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ABSTRACT In this paper, we propose the spatio-temporal representation matching (STRM) for video-based
action recognition under the open-set condition. Open-set action recognition is a more challenging problem
than closed-set action recognition since samples of the untrained action class need to be recognized and
most of the conventional frameworks are likely to give a false prediction. To handle the untrained action
classes, we propose STRM, which involves jointly learning both motion and appearance. STRM extracts
spatio-temporal representations from video clips through a joint learning pipeline with both motion and
appearance information. Then, STRM computes the similarities between the ST-representations to find the
one with highest similarity. We set the experimental protocol for open-set action recognition and carried out
experiments onUCF101 andHMDB51 to evaluate STRM.Wefirst investigated the effects of different hyper-
parameter settings on STRM, and then compared its performance with existing state-of-the-art methods. The
experimental results showed that the proposed method not only outperformed existing methods under the
open-set condition, but also provided comparable performance to the state-of-the-art methods under the
closed-set condition.

INDEX TERMS Action recognition, open-set recognition, spatio-temporal representation, joint learning of
motion and appearance.

I. INTRODUCTION
Action recognition is one of the most challenging aspects
of computer vision research, because the complexity and
variety of human behaviors makes recognition difficult.
Action recognition studies have attracted increasing atten-
tion in recent years, with extensive applications in fields
such as real-world surveillance systems [1]–[3] and human
biometrics [4]–[6]. During the past few decades, numer-
ous studies have been conducted in efforts to develop and
improve methods that can achieve precise action recognition.
Among them, several methods have been proposed which
recognize human actions based on hand-crafted features
using stochastic or deterministic modeling methods, such as
dense or sparse extraction of features [7]–[10] and video-level
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encoding [11]–[14]. Dollár et al. [10] proposed a descriptor to
characterize the cuboids of spatiotemporally windowed data
surrounding a feature point. They assumed that employing
direct 3D counterparts for commonly used 2D interest point
detectors were inadequate. Willems et al. [15] proposed
extracting spatio-temporal points of interest, which were
scale-invariant (both spatially and temporally) and which
densely covered the whole video content. Wang et al. [16]
proposed building trajectories with optical flow instead of
using a Kanade-Lucas-Tomasi feature tracker [17]. However,
optical flow is very vulnerable to camera movement,
which produces extra background flows. To compensate,
Wang and Schmid [18] proposed removing background tra-
jectories by correcting the camera motions.

In recent years, deep neural networks have shown out-
standing performance for extracting features in various
vision areas, such as instance segmentation [19], [20],
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object detection [21], [22] image classification [23], [24], and
pose estimation [25]–[28]. The CNN feature, which is a more
sophisticated and deeper representation of visual information,
has also led to great improvements in action recognition [29].

However, understanding the temporal context still poses a
huge difficulty. In order to address this issue, two different
approaches have been proposed. Karpathy et al. [30] intro-
duced a single stream network which first extracts spatial
information from 2D CNN features and then fuses them
later in four different ways to acquire temporal information.
Simonyan and Zisserman [31] proposed a two-stream net-
work which captures both appearance and motion informa-
tion simultaneously. Instead of a single network for spatial
context, [31] explicitly captures motion features from the
stacked optical flow vectors.

Most methods try to learn spatio-temporal features by
utilizing 2D convolution operation, while other works such
as [32] have tried to utilize 3D convolution. 3D convolu-
tion shows great improvements in capturing spatio-temporal
information. However, it is more difficult to train than the
usual 2D-CNN since 3D-CNN has many more parameters in
the convolution network. Most works based on deep neural
networks [31]–[34] have outperformed conventional methods
based on hand-crafted features [8]–[10].

Despite the great strides made by the above studies, open-
set action recognition is still complicated because it requires
managing some actions which are not trained. Fig. 1 illus-
trates the differences in the recognition task under open-
set and closed-set conditions. While action recognition is a

FIGURE 1. A comparison of closed-set and open-set conditions are
illustrated. The upper and lower diagrams describe the closed-set
condition and open-set condition states, respectively. In the closed-set
condition, the action class set is a subset of the action class training set,
which means that only trainable action classes appear in the action for
testing. In the open-set condition, on the other hand, the set of training
actions is a subset of the entire set of actions. Every action including the
training action can be given as a testing action, even when it is not
learned.

difficult problem in itself because of the complexity and vari-
ability of human actions, the open-set condition makes action
recognition even harder because it contains the unconfined
action category.

To resolve this issue, we propose a spatio-temporal rep-
resentation (ST-representation) matching (STRM) method
based on joint learning of motion and appearance. In the
training stage, STRM jointly learns spatio-temporal features
from appearance and motion of the training samples in
kinetics-600 [35] only. After STRM is fully trained, the action
gallery is constructed with joint ST-representations extracted
from the training samples in other datasets (e.g. UCF101,
HMDB51). The open-set action recognition process using
STRM is as follows: Initially, STRM extracts joint spatio-
temporal representa- tions (joint ST-representations) from a
given video. Then, STRM computes the similarity between
the extracted repre- sentation and the representations stored
in the action gallery. Next, STRM gives the action label of the
video that is most similar to the given video. This approach
allows the untrained action classes to be recognized without
re-training the model.

The key contributions of this work can be summarized as
follows:

• First, we propose a novel method for open-set action
recognition which is able to recognize unseen action
classes in the training step. The proposed method
extracts spatiotemporal representations by jointly learn-
ing appearance and motion information, and can
improve the discriminative power when extracting the
spatiotemporal representation.

