than l̄max

23 ,
only the s-channel is available. The black solid line is the
numerical plot with (ūc ¼ 0, ūh ¼ 100). The yellow dashed line
represents the analytic result in (5.19). The red dot corresponds to
the symmetric case (l̄34 ¼ 1).
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not exceeds 1. Indeed, this curve can be understood as
follows. Without a cutoff (ūc ¼ 0), in the limit ūh → ∞,
l̄23 satisfying Sc ¼ 1 saturates to

l̄c
23ð0;∞; l̄34Þ¼

−1− l̄34þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ l̄34Þ2þ4l̄34

p
2

; ð5:19Þ

which is plotted as the yellow dashed curve in Fig. 8.
Note that

l̄c
23ð0;∞; l̄34Þ → 1; ð5:20Þ

as l̄34 → ∞. Alternatively, we can also understand (5.19)
by the cross ratio η. This η is defined in the 2D CFT, and in
this case the phase transition occurs at η ¼ 1=2 [69,75].15

Since we are considering the case ūc ¼ 0 and ūh → ∞, we
may use that criteria, i.e.,

η ¼ ðz1 − z2Þðz3 − z4Þ
ðz1 − z3Þðz2 − z4Þ

¼ ðx1 − x2Þðx3 − x4Þ
ðx1 − x3Þðx2 − x4Þ

¼ l̄34

ð1þ l̄23Þðl̄23 þ l̄34Þ
¼ 1

2
; ð5:21Þ

which implies (5.19).
All phase transitions in Fig. 7 is the first order phase

transition. For example, let us consider the phase transition
at ūh ¼ 2 and ūc ¼ 0.5. See the red dot in Fig. 5(a). As we
increase l̄23 the configuration of smaller area changes from
the t-channel to the s-channel. It can be seen concretely
in Fig. 9(a). As l̄23 increases, the entanglement entropy of
the s-channel (SHs-ch) is constant (dotted line) because
the entanglement surface does not change, while the
entanglement entropy of the t-channel (SHt-ch) monotonically
increases (solid line) because the entanglement surface
becomes bigger. The same argument applies to all tran-
sition points in Fig. 7 so it is natural to have the first order
phase transition.

Intuitively, the first order phase transition is natural if two
configurations are available for all parameter range as in
Fig. 9(a). In this case, therewill be a cross point of two curves
at the phase transition, so the first derivative at that point will
be different (“first” order transition) in general. To have a
second order (or continuous) phase transition, usually we
have one configurations before the phase transition occurs
and two configurations are available after the phase tran-
sition. See the schematic picture in Fig. 9(b), where the blue
dotted curve goes to the red curve after the phase transition.
A good example of this type of phase transition is a
holographic superconductor [84,85].

VI. CONCLUSIONS

In this work we have studied the entanglement entropy
and the Rényi entropy of multiple intervals in 2D CFT at
finite temperature with the first order perturbation by the
TT̄ deformation.
To compute the Rényi entropy, computations of the

correlation functions between the twist operators and TT̄
are crucial. We have derived the general formula to
compute the Rényi entropy (also entanglement entropy
as a special case of the Rényi entropy) in general CFT up to
the first order deformation.
By using this formula we have found that the entangle-

ment entropy of multiple intervals in the deformed holo-
graphic CFT is the sum of the one of a single interval. This
is a nontrivial result from the field theory side while it looks
straightforward from a holographic viewpoint via the Ryu-
Takayanagi formula. In other words, it provides a nontrivial
consistency check of holography with the TT̄ deformation.
On the contrary, the Rényi entropy of two intervals is the

sum of the one of a single interval only if the distance
between two intervals is large enough. It can be intuitively
understood by the fact that the holographic Rényi entropy
are related with the cosmic brane which has a tension,
contrary to the Ryu-Takayanagi surface. Thus, in general
there will be a backreaction, which will disappear only if
two intervals are far away.
Moreover, we also have found an interesting observa-

tion when the cross ratio goes to unity. We show that in
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0.82
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_
23
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
−0.90

−0.85

−0.80

−0.75
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FIG. 9. Intuitive understanding of phase transitions.

