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Abstract
This paper presents an aircraft fuel quantity estimation method using theMarkov ChainMonte Carlo (MCMC)method. Using
the proposed method, fuel quantity uncertainty of an aircraft supplementary tank can be estimated when the roll and pitch
attitudes of an aircraft change. Through reflecting uncertainties, the conservative bound of fuel quantity estimation results can
be found,which is necessary for a reliable aircraft operation. The first step of the estimation process is amathematicalmodeling
of the fuel quantity in a supplementary tank. In themodel, the fuel quantity is represented as amultivariate polynomial function
of sensor output (i.e., frequency), aircraft roll and pitch angles. The parameter of the mathematical model is then estimated
using the MCMC method. As an estimation result, the probability density function of the fuel quantity is provided, which
accounts for the uncertainties caused from the developed mathematical model and measured data. The lower bound in the
estimation result can be utilized as a conservative fuel quantity value for a reliable operation. To validate the proposed fuel
quantity estimation approach, a test with known fuel quantity is performed.

Keywords Fuel Quantity Measurement System (FQMS) · Uncertainty estimation · Bayesian approach · Markov Chain
Monte Carlo method

1 Introduction

A supplementary fuel tank for an aerial refueling system
enables to increase the range of the aircraft combat and
surveillance [1–3]. In the supplementary fuel tank, a fuel
quantity measurement system (FQMS) is one of key compo-
nents. Here, the FQMS functions to estimate the fuel quantity
in the situationwhen an aircraft attitude changes (i.e., roll and
pitch angles of an aircraft change). In [4], the FQMS using
a capacitance type sensor was developed. The capacitance
type sensor measures the height submerged by the fuel by
utilizing the difference of the dielectric properties between
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the air and fuel materials. The FQMS was developed for a
unmanned aerial vehicle [5,6]. In [7], the sensor location in
the FQMS was optimized to minimize non-measurable fuel
quantity.

The previous works for the FQMS [5–7] estimate the
fuel quantity based on the deterministic algorithm like a
least square regression method. This method finds a single
estimation value, and its estimation result does not change
for the same input value. The deterministic algorithm has
a limitation that it is unable to account for the uncertainty
in the estimation process. On the contrary, the probabilis-
tic algorithm can quantify the uncertainty associated with
the inaccuracy of an estimation model and measured data.
To quantify the uncertainty, the Bayesian approach has been
widely utilized due to its practical advantages [8,9]. It should
be noted that the uncertainty information in the fuel quan-
tity estimation process is critical for the safe operation of the
aircraft.

Accordingly, the Bayesian approach based on Markov
chain Monte Carlo (MCMC) method [10–14] is applied for
the fuel quantity estimation of aircraft supplementary tank in
this work. The MCMC method is one of the effective sam-
pling algorithms that can solve a high-dimensional problem
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using a numerical approximation [10]. It allows us to deter-
mine a distribution by randomly sampling values out of the
distribution instead of using the mathematical properties of
the distribution [14]. The MCMC method has been applied
to estimate parameters with uncertainties in various appli-
cations. The capacity fade of Li-ion batteries was estimated
using the MCMC method in [15,16]. The MCMC method
was utilized to estimate the solder alloy material parameters
in [17], and reciprocal sliding friction model parameters in
[18]. In [19], daily river flow rate was predicted with uncer-
tainty quantification using the MCMC method.

In this work, the MCMC method is applied to estimate
the fuel quantity with uncertainties. For the estimation, the
fuel quantity is mathematically modeled using the multivari-
ate polynomial function. The model input variables are set
as the frequency output of the capacitance type sensor, and
roll/pitch angles of the tank. The observation data composed
of fuel quantity, sensor output (i.e., frequency), roll and pitch
angles are generated using the test simulator. The model
parameters are then estimated using the MCMC method
with the Metropolis–Hastings algorithm [10–14]. Next, the
probability density function (PDF) of the fuel quantity is esti-
mated from themathematical model and the estimatedmodel
parameters. The lower predictive interval bound of the PDF
can be utilized as a conservative estimation result of the fuel
quantity. To validate the proposed fuel quantity estimation
method, the test with known fuel quantity was performed.