• Second, we provide a method for learning the joint
spatiotemporal representation of motion and appearance
data. Our learning method provides a more discriminat-
ing feature extraction function than existing methods.

For demonstration and verification, we present extensive
experimental results of action recognition under closed-set
and open-set conditions. The experimental results include a
performance evaluation involving STRM hyper-parameters,
and comparisons of STRM performance with existing state-
of-the-art methods.

This paper is organized as follows. In Section II, we dis-
cuss related works and existing action recognition research,
including visual recognition studies for the open-set condi-
tion. Then, we explain the proposed method for open-set
action recognition in Section III. In Section IV, we present the
experimental setting, datasets, and quantitative comparisons
with hyper-parameters and other existing methods, followed
by a summary and conclusions in Section V.

II. RELATED WORKS
In this section, several existing studies of human action recog-
nition under closed and open set conditions will be discussed.
The general approach of video based action recognition will
be discussed in section II-A. Action recognition utilizing
both hand-created features and deeply-learned feature under
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the closed-set condition will be introduced in section II-B.
Also, a few action recognition studies under the open-set
condition will be introduced in section II-C.

A. GENERAL ACTION RECOGNITION
Human action can be defined as a series of consecutive
small unit actions which involve simple movements of the
limbs (such as bending the knees or raising an arm) per-
formed by actors. For action recognition to succeed, it is
crucial to consider both spatial and temporal information.
Human action recognition has been studied extensively using
various approaches to extract distinctive features across
RGB frames, and then combine them into video-level rep-
resentation, to understand the entire context.

Although spatial information is usually obtained from
RGB frames, many recent works [36], [37] have utilized a
skeletonmodel, which can be estimated using pose estimation
(e.g. [25]–[28]). Analyzing the skeleton model has a big
advantage in that action can be clearly captured by focus-
ing on the movements of joints. Nonetheless, in this paper,
we will focus on video based action recognition since most
visual sensors in the real world are RGB cameras, and the
method is still important.

B. CLOSED-SET ACTION RECOGNITION ON VIDEOS
An action class is defined specifically as a certain typical
behavior, such as playing soccer, playing a guitar, or putting
on makeup. The goal of video based action recognition is to
classify the actions performed in a given video clip. These
actions are trained in advance. However, this means that the
model can only classify trained actions. This condition is
called a closed-set problem. Most works have focused on this
condition.

The process employed by the majority of traditional stud-
ies on video-based action recognition can be described in
three steps. 1) The high dimension visual features which
describe the local area of the video are extracted either
sparsely [8]–[10] or densely [7], [16] in high dimension.
2) The extracted visual features are merged into a fixed length
description such as video-level or clip-level. One of the most
popular approaches has been bag-of-visual words, which
is formed using clustering methods (such as DBSCAN or
K-means clustering) to represent the video. 3) A classifier,
such as Random Forest (RF) [38] or Support Vector Machine
(SVM) [39] is trained on the fixed length feature (i.e., BoVW)
for the final prediction.

Hand-crafted feature based approaches usually extract
a local spatial-temporal feature from around the trajec-
tories or region of interest, such as 3D-Hessian [15],
Cuboids [10], 3D-Harris [8]. It is also common to extract
feature trajectories with matching SIFT descriptors or KLT
trackers across the frames. However, this approach is often
insufficient to represent motions. To overcome the lack of
trajectories, Wang et al. [16] proposed a novel descriptor
named the Dense trajectory based on motion boundary his-
tograms. In it, the feature points are densely sampled from

each frame first and then tracked based on the optical flow
field to capture both appearance and motion information.
Subsequently, the improved Dense Trajectory (iDT) [18]
method was proposed to improve the estimation of trajec-
tories by correcting the camera motion, thus removing the
background trajectories.

This led to a significant improvement in iDT performance,
which is still comparable with recent works. A his-
togram descriptor is computed to capture both appear-
ance and motion information from the points of interest,
such as a Histogram of Gradient and Histogram of Flow
(HOG/HOF) [9]. While conventional methods have focused
on combining independent points of interest from multiple
frames to form a local descriptor, advanced aggregation
approaches proposed recently have utilized dense trajec-
tories such as Fisher Vector (FV) [11], improved Dense
Trajectory (iDT) [18].

Deeply-learned feature-based approaches (e.g. convolu-
tional neural networks (CNNs)) have produced remarkable
improvements in action recognition in the last few years.
Many works utilized a CNN feature map to obtain abun-
dant visual information from a frame. Reference [32] used
3D convolutions on the video volume to extract both spa-
tial and temporal volumes simultaneously, rather than using
2D convolutions across the frames. However, most of these
works have only considered visual information, excluding
motion information, since it is not easy to train a CNN
model to learn motions. Later, Simonyan and Zisserman [31]
proposed a two-stream network approach to learn motion
features explicitly from stacked optical flow vectors. Instead
of using a single network just for visual context, this archi-
tecture uses two separate networks - one for visual context
(RGB video) and the other for motion context (Optical flow).
The two streams are trained separately and combined later,
using SVM for the final prediction. Motivated by [31], many
subsequent works have followed this two-stream approach.
Zhu et al. [33] proposed a hidden two-stream network which
has an additional network named the motion-net. The motion
net captures motion information between adjacent frames
directly, instead of using a conventional optical flow algo-
rithm. With this motion net, the framework is trainable in
an end-to-end fashion, making training much faster than
using the original optical-flow. Several recent methods have
focused on modeling a long-range temporal structure using
combination of 2D convolution and Recurrent Neural Net-
work (RNN) and Long Short-Term Memory (LSTM) such
as [34], [40]. Generally, these methods extract visual infor-
mation from continuous video frame sequences and directly
feed it to RNN and LSTM to model the temporal structure.