15In higher dimensional cases, the phase transition of the
holographic entanglement entropy of two strips at finite temper-
ature was also studied [82,83].
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this case there is a finite mixing effect between the
holomorphic and antiholomorphic parts to the Rényi
entropy which vanishes for the entanglement entropy
but not for the Rényi entropy. Because of this mixing,
δSnðAÞ of the two intervals does not become the sum of
the single interval’s. We provide arguments to understand
this nonvanishing mixing effect from the perspective of
field theory and holography.
In general, if η → 0, there is no mixing term and the

cluster decomposition (such as the factorization of the CFT
correlation function) is allowed, while if η → 1 there should
be a mixing term and the cluster decomposition is not
allowed. In field theories with the conformal symmetry, the
cluster decomposition is valid also for η → 1 by the
conformal map so there is no mixing term. However if
the TT̄ deformation is considered, conformal symmetry is
broken (i.e., we cannot use a conformal map) so that the
cluster decomposition property may not work in η → 1.
Thus the mixing term may be nonzero. Our results can be
considered as an example of this case: considering the finite
μ, mixing term in η → 1 is zero when n ¼ 1 (the entangle-
ment entropy) but finite when n ≠ 1 (the Rényi entropy).
In holography, we can use a holographic prescription of

the Rényi entropy to understand the mixing effect in the
η → 1 case, the area of cosmic branes. If we interpret that
the mixing term is from the interaction between two cosmic
branes through the backreaction (n ≠ 1), we can argue that
the mixing effect may remain with μ ≠ 0 (finite cutoff) as
follows. i) If the distance between two cosmic branes are
very far from each other such as the case with η → 0, the
interaction between them would be negligible (a vanish-
ing mixing term). ii) However, in the η → 1 case, the
distance between the two branes are always finite because
one will shrink to the point on the finite radius cutoff
(which is the definition of η → 1) and the other will be
bounded by the horizon. Thus, we may expect that there
will be a remaining interaction (a nonvanishing mixing
term). This mixing effect will vanish if the cutoff or
temperature goes to zero.
For two intervals, there are two configurations for the

entanglement entropy, the so-called s-channel and t-chan-
nel. They correspond to the disconnected Ryu-Takayangi
surface and the connected surface respectively in hologra-
phy. Mathematically, both are available, but the entangle-
ment entropy corresponds to the one with the smaller value.
From our field theory computation, we have shown that the
s-channel is always favored in the small deformation if the
lengths of the intervals (l12 and l34) and the separation
between them (l23) are much bigger than the temperature
(uh), i.e., lij ≫ uh ∼ β. From our holography computation,
we have confirmed it and, furthermore, shown that it is true
also in the large (arbitrary) deformation.
Holographic framework can deal with an arbitrary

deformation and temperature, contrary to the field theory
method. By taking this advantage, we explored the whole

parameter space of the deformation and temperature to
identify the parameter range for the t-channel. We find that
at a given deformation and temperature and l34, if l̄23 ¼
l23=l12 becomes smaller there will be a phase transition
from the s-channel to t-channel at some critical length, say
l̄c
23. The critical length l̄c

23 increases as the temperature or
the deformation parameter decreases or l34 increases.
Thus, we find that the maximum value of l̄c

23 is determined
by CFT (zero deformation) at zero temperature and
l34 → ∞, which is l̄c

23 → 1.
For the Rényi entropy of two intervals in this paper, we

focused on the case η → 0 or η → 1 to use the factorization
property of the four point function. However, in principle, it
is possible to consider an arbitrary η in the holographic
CFT. Comparing it with the holographic mutual Rényi
information at least to first order in n − 1 [80] may serve as
another important consistency check of holography. It will
be also interesting to generalize the formalism for the Rényi
entropy in this paper for other entanglement measures (for
example, [86–89]) by considering the suitable twist oper-
ators. We leave these as future work.
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APPENDIX: THE INTEGRALS

In this appendix, we perform the integrations (3.2) and
(4.3). Without loss of generality, we take zk are real and
satisfy z1 < z2 < z3 < z4.