The outline of this paper is as follows. In Sect. 2, data
generation using the test simulator is explained. In Sect. 3,
an explanation about the fuel quantity estimation method is
provided. Here, the proposed mathematical model of the fuel
quantity is first explained, and the MCMC method utilized
for the parameter estimation is briefly described. In Sect. 4,
the fuel quantity estimation results are provided to validated
the proposed method. Finally, conclusions are provided in
Sect. 5.

2 Data Generation Using Test Simulator

To build the numerical model of the fuel quantity, data at
various aircraft attitudes are generated using a test simulator.
The test simulator is composed of aircraft supplementary
tank, attitudemotion control equipment and fuel feeding unit,
as shown in Fig. 1. Inside the supplementary fuel tank, a
passive DC capacitance type sensor is installed to measure
the fuel quantity. The output of the sensor is the form of
the frequency. Using the test simulator, the sensor data (i.e.,
frequency) at various fuel quantities, roll and pitch angles are
automatically acquired by the control device of the attitude
and feeding equipment. The detailed explanations about the
test simulator and its fuel quantity measurement system are
provided in [20,21].

Table 1 summarizes the data points of fuel quantity Q, roll
angleφ, and pitch angle θ . The capacity of the supplementary
tank is 84L, and thus 28 data points with 3-L intervals are
chosen for the fuel quantity Q data points. The ranges of
roll and pitch movements are assumed, respectively, as −2
to 2◦ and −3 to 8◦. The data points for the given ranges are
determined by the automatic attitude simulation equipment.
The equipment is controlled to operate at every 0.5◦ interval
inside the given ranges, and thus 9 and 23 data points are,
respectively, chosen for the roll and pitch angles. The exact
pitch and roll angles at the given data points are measured,
as summarized in Table 1. As a result, a total of 5796 data
points (= 28×9×23 points) are determined, and the sensor
output (i.e., frequency f ) is measured at each data point.

3 Fuel Quantity EstimationMethod

In this section, a fuel quantity estimation method using the
Markov chain Monte Carlo (MCMC) method is explained.
The first step of the estimation is to build the numericalmodel
to represent the fuel quantity Q as the function of sensor
output frequency f , roll angle φ, and pitch angle θ . Next, the
probability density function (PDF) of the model parameter is
estimated using the MCMC method. Then the fuel quantity
with uncertainties can be estimated from the numericalmodel
with the estimated model parameters.

3.1 Fuel Quantity Modeling

The numerical model is proposed to represent the fuel quan-
tity Q as a function of sensor frequency f , roll angle φ, and
pitch angle θ . As explained in Sect. 2, the sensor frequency f
is measured as an output during the data generation process
because fuel quantity Q, roll angle φ, and pitch angle θ are
easily controllable quantities. In contrast, the fuel quantity Q
is set for the output of the numerical model because it is the
final estimated quantity. The first step to build the numerical
model is the transformation of the input variables f , φ, and
θ into f̃ , φ̃, and θ̃ to have ranges between 0 and 1:

f̃ = 2
f − fmax

fmax − fmin
− 1, (1)

φ̃ = 2
φ − φmax

φmax − φmin
− 1, (2)

θ̃ = 2
φ − φmax

φmax − φmin
− 1. (3)

After the transformation using (1)–(3), the range of variables
f̃ , φ̃, and θ̃ is restricted between −1 and 1. Then the fuel

123



International Journal of Aeronautical and Space Sciences (2019) 20:1047–1054 1049
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Motion control unit
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Fig. 1 Test simulator for data generation

Table 1 Summary of data points

Sensor output (frequency f ) is measured at data points

Fuel quantity Q 3L, 6L 9L, 12L, 15L 18L, 21L 24L 27L, 30L, 33L, 36L, 39L, 42L, 45L, 48L, 51L, 54L, 57L, 60L, 63L, 66L, 69L, 72L,
75L, 68L, 81L, 84L