C. OPEN-SET ACTION RECOGNITION
Most existing works were developed under the closed-set
condition, in which only trained actions can be classified.
Thus, these existing works will often fail to give a correct
prediction in the real-world situation since some actions have
not been trained. Furthermore, it is difficult to define every
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FIGURE 2. The workflow of STRM for open-set action recognition. Solid black arrows represent the process for action recognition. The red
dotted box is a set of videos for the action gallery and the red arrows are representing the flow of constructing the action gallery. The blue
dotted box is a video samples for new action class and blue lines are representing the flow of appending new action class to existing
action gallery. Nj denotes the number of samples of j th action class and C is the number of total action classes in current action gallery.

kind of action and to collect valid video samples in the real
world. This condition is called an open-set problem, and has
been drawing increasing attention in recent years.

Among the various approaches recently proposed for
the open-set condition [41]–[48], the meta-learning method
by [42] discriminates an untrained class from a trained
class and learns it as a new class (unknown class), mak-
ing the model learn a new class (unknown class) without
re-training the model. Bendale and Boult [41] proposed
SVM-based recognition by extending Nearest Class Mean
type algorithms [9], [15] to a Nearest Non-Outlier(NNO)
algorithm to learn new classes continuously. The Open Deep
Network (ODN) proposed by Shu et al. [43], on the other
hand, is able to detect the class of a given sample, whether
it is learned or not, then the model dynamically re-builds
itself by adding a new category in the classification layer.
Reference [43] employed four steps to recognize actions in
the open-set condition: 1) ODN first determines whether a
class of given sample is known or unknown by applying
multi-class triplet thresholding. The intra-class association is
combined with triplet thresholding because a single threshold
value is not enough to handle differences in different actions.
2) If the class of the sample is unknown, it is labeledmanually.
3) ODN is updated using transfer learning with very few
annotations without retraining the entire systems. 4) ODN
is fine-tuned with known and new class samples obtained
in the second step. Shu et al. [44] introduced prototype
learning to ODN [43] to improve its robustness in detecting
unknowns and updating deep neural networks. The prototype
learning provides prototypes which are concise represen-
tations for each known action class, and prototype radius
which is a certain range for regularization for prototypes.
Mishra et al. [47] proposed a generative based zero-shot
action recognition. It utilizes the relationship between
attributes of the action class which are represented as a
probability distribution in the visual space with Word2Vec

embedding [49] and synthesizes unseen class data from the
learned action classes.

III. SPATIO-TEMPORAL REPRESENTATION
MATCHING (STRM)
In this section, we describe the learning and action recogni-
tion processes in the STRM method. Section III-A explains
the extraction method for joint ST-representation for motion
and appearance. We describe the open-set action recogni-
tion process using STRM in Section III-B and explain the
training process and computational complexity of STRM
in Section III-C.

A. JOINT SPATIO-TEMPORAL REPRESENTATION
EXTRACTION
In contrast to most existing action recognition methods based
on the classification approach [50]–[53], STRM employs a
verification approach which computes similarities between
the given multiple inputs and selects the pair with the highest
similarity. Fig. 2 shows the methodological detail of STRM.
As shown in Fig. 2, STRM can be regarded as a framework
which consists of a joint representation extraction of extrac-
tion model Fe and the similarity computation part, where
each model is composed of the corresponding parameters
such as weights and biases. To recognize an action class of
given video clip v, STRM first extracts the joint ST represen-
tation using the given motion vm and appearance va data as
follows:

α = Fe(v; θe) = Fe(vm, va; θe), (1)

where α is an extracted joint ST-representation from vm
and va, and θe is a set of parameters corresponding to the
model for extracting the joint representation. We also utilized
the original dense optical flow and raw RGB frame for vm
and va, respectively, as in many previous works.
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The joint representation extraction model is composed of
CNN [54] and LSTM [55] for extracting the spatial model fs
and temporal feature model ft , respectively. In the joint repre-
sentation extraction model Fe, spatial features are extracted
from every frame in a given video clip using the CNNmodel.
This is represented as follows:

os = fs(vm, va; θs), (2)

where os is the output of the CNN, and θs is a set of parameters
corresponding to the CNN. In this work, we employed various
CNNmodels to extract the spatial features. The CNNmodels
we used in the experiment were: VGG-19, ResNet-34, and
DenseNet-40. We evaluated these three CNN models and
compared their performances to each other, and the experi-
mental results are presented in Section IV.

To learn discriminative features which cover both the com-
plexity and the diversity of human actions, we attempted a
joint learning method for motion and appearance based on
the convolutional neural network. Fusing of multiple data
is a commonly used approach in visual recognition stud-
ies for scene segmentation [56], [57], object detection [58],
and event detection [59]–[61]. In recent action recognition
studies [50]–[53], several have reported that using multiple
information can provide better action recognition perfor-
mance than using a single data type only.