1. Correction to the entanglement entropy: δSðAÞ
Let us first consider (3.2). We will follow the same

procedure as in [60].16 In the Euclidean world sheet (x, τ),
the integration reads

Z
M

d2w
z2ðz1 − z2Þ2

ðz − z1Þ2ðz − z2Þ2

¼
Z

∞

−∞
dx
Z

β

0

dτ
e
4πðxþiτÞ

β ðz1 − z2Þ2
ðe2πðxþiτÞ

β − z1Þ
2ðe2πðxþiτÞ

β − z2Þ
2
: ðA1Þ

We first integrate with respect to τ. The indefinite integral
over τ is

16This analysis can be taken as a generalization of [60] in the
sense that we are considering an arbitrary zi. If we choose z1 ¼ 1

and z2 ¼ e
2πl
β , it reduces to [60].
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iβ

�
z1ðz1−z2Þ
e
2πðxþiτÞ

β −z1
þ z2ðz1−z2Þ

e
2πðxþiτÞ

β −z2
þ ðz1 þ z2Þðlnðe

2πðxþiτÞ
β − z1Þ − lnðe2πðxþiτÞ

β − z2ÞÞ
�

2πðz1 − z2Þ
: ðA2Þ

Because the first two terms in the numerator of (A2),

z1ðz1 − z2Þ
e
2πðxþiτÞ

β − z1
þ z2ðz1 − z2Þ
e
2πðxþiτÞ

β − z2
; ðA3Þ

produce the same value as we put τ ¼ 0 and τ ¼ β, these terms do not contribute to the result. Therefore, we only focus on
the logarithmic functions in (A2) which needs a careful analysis due to the branch cut. We have the following identity useful
for the logarithmic functions with the complex variables:

lnðe2πðxþiτÞ
β − zkÞ

���τ¼β

τ¼0
¼ 2πi;

�
e
2πx
β > zk ↔ x >

β

2π
ln zk

�
: ðA4Þ

By (A4), the logarithmic function in (A2) becomes

lnðe2πðxþiτÞ
β − z1Þ − lnðe2πðxþiτÞ

β − z2Þ
���τ¼β

τ¼0
¼ 2πi;

�
β

2π
ln z1 < x <

β

2π
ln z2

�
: ðA5Þ

Therefore, with (A5), the indefinite integral (A2) for τ ¼ 0 and τ ¼ β gives a x-independent result in the restricted
range of x,

−β
z1 þ z2
z1 − z2

;

�
β

2π
ln z1 < x <

β

2π
ln z2

�
: ðA6Þ

In conclusion, the integral in (A1) yields

Z
M

d2w
z2ðz1 − z2Þ2

ðz − z1Þ2ðz − z2Þ2
¼
Z β

2π ln z2

β
2π ln z1

dx

�
−β

z1 þ z2
z1 − z2

�
¼ β2

2π

z1 þ z2
z1 − z2

ln

�
z1
z2

�
: ðA7Þ

2. Correction to the Rényi entropy: δSnðAÞ
Next let us consider (4.3). The integration is now written in the Euclidean world sheet (x, τ) as

Z
M

d2w
z2ðz1 − z2Þ2

ðz − z1Þ2ðz − z2Þ2
z̄2ðz̄3 − z̄4Þ2

ðz̄ − z̄3Þ2ðz̄ − z̄4Þ2
¼
Z

∞

−∞
dx
Z

β

0

dτ
e
8πx
β ðz1 − z2Þ2ðz̄3 − z̄4Þ2

ðe2πðxþiτÞ
β − z1Þ

2ðe2πðxþiτÞ
β − z2Þ

2ðe2πðx−iτÞ
β − z̄3Þ

2ðe2πðx−iτÞ
β − z̄4Þ

2
:

ðA8Þ

We follow the same procedure used in A1. First, we perform the indefinite integral with respect to τ,

Z
dτ

e
8πx
β ðz1 − z2Þ2ðz̄3 − z̄4Þ2

ðe2πðxþiτÞ
β − z1Þ

2ðe2πðxþiτÞ
β − z2Þ

2ðe2πðx−iτÞ
β − z̄3Þ

2ðe2πðx−iτÞ
β − z̄4Þ

2
¼ −iβe

8πx
β

2π
ðz1 − z2Þ2ðz̄3 − z̄4Þ2ðAþ BÞ;

where A and B are given as follows:
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A ¼ −

z3
1

ðe
2πðxþiτÞ

β −z1Þðe
4πx
β −z1 z̄3Þ

2

ðe
4πx
β −z1 z̄4Þ

2
þ z3

2

ðe
2πðxþiτÞ

β −z2Þðe
4πx
β −z2 z̄3Þ

2

ðe
4πx
β −z2 z̄4Þ

2

ðz1 − z2Þ2

þ
z̄2
3

ðe
2πx
β −e

2πiτ
β z̄3Þðe

4πx
β −z1 z̄3Þ

2

ðe
4πx
β −z2 z̄3Þ

2 þ z̄2
4

ðe
2πx
β −e

2πiτ
β z̄4Þðe

4πx
β −z1 z̄4Þ

2

ðe
4πx
β −z2 z̄4Þ

2

ðz̄3 − z̄4Þ2
e
2πx
β ;

