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1 Introduction

The AdS/CFT correspondence (or gauge/gravity duality) [1–3] is an interesting duality

between gravity theories and conformal field theories (CFTs). It provides a new viewpoint

to better understand field theories in terms of geometric quantities. In recent years, a

remarkable perspective on this duality has been developed in the quantum entanglement

and information theory.

Considering the quantification of entanglement is the necessary foundation in quantum

information theories, which basically corresponds to studying entanglement measure. One

important and well-studied entanglement measure in the gauge/gravity duality framework

is the entanglement entropy. The Ryu-Takayanagi formula [4, 5] gives us a hint of the

emergence of spacetime from the entanglement entropy in the dual conformal field theories

(e.g., see [6–10]).

The entanglement entropy is suitable for measuring the quantum entanglement of pure

states, however, it is not a good measure for mixed states in that the entanglement entropy

could be nonzero even though the two subsystems are not entangled (e.g., see [11]). Hence,

it is important to construct other entanglement measure quantities in order to investigate

mixed states. From the holographic point of view, new geometric objects describing mixed

states are now required, which are expected to be different from usual minimal surfaces in

the Ryu-Takayanagi formula. The entanglement wedge cross section [12, 13] is suggested

as such an object in holography, which is defined by minimal surfaces in the entanglement

wedge. The entanglement wedge [14–16] is a bounded region of the bulk spacetime dual to

a reduced density matrix. Since the reduced density matrix is a mixed state in general, the

entanglement wedge cross section is expected to be the holographic dual of some entangle-

ment measures for the mixed states. The more detailed description of the entanglement
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wedge cross section will be reviewed in section 3. There are various proposals of entan-

glement measures for mixed states in the CFTs as the dual of entanglement wedge cross

section: entanglement of purification [12, 13], logarithmic negativity [17], odd entangle-

ment entropy [18], and reflected entropy [19]. See also recent studies of the entanglement

wedge cross section in [20–43].

Hereafter, we focus on the reflected entropy SR(A : B), which is the entanglement

entropy of a canonically purified state generated from a given density matrix ρAB on a

bipartite Hilbert space HA⊗HB. Motivated by the duality between the thermofield double

state and the eternal AdS black hole [44], the authors of [19] proposed the following duality

SR(A : B) = 2EW (A : B) +O(G0
N ), (1.1)

where EW (A : B) is the entanglement wedge cross section, which is the area of minimal

cross section in the entanglement wedge divided by 4GN , and GN is the gravitational

constant. With the reduced density matrix ρAB of the ground state in the 2d holographic

CFTs on two disjoint intervals A and B, the duality (1.1) was explicitly checked [19]. The

duality with the time evolution by a quench was also studied in [39, 41].

Based on the replica trick in the bulk [45, 46], the duality (1.1) was established as [19]

lim
n→1

Sn(AA?)ψm = 2EmW (A : B) +O(G0
N ), (1.2)

by assuming the replica and time reflection symmetry in the bulk and the GKP-Witten

relation [2, 3]. Here, limn→1 Sn(AA?)ψm is the reflected entropy for ρmAB, and EmW (A : B)

is the entanglement wedge cross section in the quotient spacetime Bm/Zm, which is used to

compute the holographic Rényi entropy [45, 47]. We will explain the detail of Sn(AA?)ψm

and EmW (A : B) in the main context.

Our motivations to consider m 6= 1 are three folds. The first motivation comes from

the holographic duality. From the gravity side, m 6= 1 has a clear meaning that we need

to consider the back-reaction of the cosmic brane [48] when we compute the entanglement

wedge cross section. According to the holographic duality, there must be a dual quantity in

field theory side, which was proposed to be the reflected entropy of ρmAB [19]. Even though

the field theory meaning of this quantity is not clear for now,1 it is a well defined and

important question to ask if the aforementioned holographic proposal (eq. (1.2) for m 6= 1)

is valid. In this work, we consider m ∼ 1 for technical reasons so only an (m−1) correction.