In extracting spatial features with the CNN model, the
proposed kernel-level fusion is utilized to extract joint repre-
sentation. Since STRM learns two heteromorphic data simul-
taneously, it is essential to regularize these data to calculate
the gradients and stabilize network learning. STRM initially
regularizes the data by using the expectation and variation of
data, and then normalizes it using the min and max values of
the regularized data. The above normalization process N is
represented as follows:

N (v) =

v−µ
√

σ 2
−min( v−µ√

σ 2
)

max( v−µ√
σ 2
)−min( v−µ√

σ 2
)
= v̄, (3)

where v is the input of the normalization process and can be
regarded as a batch of training dataset (vm, va) or an output o
of an arbitrary layer in CNN; and µ and σ are the expectation
and standard variation of v respectively. After normalizing
both motion and appearance with the above scheme, they are
combined into a joint representation using a fusion task.

The kernel-level based on CNN is defined as follows:

o = γ (N (vm)�Wm +N (va)�Wa + b), (4)

where o is an output of an arbitrary layer applying the fusion
task with convolutional operation �, and γ is the activation
function, such as a rectified linear (ReLu) unit [62], softmax
function, and sigmoid function, which is a typical operation
for CNNs.Wm,Wa are the weights for motion and appearance
data, respectively, and b denotes a bias of this fusion layer.
With this kernel-level fusion operation in extracting spatial
features, STRM can consider both motion and appearance

information simultaneously, without any additional func-
tions. According to Feichtenhofer et al. [53], depending on
the position of the fusion layer, the fusion method can be
categorized into two types: early fusion and late fusion.
We conducted experiments on these fusion types and dis-
cuss their performances in Section IV-C. A set of extracted
spatial features os ∈ {o1s , o

2
s , o

3
s , . . . , o

n
s }, where o

i
s is the

spatial feature of the ith frame, is applied to the temporal
feature extractionmodel based on the recurrent network using
LSTM. The goal of the recurrent network is to discover tem-
poral characteristics from the sequences of spatial features.
The temporal feature extraction model is represented by

α = ft (os; θt ), (5)

where θt is a set of parameters corresponding to the temporal
feature extraction model based on the recurrent network. Our
recurrent network is composed of LSTM cells. Generally,
a LSTM cell has the following three gates: 1) input gate it ,
2) forget gate gt , 3) output gate ct .

The input gate it computes the weight to determine the
influence of the new input on the current internal state st
at time t . The activation function of the input gate has the
following recurrent form:

it = σ (Wisst−1 +Wihαt−1 +Wixots + bi), (6)

where σ (·) is the sigmoid function which regulates the input
to a value between 0 and 1. This means that when the value
is close to 1, the input feature ots becomes more important.
Wis and Wih are weight matrices corresponding to the
state st−1 and hidden state αt−1.Wix is the weight matrix for
the spatial feature os, and bi is the bias.
The forget gate gt modulates the previous state st−1 to

control its contribution to the current state. It is defined as

gt = σ (Wgsst−1 +Wghαt−1 +Wgxots + bg), (7)

whereWg∗ denotes the weight matrices for st−1, αt−1, ots and
bg denotes the bias. Using these inputs st−1, αt−1, and ots, and
forget gate units gt , the internal state st of each LSTM cell is
updated as follows:

st = gt ⊗ st−1 + it ⊗ tanh(Wshαt−1 +Wsxots + bs), (8)

where⊗ indicates the element-wise product andWs∗ denotes
theweightmatrices related to the hidden stateαt−1 and spatial
feature ots.
The output gate ct determines the influence of the current

state on the future state. It is defined as

ct = σ (Wcsst +Wchαt−1 +Wcxots + bc), (9)

where Wc∗ denotes the weight parameters corresponding to
st , ht−1, and ots and bc denotes a bias of this gate. The hidden
state of a memory cell is estimated as

αt = ct ⊗ γ (st ), (10)

where γ is the ReLu activation function.
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FIGURE 3. (a) illustrates the structural detail of the representation extraction model for the joint ST-representations. (b) shows the
conceptual image for the joint convolutional layer. In (a), green colored objects denote the functional components of the model, and the
blue colored objects represent the extracted result from each component.

The recurrent network of STRMperforms the above opera-
tions to extract the joint ST-feature α ∈ {α1, α2, α3, . . . , αN },
where N is the number of LSTM cells, and αi is the output
of the ith LSTM cell. Note that the number of elements αi
in the joint ST-feature will vary depending on the number
of frames in each video clip. For consistency in the joint
ST-feature, we regulated the number of representations by
selecting key representations which can describe the context
of the videowell, usingK-means clustering [63]. This process
can be represented as follows:

argminµc
K∑
i=1

∑
αt∈α

||αt − µ
c
i ||,

where µc is the centroid of the clustering method, and
K is the number of centroids applied in the clustering
method. As a result, the key ST-representation µc ∈

{µc1, µ
c
2, µ

c
3, . . . , µ

c
K } is obtained by STRM. The entire

process of the ST-representation extraction using STRM is
given below.

Fe(v) = Fe(vm, va) = fk (ft (fs(vm, va; θs); θt )) = α, (11)

where fk is K-means clustering. The key joint
ST-representation α is applied to the similarity measurement
model for open-set action recognition. Fig. 3 represents
the structural detail of the representation extraction model
of STRM. The process for open-set action recognition with
STRM is described in the following section.