Roll angle φ −1.91◦, −1.56◦, −1.04◦, −0.52◦, −0.08◦, 0.43◦, 0.95◦, 1.47◦, 1.91◦

Pitch angle θ −2.93◦, −2.58◦, −2.06◦, −1.55◦, −1.03◦, −0.51◦, −0.08◦, 0.43◦, 0.94◦, 1.46◦, 1.98◦, 2.41◦, 2.93◦, 3.44◦, 3.96◦, 4.48◦,
4.91◦, 5.43◦, 5.94◦, 6.46◦, 6.98◦, 7.41◦, 7.93◦

quantity Q is represented as a summation of polynomialmul-
tiplications of transformed input variables f̃ , φ̃, and θ̃

Q( f , φ, θ) =
p∑

i=0

p∑

j=0

p∑

k=0

Ci jk × f̃ i × θ̃ j × φ̃k, (4)

where p is themaximumorder of polynomials, andCi jk is the
model parameter. The larger themaximumorder p, the higher
the model accuracy, but the higher the calculation cost. For
example, when p is one, only eight model parameters from
C000 to C111 are required to complete the model (4). As p
increases, the number of the model parameter Ci jk increases
dramatically. If p is set as 7, the number of model parameter
becomes 512 (= 8 × 8 × 8). To find the smallest p with an
acceptable error, the root mean square (RMS) and maximum
error between the measured fuel quantity and estimated fuel
quantity using (4) are investigated. In this investigation, the
model parameter Ci jk is determined using the conventional
least square method. Figure 2a, b, respectively, describes the
calculatedRMS, andmaximumerrorwith respect to themax-
imum order of polynomial p. Here the error is defined as the
difference between the measured and estimated fuel quan-
tities at 5796 measured data points (refer to Sect. 2). As
expected, both RMS and maximum error decreases as the
maximum order of polynomials p increases. However, the
higher value of p requires the higher computation cost. Thus,
the maximum order p is set to 3 in this work considering the

accuracy and computational efficiency. It is noted that the
number of the model parameter Ci jk is 64(=4× 4× 4) when
the maximum order of polynomials p in (4) is 3.

To validate the numerical model in (4) with p = 3, the
measured fuel quantity values are compared with the esti-
mated values acquired using the numerical model (4). The
comparison results are provided in Fig. 3a, b. In Fig. 3a, the
roll angle φ is fixed as −0.08◦, and the fuel quantities Q at
various frequencies f and pitch angles θ are investigated.
On the other hand, Fig. 3b shows the fuel quantities Q at
various frequencies f and roll angles φ when the pitch angle
θ is fixed as 0.43◦. This comparison result confirms that the
proposed model with p = 3 can suitably represent the fuel
quantity Q.

Next, the model parameter vector C composed of the
64(=4 × 4 × 4) coefficients Ci jk in (4) is defined as

C = [C000 C001 C002 ... C333]T. (5)

When themodel parameterC is determined, the fuel quantity
model (4) is completed. Then the fuel quantity Q can be
estimated using (1)–(4) when the sensor frequency f , roll
angle φ, and pitch angle θ are measured as the input values.

3.2 Markov Chain Monte Carlo Method

The Bayesian inference with the Markov chain Monte Carlo
(MCMC) samplingmethod is utilized to determine themodel
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Fig. 2 Calculation of polynomialmodel error: a rootmean square error,
and b maximum error, with respect to polynomial order p

parameter vectorCwith uncertainty. The Bayesian inference
uses observed data to update a prior state of beliefs about
model parameters to become a posterior state of beliefs about
model parameters [14]. In this work, the posterior probability
density function (PDF) of themodel parameterC conditional
on the measured fuel quantity data Q (i.e., P(C|Q)) can be
defined based on the Bayes’ rule:

P(C|Q) ∝ L(Q|C)p(C), (6)

where p(C) is the prior distribution of the model parame-
ter C, which is assumed as the uniform distribution in this
work. The joint likelihood function L(Q|C) in (6) is defined
as the multiplication of the likelihood functions for 5796
observation data Qq (q = 1, 2, ..., 5796). Here, the 5796
observation data Qq (q = 1, 2, ..., 5796) are acquired using
the test simulator, as explained in Sect. 2:

Fig. 3 Comparison of measured and estimated fuel quantities. The
black-colored dot represents the measured fuel quantity value, and the
surface represents the estimated value using the numerical model (4)

L(Q|C) =
5796∏

q=1

L(Qp|C)

= L(Q1|C) × L(Q2|C) × · · · × L(Q5796|C). (7)

The likelihood function for qth fuel quantity data (i.e.,
L(Qq |C)) in (7) is defined as

L(Qq |C) = 1

σ
√
2π

exp

{
− 1

2

[
Qq − Qq (C, fq , φq , θq )

]2

σ 2

}
, (8)

where σ is the standard deviation, and Qq is the model
value of the fuel quantity calculated using (4) with the model
parameter C, and the observation data fq , φq , θq . The like-
lihood function (8) is obtained by assuming that the error of
the observation data with respect to the model value is the
Gaussian distribution.

123



International Journal of Aeronautical and Space Sciences (2019) 20:1047–1054 1051

u<min 1,
P(C∗| Q)
P(Ci−1| Q) ?

- u ~ U(0,1)

New sample C* by Perturbation
C*= Ci-1+w (2 u-1)

- w: weighting vector for perturbation
- u ~ U(0,1)

i=1

Calculate posterior PDF at sample C*:
P(C*|Q) = L(Q|C) p(C)

Ci = C*

Ci = Ci-1

Start

End
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Fig. 4 Flowchart to calculated the PDF of the model parameter C using the MCMC method with the Metropolis–Hastings algorithm
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Fig. 5 Estimation result of the model parameter a C000, b C001, c C100, d C200, e C300, and f C333. The histogram shows the number of samples
of the Metropolis–Hastings algorithm, which represents the estimated posterior PDF
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Fig. 6 Estimation result of the standard deviation of the likelihood
function in (5). The histogram represents the estimated posterior PDF

To evaluate the posterior PDF of P(C|Q) in (6) with
(7)–(8), the MCMC method using the Metropolis–Hastings
algorithm [10–14] is applied in this work. The MCMC
method is a computationally efficient sampling approach.
It allows us to calculate the posterior PDF P(C|Q) using
the iterative sampling process, instead of analytical deriva-
tion. The flowchart of the Metropolis–Hastings algorithm is
described in Fig. 4. The first step is to set the initial sample
points of the parameter C0 using the least square method.
Next, the new sample C∗ is generated by adding the random
noise. The posterior PDF at the new sampleC∗ is then calcu-
lated. Next, the ratio of posterior PDFs with new sample C∗
and previous sample at (i − 1)th iteration Ci−1 is compared
with the random value u to determine whether the sample
for i th iteration Ci is updated with the new sample C∗ or
previous sampleCi−1. When enough number of samples are
acquired, the iteration stops. In thiswork, theMCMCmethod
with the Metropolis–Hastings algorithm is implemented and
run in MATLAB. To understand the detailed principle of the
MCMC method with Metropolis–Hastings algorithm, it is
recommended to refer to the literature [10–14].

4 Estimation Result

The posterior PDF of the model parameter vector C condi-
tional on the measured data is estimated using the MCMC
method with the Metropolis–Hastings algorithm. Figure 5
shows the estimation results for several of 64 parameters
(from C000 to C333). In Fig. 5, the number of samples (i.e.,

20.5 21 21.5 22 22.5 23 23.5 24 24.5

Fuel (L)

0

500

1000

1500

2000

2500

3000

3500

4000

N
um

be
r o

f s
am

pl
es

Mean and 95% P.I.

True fuel quantity

Fig. 7 Estimation result of fuel quantity Q when the true value is 22.5L.
The histogram represents the estimated PDF. Themean and upper/lower
95% predictive interval (PI) values are provided as the red-colored
dashed lines

y-axis) in the Metropolis–Hastings algorithm represents the
estimated posterior PDF. In addition, the estimation result
of the standard deviation σ in the likelihood function (8) is
provided in Fig. 6. In this work, the total number of samples
in the Metropolis–Hastings algorithm is set as 50,000, and
the first 1000 samples are discarded as a burn-in period. It
should be noted that the estimation result in Fig. 6 incor-
porates the uncertainties caused from both numerical model
and the measurements.