Second, from the replica-trick perspective, we first formulate Sn(AA?)ψm for n ∈ Z+ and

m ∈ 2Z+ as explained in section 2. Then, we consider an analytic continuation with n→ 1

and m→ 1 to compute SR(A : B). It means Sn(AA?)ψm needs to be defined well for all m

including for small (m − 1). Third, another motivation to consider the generalization by

m in the field theory side is related to eigenvalues of ρAB. Computing limm→1 Sn(AA?)ψm

with all n will provide us eigenvalues of ρAA? because limm→1 Sn(AA?)ψm is the n-th

Rényi entropy of the reduced density matrix ρAA? . Furthermore, one may investigate the

eigenvalues of ρAB from limm→1 Sn(AA?)ψm or the eigenvalues of ρAA? via the construction

of ρAA? from ρAB. However, it is not certain that we can determine eigenvalues of ρAB

1The holographic duality says that there exist dual quantities in gravity and field theory side, but a

simple quantity in one side may not be necessarily a simple quantity in the other side.

– 2 –



J
H
E
P
1
2
(
2
0
1
9
)
1
7
0

uniquely from limm→1 Sn(AA?)ψm only because there is a possibility that the inverse map

from ρAA? to ρAB is not uniquely determined. Thus, we expect that Sn(AA?)ψm has

more information about the eigenvalues of ρAB than limm→1 Sn(AA?)ψm , and this is one

motivation to consider the generalization by m.

Note that the quotient spacetime Bm/Zm has conical singularities, which are fixed

points of the Zm symmetry in Bm, and these singularities can be interpreted as cosmic

branes with tension Tm = m−1
4mGN

[48]. As with the holographic Rényi entropy, these cosmic

branes produce the m-dependence of EmW (A : B) by backreaction to the bulk geometry [19,

41]. The geometry with the backreaction from a single cosmic brane homologous to a disk

was studied in [49]. A construction procedure of the bulk geometry with the backreaction

for two intervals was developed in [47]. Especially, the author of [48] computed the area

of a single cosmic brane with the backreaction from the other cosmic brane at first order

in m − 1, giving non-vanishing tension of cosmic branes. One can also introduce the

backreaction by considering n 6= 1. In particular, the Rényi reflected entropy with n = 1/2

and its bulk dual with the backreaction were studied in [40] for the holographic dual of

logarithmic negativity.

For general value of m and the configuration of the subsystems A and B, although the

holographic duality (1.2) was established by the Lewkowycz-Maldacena type derivation, an

explicit computation of (1.2) is not simple because a construction of Bm/Zm is complicated.

Moreover, the Lewkowycz-Maldacena type derivation is based on the GKP-Witten relation,

but the proof of the GKP-Witten relation is generally very difficult. Hence, an explicit

calculation of (1.2), at least by a simple example, is important for the consistency check of

the duality.

In this work, we explicitly compute and show (1.2) with the two disjoint intervals

A and B at first order in m − 1. We evaluate limn→1 Sn(AA?)ψm for the reduced density

matrix of the ground state in the 2d holographic CFTs as well as SR(A : B) studied in [19].

The entanglement wedge cross section EmW (A : B) with the small backreaction can be

obtained by a method in [48] for the holographic Rényi entropy. By comparing the two

results, we find an exact agreement, which means an explicit check of (1.2) up to first order

in m− 1.

The organization of this paper is as follows. In section 2, we review the reflected

entropy and compute the left hand side of (1.2) at first order in m − 1. In section 3, we

derive the right hand side of (1.2) with the small backreaction and check the duality (1.2).

We conclude in section 4.