B. OPEN ACTION RECOGNITION USING STRM
In contrast to the general action recognition methods based
on a classification approach which recognizes action via
the probabilities of classifiers, STRM employs a verifica-
tion approach based on the similarity measurement. If the
similarity between two representations is high enough, they
will likely belong to the same action class. Based on this

assumption, the STRM verification process is as follows.
1) STRM extracts key joint ST-representations from anchor
video clips vp using the feature extraction model Fe to con-
struct an action gallery. The anchor video clips consist of N
action classes, and each action class has M action samples.
Thus, the action gallery will have N*M representations ᾱ.
2) STRM extracts key joint ST-representations from a given
video clip (probe) vp using the feature extraction model Fe.
3) Similarities between the probe representation αp and every
representation ¯αi,j are stored in the action gallery, where i and
j indicate the index of representation. 4) In each action class,
the representation ¯α_,j which has the highest similarity is
selected. As a result, N representations ¯αi,_ are the candidate
action class for a given video. 5) The representation which
has the highest similarity among candidates is selected for
the final prediction. 6) STRM predicts the action of the probe
video clip as the action class of the selected representation.
This process can be represented as follows:

classi, i = argmaxi(argmaxjD(αp, αi,j)),

where D is a similarity function (i.e., l2-norm), i is the index
of the action class, and j is the index of the representation in
each action class. αp denotes the extracted ST-representation
from a given input video clip. αi,j is the jth ST-representation
of the ith action classes stored in the action gallery. In this
work, we employed l2-norm to compute the similarity.

This recognition process based on the similarity measure
allows us to recognize action classes which are not included
in the training dataset more effectively than the existing
approaches (e.g. [50]–[53], [64], [65]). These existing meth-
ods are only able to classify trained action classes, since their
classifier is fixed in the training step (e.g. a fixed-length fully-
connected layer in the CNN model), which requires model
retraining or parameter modification if they are asked to
classify a new action class. In the verification task in STRM,
on the other hand, just adding some ST-representations of new
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Algorithm 1 Action Recognition Using STRM
Input: Video clips [v1, v2, . . . vP]
Output: Class labels [label1, label2, . . . , labelP]
1: for p = 1 to P: given video clips do
2: · Spatiotemporal feature extraction

αp = Fe(v
p
m, v

p
a)

3: for i = 1 to I : action classes do
4: for j = 1 to J : video clips do
5: · Spatiotemporal feature extraction

αi,j = Fe(v
i,j
m , v

i,j
a )

6: si,j = D( αp, αi,j)
7: end for
8: Select the highest similarity in i-th class videos.
9: si = max([si,1, si,2, . . . , si,J ])

10: end for
11: Select action class where the highest similarity si

belongs to
12: i = argmaxi([s1, s2, . . . , sI ])
13: labelp = actioni
14: end for
15: return Class labels [label1, label2, . . . , labelP]

action classes is enough, making it very straightforward and
simple. Methodologically, this approach is inspired by the
Siamese network [66] which measures the similarity between
two input images for matching.

The computational complexity for action recognition using
STRM is O(N 2), where N is the number of both the action
classes and videos in each class. Note that the computation
cost for extracting the ST representation α from Fe(vm, va)
is not considered. Instead, only the similarity function (e.g.
l2-norm) between the given video clips and every video in
the action gallery is considered. The process is described in
Algorithm. 1. Consequently, the final time complexity of our
proposed model for N given videos is O(N 3).

C. LEARNING STRM
To recognize action under the open-set condition, STRM
employs a verification approach, unlike the conventional
action recognition approaches [31], [33], [53], [67] which
handle the action recognition problem as a classification
problem. By measuring the similarity of two given input data
types, the verification approach provides a class- invariant
recognition method.

In this work, a triple loss function is utilized to train STRM
as follows:

Ltri(va, vp, vn)

=

N∑
i=1

[‖Fe(va)−Fe(vp)‖22−‖Fe(va)−Fe(vn)‖22+δ], (12)

where va, vp, and vn are anchors, positive and negative video
samples, respectively. There is a margin between the positive
and negative pairs. The goal of triplet loss is straightforward,
namely, to minimize the distance from anchor va to positive

Algorithm 2 Joint Learning of Motion and Appearance by
STRM
Input: (va, vp, vn, aa, ap, an), where va, vp, and vn are anchor

video, positive video, and negative video, while aa, ap, and
an are the corresponding labels for these videos respec-
tively.

Output: The optimized network parameters θ = {W , b},
whereW and b are the sets of weight and bias parameters
of the model.
for The number video set in the training dataset do
· Optical flow extraction
Extract optical flow vm from video va
· Key joint ST-representation extraction
Fe(vm, va) = ft (fs(vm, va; θs); θt ) = α,
α = {αa, αp, αn}

· Compute the classification result
Fcls(α) = ā, ā = {āa, āp, ān}
· Loss computing
L = Ltri(αa, αp, αn)+ λ

2

∑
v∗ Lcls(ā

∗, a∗)
· Update parameters
θ = θ + γ δL

δθ
, where γ is a learning rate.

end for
return θ = {W , b}

input vp and to maximize the distance from anchor va to
negative input vn. To train STRMwith triplet loss, the anchor
video va of an arbitrary action class is selected first. Next,
the positive sample vp and the negative sample vn are selected
randomly from video samples in the same action class and in
a different action class as the anchor, respectively. Although
triplet loss enables the model to learn discriminative features
between classes, it is still hard to distinguish between repre-
sentations of some actions even when they belong to different
action classes. To minimize such misleading representations,
we added a classification loss to the existing loss function
to learn the distinctive features of each action class. The
classification loss is estimated with a fully-connected layer
attached to the end of the LSTM cell as a classifier. The
classification loss using cross-entropy is defined by