B ¼ −
1

ðz1 − z2Þ3
ðB1 þ B2Þ þ

1

ðz̄3 − z̄4Þ3
ðB3 þ B4Þ;

B1 ¼
z21ðz21ð3z1 − z2Þz̄3z̄4 − e

4πx
β z1ðz1 þ z2Þðz̄3 þ z̄4Þ − e

8πx
β ðz1 − 3z2ÞÞ

ðe4πx
β − z1z̄3Þ3ðe

4πx
β − z1z̄4Þ3

ln ðe2πðxþiτÞ
β − z1Þ;

B2 ¼
z22ðz22ðz1 − 3z2Þz̄3z̄4 þ e

4πx
β z2ðz1 þ z2Þðz̄3 þ z̄4Þ − e

8πx
β ð3z1 − z2ÞÞ

ðe4πx
β − z2z̄3Þ3ðe

4πx
β − z2z̄4Þ3

ln ðe2πðxþiτÞ
β − z2Þ;

B3 ¼
z̄23ðz̄23ð3z̄3 − z̄4Þz1z2 − e

4πx
β z̄3ðz1 þ z2Þðz̄3 þ z̄4Þ − e

8πx
β ðz̄3 − 3z̄4ÞÞ

ðe4πx
β − z1z̄3Þ3ðe

4πx
β − z2z̄3Þ3

ln ðe2πx
β − e

2πiτ
β z̄3Þ;

B4 ¼
z̄24ðz̄24ðz̄3 − 3z̄4Þz1z2 þ e

4πx
β z̄4ðz1 þ z2Þðz̄3 þ z̄4Þ − e

8πx
β ð3z̄3 − z̄4ÞÞ

ðe4πx
β − z1z̄4Þ3ðe

4πx
β − z2z̄4Þ3

ln ðe2πx
β − e

2πiτ
β z̄4Þ: ðA9Þ

When we plug τ ¼ 0 and τ ¼ β into A, they gives us the same value. So, A does not contribute to the result.
In other words,

Ajτ¼β
τ¼0 ¼ 0: ðA10Þ

On the other hand, B has a logarithmic function which should be calculated carefully. Because B has four different
logarithmic functions in (B1, B2, B3, B4), we will have four modified integration ranges of x after doing integration over τ.
By using (A4), the logarithmic functions in (B1, B2, B3, B4) will be substituted with 2πi together with the following change
of integration range of x:

B1∶
Z

∞

−∞
dx →

Z
∞

β
2π ln z1

dx; B2∶
Z

∞

−∞
dx →

Z
∞

β
2π ln z2

dx;

B3∶
Z

∞

−∞
dx →

Z β
2π ln z̄3

−∞
dx; B4∶

Z
∞

−∞
dx →

Z β
2π ln z̄4

−∞
dx: ðA11Þ

Then, what we only have to do is the integration over x with (A11). In conclusion, (A8) readsZ
M

d2w
z2ðz1 − z2Þ2

ðz − z1Þ2ðz − z2Þ2
z̄2ðz̄3 − z̄4Þ2

ðz̄ − z̄3Þ2ðz̄ − z̄4Þ2

¼ β2

4π

�
z21 þ z̄23

ðz1 − z̄3Þ2
þ z21 þ z̄24
ðz1 − z̄4Þ2

þ z22 þ z̄23
ðz2 − z̄3Þ2

þ z22 þ z̄24
ðz2 − z̄4Þ2

− 4þ 2
ðz1 þ z2Þðz̄3 þ z̄4Þ
ðz1 − z2Þðz̄3 − z̄4Þ

ln
ðz1 − z̄4Þðz2 − z̄3Þ
ðz1 − z̄3Þðz2 − z̄4Þ

�
: ðA12Þ
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