2 Reflected entropy with the first order correction

In this section we study the reflected entropy for ρmAB with two disjoint intervals A and

B in the 2d holographic CFTs, where ρAB is the reduced density matrix of the ground

state. For this purpose, we first review the reflected entropy for finite dimensional Hilbert

spaces and generalize it for continuous field theories using the replica trick [19]. In partic-

ular, as a functional calculation tool, we will express the reflected entropy in terms of the

twist operators and compute it up to first order correction in the replica index m using a

perturbative expansion of the semiclassical conformal block.
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2.1 Some formalism

First of all, we review the reflected entropy based on [19, 39, 40] for finite dimensional

Hilbert spaces. Consider a positive-semidefinite density matrix ρAB on a Hilbert space

HA ⊗HB:

ρAB :=
∑
a

pa|φa〉〈φa|, (2.1)

where |φa〉 is an orthogonal and normalized basis of HA ⊗ HB, and pa are nonnegative

eigenvalues. We normalize (2.1) as TrρAB =
∑

a pa = 1. By choosing appropriate bases

|ia〉A of HA and |ia〉B of HB, we can construct a Schmidt decomposition of |φa〉 (see, for

example, [11]):

|φa〉 =
∑
i

√
lia|ia〉A|ia〉B, (2.2)

where lia is a nonnegative value with the normalization
∑

i l
i
a = 1. Substituting (2.2)

into (2.1), we obtain

ρAB =
∑
a,i,j

pa

√
lial

j
a|ia〉A|ia〉B〈ja|A〈ja|B. (2.3)

Interpreting 〈ja|A and 〈ja|B as states |ja〉A? and |ja〉B? on Hilbert spaces H?A and H?B
respectively, we can define a state |√ρAB〉 on HA ⊗HB ⊗H?A ⊗H?B as

|√ρAB〉 :=
∑
a,i,j

√
palial

j
a|ia〉A|ia〉B|ja〉A? |ja〉B? . (2.4)

One can easily show that |√ρAB〉 represents a purification of ρAB as follows

TrH?
A⊗H

?
B
|√ρAB〉〈

√
ρAB| = ρAB . (2.5)

Then, with the state (2.4), the reflected entropy SR(A : B) for ρAB is defined by

SR(A : B) := − TrHA⊗H?
A

[ρAA? log ρAA? ] ,

ρAA? := TrHB⊗H?
B
|√ρAB〉〈

√
ρAB|. (2.6)

Note that the reflected entropy in (2.6) follows the form of the Von Neumann entropy.

In other words, we can understand the reflected entropy SR(A : B) as the entanglement

entropy of the reduced density matrix ρAA? .

2.2 Replica trick for the reflected entropy

In this section, we rewrite the definition of SR(A : B) for continuous field theories by the

replica trick. After giving the expression of reflected entropy in terms of partition functions,

we will reformulate it with the twist operators. To formulate SR(A : B) for continuous
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field theories by the replica trick, SR(A : B) is generalized by two replica indices n and

m [19]. In terms of the replica index, ρAB in (2.1) is generalized by m as

ρmAB :=
∑
a

pma |φa〉〈φa|, =
∑
a,i,j

pma

√
lial

j
a|ia〉A|ia〉B〈ja|A〈ja|B. (2.7)

where, (2.2) is used in the last equality. Accordingly, |√ρAB〉 in (2.4) is generalized as

|ρm/2AB 〉 :=
∑
a,i,j

pm/2a

√
lial

j
a |ia〉A|ia〉B|ja〉A? |ja〉B? ,

|ψm〉 :=
1√

TrρmAB
|ρm/2AB 〉, (2.8)

where |ψm〉 is a purification of ρmAB in (2.7) with the normalization:

TrH?
A⊗H

?
B
|ψm〉〈ψm| =

ρmAB
TrρmAB

. (2.9)

Then, finally the reflected entropy SR(A : B) (2.6) is generalized by n and |ψm〉 (2.8) as

Sn(AA?)ψm :=
1

1− n
log TrHA⊗H?

A

(
ρ

(m)
AA?

)n
,

ρ
(m)
AA? := TrHB⊗H?