Lcls(Fcls(α), ā) = −
C∑
i=1

ailog(Fcls(α)i), (13)

where Fcls is a simple classification model which consists
of fully connected layers with a softmax function, and Fcls()̇i
denotes the ith unit of the output of the classificationmodel. α,
C and ā are the extracted joint ST-representation, the number
of action classes in the training dataset and the given label
corresponding to an input video, respectively. This combin-
ing loss function is a commonly used approach in various
visual recognition studies [61], [68], [69]. According to [68],
the center loss, which simultaneously learns the center for
the deep features of each class and penalizes the distances
between the deep features and their corresponding class
centers, showed better performance than conventional loss
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TABLE 1. Dimentionality of LSTM on STRM. ’Dim’ represents the
dimensionality of the input, state and the output units.

functions such as softmax loss. The final loss is defined as

L = Ltri(va, vp, vn)+
λ

2

∑
va,vp,vn∈v

Lcls(Fcls(Fe(v∗)), ᾱ∗), (14)

where λ is a hyper-parameter to regulate the weight of the
classification loss. We set the λ value at 0.01 which showed
best performance. We empirically determined the value
of λ by repeating the experiments. v∗ and ᾱ∗ denote the input
video clips va, vp, and vn and the corresponding annotation
for each videos. Algorithm 2 shows the entire STRM training
process.

IV. EXPERIMENTS
In this section, we present the experiments used to demon-
strate the effectiveness of the proposed action recognition
method under the open-set condition. In Section IV-A,
we explain the experimental settings, datasets, and the
experimental protocol for open-set action recognition.
In section IV-B, we describe the performance analysis depen-
dent on the hyperparameter setting, and its comparison
with existing methods. In Section IV-C, the performance of
STRM is compared with those of other existing methods for
closed-set and open-set conditions.

A. EXPERIMENTAL SETTING AND DATASET
Experiments were carried out to analyze the action recog-
nition performance when it was dependent on the setting
of STRM hyperparameters, and compared with existing
action recognition methods for closed-set and open-set con-
ditions. In the representation model, we applied several
existing network models: VGG-19 [70], ResNet-34 [23], and
DenseNet-40 [24].

All of the CNNs based models were trained with stochastic
gradient descent (SGD). We employed a learning rate decay
of 0.0001 and momentum of 0.9. The learning rate was
initialized to 0.1, and divided by 10 in 20, 40, and 60 epochs.
The batch size was set at 16 when training the models, and
the setting details for the LSTM are described in Table 1. All
experiments were carried out using an Nvidia Titan Xp GPU
and 3.20 Ghz CPU. The source codes for these experiments
were implemented based on the Tensorflow library.

The experimental protocol for the open-set action recog-
nition was designed in three steps: 1) Model training,
2) Action gallery construction, and 3) Performance
evaluation. We referred to the experimental protocols
for unconstrained face recognition [80] and person re-
identification [81] for the protocol design. In the model
training step, STRM was trained using just the training set
in the Kinetics-600 dataset [82] which contains a total of

FIGURE 4. The details of the fusion approaches are illustrated. Left: In the
early-fusion type, two different input data types are combined before the
convolutional operation. Right: In the late-fusion type, two different input
data types are combined after the convolutional operation. These
interpretations for fusion approaches can be referenced
in Feichtenhofer et al. [53].

around 500k videos collected from the Youtube website.
After STRM was fully trained with the Kinetics-600 dataset,
action gallery construction and performance evaluation were
carried out with the UCF101 dataset and HMDB51 dataset.
These two datasets provide three train/test splits in the exper-
imental setup for videos, to distinguish whether a video is
assigned for training or testing. In this experimental protocol,
the splits for training were used to construct an action gallery,
and the others were assigned for the model evaluation step.
For instance, when the evaluation was performed with the
UCF101 dataset, the action gallery was constructed with the
training part of the given split in UCF101, and performance
was then evaluated using the test part of the split. The details
of these datasets are described below.

Kinetics dataset [35] is a large-scale and human-focused
action dataset collected from Youtube videos which includes
a wide range of actions in high quality video. Kinetics-600,
which has 600 human action categories, contains training and
validation videos of around 392 and 30K, respectively. The
length of every video clip is at least 10 seconds. The action
categories in this dataset cover a wide range of actions includ-
ing interactions between humans, such as playing instruments
in addition to interactions between humans and objects such
as applying facial cream, baking cookies, and base jumping.

HMDB dataset [9], [83], [84] contains 6.8K RGB videos
collected from a wide range of sources such as Youtube
and movies. Each video is labeled into 51 distinctive action
classes (e.g. running, walking, climbing, jumping, a person
kicking a ball etc) and each class contains at least 101 video
clips. Videos in this dataset were trimmed to have a playtime
of less than 10 seconds. To ensure the consistency of video
clips, more than two human observers validated each video
clip.

UCF101 dataset [85], which was published in 2012, is a
challenging dataset because it contains large variations in
camera motion and object appearance as well as a cluttered
background. It contains 13K RGB videos collected from
Youtube, from which 9.5K videos were used for training and
3.5K videos for testing. These videos have a wide range of

166004 VOLUME 7, 2019



Y. Yoon et al.: STRM-Based Open-Set Action Recognition by Joint Learning of Motion and Appearance

FIGURE 5. Action recognition performance on the UCF101 dataset
depending on the input types and the K values. The performances were
evaluated using a single input type instead of using joint learning. The
solid blue line indicates the recognition performance of STRM using only
RGB, while the dotted red line indicates the recognition performance of
STRM using only optical flow.

playing times and have been labeled into 101 action classes,
including various instrument performances and sports activ-
ities. This dataset was also divided into 25 groups with each
group sharing a common feature such as a similar view-
point or background.