The posterior PDF of the fuel quantity Q is estimated
using the numerical model (4) with the estimated model
parameter C, when the sensor frequency f , roll angle φ,
and pitch angle θ are given as the input values. Figure 7
shows the fuel quantity estimation result when the roll angle
φ = 0.01◦, pitch angle θ = −2.672◦, and the frequency
f = 13, 276Hz. The true fuel quantity is set as 22.5L, and the
estimated mean value is 22.508L. The upper and lower 95%
predictive intervals (i.e., the range in which future observa-
tions will be located) are calculated as 21.279L and 23.732L.
These values quantify the magnitude of uncertainties in the
fuel quantity estimation result. The lower bound value (i.e.,
21.279L) can be used as a representative estimation result
for a reliable operation. It is noted that the MCMC method
provides the PDF (i.e., uncertainty information) as the fuel
quantity estimation result, while the conventional determin-
istic method gives only point-estimated values without the
consideration of uncertainty. For example, a single value
22.904L is obtained as the fuel quantity estimation result
when applying the trilinear interpolation scheme.

Next, the fuel quantity Q is estimated using the MCMC
method when the roll and pitch angles vary with respect to
time, as can be seen in Figs. 8a, b and 9a, b. Figures 8c and
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Fig. 8 Fuel quantity estimation result (true fuel quantity = 6.5L). a
Roll angle φ variation with respect to time. b Pitch angle θ variation
with respect to time. c Estimation result obtained using the MCMC

method. Mean and 95% upper/lower predictive interval (PI) are pro-
vided as red-colored dashed lines. d Fuel quantity estimated using the
trilinear interpolation scheme
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Fig. 9 Fuel quantity estimation result (true fuel quantity = 13L). a Roll
angle φ variation with respect to time. b Pitch angle θ variation with
respect to time. c Estimation result obtained using the MCMC method.

Mean and 95% upper/lower predictive interval (PI) are provided as
red-colored dashed lines. d Fuel quantity estimated using the trilinear
interpolation scheme
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9c show the estimation result using the proposed MCMC
method when the true fuel quantities are 6.5L and 13L,
respectively. In both results, the true fuel quantity is located
within 95% upper/lower predictive intervals (PI). It is noted
again that the 95% predictive intervals mean the range where
future observations locate with a 95% probability. Thus, it
is confirmed that the numerical model in (4) successfully
describes the fuel quantity as the function of input variables
(i.e., sensor frequency f , roll angle φ, and pitch angle θ ),
and the fuel quantity can be estimated with the uncertainties
using theMCMCmethod. The lower 95% PI bound could be
utilized as the conservative estimation result for better reli-
ability. To clarify the advantage of the proposed approach
considering uncertainties, the fuel quantities estimated using
the trilinear interpolation scheme are provided in Figs. 8d
and 9d. It is noted that the trilinear interpolation scheme is
one of deterministic approaches that gives a point-estimated
value. It is observed from Fig. 8d that the fuel quantity is con-
siderably overestimated when the time is around 32s. This
overestimationmight prevent the safe operation of an aircraft.
On the contrary, the overestimation of the fuel quantity does
not occur when the lower PI bound of the MCMC estimation
result is utilized. The overestimation of the fuel quantity is
also observed in Fig. 9d, which confirms the advantage of
the proposed approach considering uncertainties.

5 Conclusion

In this work, the uncertainty estimation method of the fuel
quantity in a supplementary fuel tank is presented. Unlike the
deterministic algorithm (e.g., least square method), the pro-
posed method can quantify the uncertainty caused from the
mathematical model and measurement. For the modeling, a
multivariate polynomial function is utilized, and the training
data are prepared using the test simulation. Then the model
parameters are calculated using the MCMC method, and the
PDF of the fuel quantity can be obtained as an estimation
result. In the test estimation with known fuel quantity, the
uncertainties are successfully quantified using the proposed
method. The lower bound of the predictive intervals can be
utilized as a conservative value considering the uncertainty.
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