B. PERFORMANCE ANALYSIS DEPENDING ON
HYPER-PARAMETER SETTINGS
Since STRM extracts ST-representation by jointly learning
motion and appearance information, we carried out an exper-
iment to investigate how each type of information affected
recognition performance. We modified the STRMs into a sin-
gle pipeline structure and trained the STRMs with RGB and

TABLE 2. Action recognition performance on the UCF101 dataset based
on the fusion approaches and the values of K .

optical flow separately. Fig. 5 shows the action recognition
performances depending on the input types and the K val-
ues. The STRM with RGB achieved better performance than
optical flow, regardless of K values. The experimental results
indicate STRM can capture the proper temporal context when
only appearance information is given, but optical flow is not
enough to capture temporal context for action recognition in
the open-set condition.

The experiments were then conducted onmultipleK values
and two different fusion types using the UCF101 dataset,
to investigate the influence ofK values and fusion approaches
on the accuracy of action recognition. As shown in Table 2,
the minimum and maximum values of K were 8 and 256,
respectively, and the K value doubled from 8 to 256. The
performance increased dramatically and growth rate was
higher than 10% until the K value reached 64. It then started
to decrease slowly, exhibiting a performance of 83.6% at
K = 64, and only changed slightly when the K value doubled
from 128 to 256.

Experiments were also conducted using early fusion and
late fusion. The structural difference between early and late
fusion on a neural network is illustrated in Fig. 4. The early
fusion approach combines multiple pieces of information
before extracting a feature using a network model. Late
fusion combines two pieces of information after extracting

FIGURE 6. Graphs showing the cumulative match characteristic (CMC) curves for the UCF-101 dataset and HMDB51 dataset. (a) and (b) are graphs of the
CMC curves, and the corresponding accuracy table for UCF101 and HMDB51, respectively.
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the abstracted features using networks. For every K value,
the late-fusion approach showed slightly better accuracy than
the early-fusion case. This shows that it is better to fuse two
input types after convoluting them separately than to directly
concatenate the two heterogeneous raw inputs.

Comprehensively, the entire experimental results can be
interpreted as follows. The action recognition performance
was usually proportional to the value of K . However, the per-
formance improvement dependent on K did not increase lin-
early. In addition, since the computational cost also increased
rapidly using our method, it should be carefully considered
when deciding on the K value. The overall action recog-
nition accuracies showed that late fusion can provide more
precise action recognition performance than the early fusion
approach.

C. COMPARISON WITH STATE-OF-THE-ART METHODS
Wedemonstrated the effectiveness of STRM for action recog-
nition under the open-set condition. STRM was compared
with both closed-set methods and open-set methods simulta-
neously. The UCF101 dataset and HMDB51 dataset provide
three splits which can be used to train and evaluate an action
recognition method. The test parts of these three splits were
used for performance evaluation. Table 3 shows the average
performance over three splits for the proposed method and
other existing methods under closed-set and open-set condi-
tions on the two benchmark datasets.

We compared STRM using closed-set based methods
and open-set based methods. The closed-set methods were:
iDT [18], Two-stream [31], FstCN [71], MoFAP [72],
MIFS [8], LTC [34], R-STAN [73], ST-Pyramid Net-
work [74], ATW [75], DOVF [76], Four-Stream [77],
TLE [78], and DTPP [79]. The open-set methods were:
ODN [43], P-ODN [44], SDMM [48], and Mishra et al. [47].
Since there is a shortage of studies on open-set action

recognition, several existing methods were modified to eval-
uate their action recognition performance under an open-set
condition. Two-stream [31], ST-Pyramid Network [74], Four-
Stream [77], and FstCN [71] were selected as competitive
methods for STRM. For fair experiments, the selected meth-
ods were trained with the same hyperparameter setting used
for training STRM, as mentioned in section IV-A. After the
classification layer in these methods was removed, the action
gallery was constructed, and a performance evaluation was
carried out using the features extracted from the previous
layer of the removed classification layers. The results were
sorted in ascending order of accuracy for UCF101. We set
the K value at 128 since the accuracy difference between
K = 128 and K = 256 was negligible, and less computation
was more cost effective. All accuracies of the open-set action
recognition methods were defined as rank 1 accuracy. Table 3
shows the performances of several existing methods and their
input types.

In the experimental results on the UCF101 dataset, the best
accuracy among the closed-set action recognition meth-
ods was achieved by DTPP, which realized 96.2% action

FIGURE 7. Example snapshots for (a) UCF-101 dataset,
(b) HMDB51 dataset, and (c) Kinetics dataset. STRM is trained with just
training-set in Kinetics and tested on UCF and HMDB. As shown in the
examples, video samples share common feature such as background
color or viewpoint if they belong to the same dataset. The difference of
common features between datasets can affect the recognition
performance.

recognition accuracy. On the other hand, the highest accu-
racy of 91.2% was achieved by STRM using the DenseNet-
40 among the open-set action recognition methods. STRM
with VGG-19 and ResNet-32 showed 87.4% and 89.2%
recognition accuracies, respectively. Additionally, among the
open-set methods, SDMM [48] achieved a recognition accu-
racy of 86.63% making it less comparable to other methods.
There was a 5.0% gap between the best performances of the
closed-set and open-set action recognition methods. How-
ever, considering the challenging issue of having to recog-
nize unseen actions in the training step under the open-set
condition, this difference in action recognition accuracy is
relatively reasonable. Nevertheless, the experimental results
show that STRM can provide comparable action recognition
performance, even though it did not achieve the best recogni-
tion accuracy in our experiments.

The experimental results on the HMDB51 dataset were
similar to the experimental results on the UCF101 dataset
with DTPP achieving the best recognition accuracy of 76.3%
among the closed-set methods. The second highest accuracy
of 72.5% was achieved by Four-Stream. Among the open-
set action recognition methods, the best performance was
achieved by STRM with the DenseNet-40 model, which
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TABLE 3. Action recognition accuracies (%) on the HMDB51 and UCF101 datasets. ’Features’ denotes the type of input data for each model and includes
RGB (image), optical flow (OF), and improved Dense trajectories (iDT) [18]. ’Protocol’ represents the condition, either closed-set condition or open-set
condition. ∗ indicates we have implemented the model. The boldface figures represent the best performance in each section.

FIGURE 8. Action recognition accuracies for the action classes in the UCF101 dataset.

had 72.3% accuracy on the HMDB51 dataset. STRM with
VGG-19 and ResNet-34 achieved accuracies of 63.7% and
65.8%, respectively. Besides STRM, the highest performance
among the other open-set methods was 67.36%, achieved
by P-ODN [44].

Similar to the experimental results on the UCF101 dataset,
there was a 4.0% gap between DTPP and STRM with
the DenseNet-40. However, the overall experimental results
showed that STRM can provide reasonable and compa-
rable recognition performance compared with the other

approaches, in spite of having to perform under the disad-
vantage of open-set condition. The main reasons open-set
achieve relatively lower performances than closed-set meth-
ods have to do with the characteristics of the dataset and the
training approach. A benchmark dataset is usually divided
into two separate subsets, the training-set and testing-set.
These two subsets share common features (such as similar
background color, similar viewpoints) since they belong to
the same dataset. On the other hand, in our experiments,
we trained STRM with just the Kineitcs dataset then tested
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FIGURE 9. The confusion matrix on HMDB51 dataset.

it on UCF101 and HMDB51. Moreover, closed-set methods
are taught to recognize only learned action classes in the
training step. These factors reduce the performances of open-
set methods. Fig. 7 shows the snapshot examples of the
UCF101 dataset, HMDB51 dataset, and Kinetics-700 dataset.
The differences in the datasets used for model training and
testing can affect the recognition performance.

Additionally, it is interesting to note that a combination of
two input data types usually produced higher accuracy than
a single input data type. DOVF and TLE, whose inputs are
the combination of raw image (RGB) and optical flow (OF)
achieved 94.6% and 95.6% accuracy, respectively, while R-
STAN,MIFS and FstCN, which have a single input data type,
achieved 92.7%, 89.1% and 88.1% accuracy, respectively.
Such results raise the possibility that performance could be
improved by using STRM with iDT as the input data.

In addition to the quantitative evaluation, we also com-
pared the discriminative power of the learned representa-
tions of the open-set action recognition methods, using a
cumulative match characteristic (CMC) curve. Fig. 6a and
Fig. 6b show the CMC curve of each open-set action recogni-
tion method for the UCF-101 dataset and HMDB51 dataset,
respectively. Table 6a and Table 6b display recognition accu-
racies based on rank. The experimental results shown in Fig. 6
demonstrate that STRM with DenseNet-40 provided more
discriminative power than the other methods, achieving an
accuracy of 91.2% on the UCF-101 dataset and 72.3% on the
HMDB51 dataset. These figures are the best performances
among the open-set action recognition methods.

The performances for each action class in UCF101 are
plotted in Fig. 8. The results show that the actions ’Band
marching’ and ’Handstand push-ups’ are easy to recognize,
while ’Parallel bars’ and ’High jump’ are hard to recognize.
The performances for all action classes in HMDB51 are
plotted in Fig. 9. The results show that actions ’push’ and

’climb-stairs’ are easy to recognize, while ’laugh’ and ’kiss’
are hard to recognize in HMDB51.

V. CONCLUSION
In this paper, we proposed the STRM method for open-set
action recognition. STRM extracts joint ST-representations
from motion and appearance data and computes the simi-
larity between the joint ST-representation and the represen-
tations listed in the action gallery. The action class which
has maximum similarity is assigned as the action class for
the given data. This approach enables STRM to process
actions under the open-set condition, by recognizing non-
trained action classes without having to retrain itself. The
experimental results demonstrated the effectiveness of the
proposed method for open-set action recognition.

Despite the outstanding performance shown in the exper-
imental results, STRM has several drawbacks in learning
and recognizing tasks. The main drawbacks of the proposed
method can be summarized as follows. First, to extract good
joint ST-representations a large-scale and well-classified
dataset is essential for training the model. This problem is an
inherent issue for most existing visual recognition methods
based on deep neural networks. Second, the computational
complexity involved in recognizing action classes is higher
than in methods based on the classification approach, and
could increase exponentially as the scale of the action gallery
increases.

Future works need to consider the above drawbacks
and concentrate on developing methods for data genera-
tion or data augmentation based on a generative model,
to improve action recognition performance, even when a
large-scale and well- classified dataset cannot be used. Addi-
tionally, a knowledge distillation approach which can reduce
the computational complexity of the proposed model by com-
pressing the network scale needs to be explored.
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