B
|ψm〉〈ψm|, (2.10)

where Sn(AA?)ψm is the nth Rényi entropy of the reduced density matrix ρ
(m)
AA? . When

n→ 1 and m→ 1, Sn(AA?)ψm reduces to SR(A : B)

lim
n,m→1

Sn(AA?)ψm = SR(A : B). (2.11)

Introducing partition functions Zn,m as

Zn,m := TrHA⊗H?
A

(
TrHB⊗H?

B

∣∣∣ρm/2AB

〉〈
ρ
m/2
AB

∣∣∣)n , (2.12)

Sn(AA?)ψm in (2.10) can be expressed by

Sn(AA?)ψm =
1

1− n
log

Zn,m
(Z1,m)n

. (2.13)

The authors of [19] gave a prescription for Sn(AA?)ψm in CFTs. In particular, they for-

mulated Zn,m by a path integral on a replica manifold for n ∈ Z+ and m ∈ 2Z+. The

condition m ∈ 2Z+ is related to the replica manifold of |ρm/2AB 〉. The number of replica

sheets in the replica manifold of |ρm/2AB 〉 is m/2, and thus, m/2 must be a positive integer.

By using an analytic continuation of m and n, they evaluated the reflected entropy by

limn,m→1 Sn(AA?)ψm in the 2d holographic CFTs.
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Figure 1. Replica manifold of ρ2AB and |ρ2AB〉. The difference of their Hilbert spaces (2.14) is

marked in blue color.

Constructing the replica manifold for Zn,m: we review how to construct the replica

manifold for Zn,m (2.12) with the reduced density matrix ρAB of the ground state in 2d

CFTs. Here for a vivid example of it, we give n = 2, m = 4 case. Let us start with

the manifold of |ρ2
AB〉 composing a basic building block of Z2,4: |ρ2

AB〉〈ρ2
AB|. The overall

structure of the manifold of |ρ2
AB〉 is the same as that of the density matrix ρ2

AB. This is

due to the resemblance between ρ
m/2
AB in (2.7) and |ρm/2AB 〉 in (2.8). Only difference between

them is the Hilbert spaces in which two intervals live in, following explanation near (2.1)

and (2.4), the density matrix ρ
m/2
AB on HA⊗HB can be interpreted as the pure state |ρm/2AB 〉

on HA ⊗HB ⊗H?A ⊗H?B, namely

|ρ2
AB〉 ∈ HA ⊗HB ⊗H?A ⊗H?B . (2.14)

Explicit shape of their manifold is displayed in figure 1.

Using the description of |ρ2
AB〉 above, we can make the replica manifold of |ρ2

AB〉〈ρ2
AB|

and the trace of it, TrHB⊗H?
B
|ρ2
AB〉〈ρ2

AB|, as shown in figure 2. Note that the positions

of (HA, HB) and (H?A, H?B) in the replica manifold of the hermitian conjugate 〈ρ2
AB| are

switched in comparison with |ρ2
AB〉.2

One can notice that the small colored panel on each sheet in figure 3 have a numbering

mark on them. It represents the connections between the same numbered panel (or the same

colored panel). The way of gluing them is determined when we introduce n as follows. For

instance, we have two TrHB⊗H?
B
|ρ2
AB〉〈ρ2

AB| before taking the trace TrHA⊗H?
A

in Z2,4. This

means that the inner product is evaluated between the bra state 〈ρ2
AB| from one piece of(

TrHB⊗H?
B
|ρ2
AB〉〈ρ2

AB|
)2

and the ket state |ρ2
AB〉 from another. This procedure correspond

to how the red (or orange) colored panel get glued together in figure 3. After doing this

procedure, the remaining trace operation (TrHA⊗H?
A

) acts on
(

TrHB⊗H?
B
|ρ2
AB〉〈ρ2

AB|
)2

. In

terms of the replica manifold desctiption, it can be viewed as a connecting green (and blue)

colored panel in figure 3.

2The trace TrHB⊗H?
B

is done by gluing intervals B (and B?) on different sheets.
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Figure 2. Replica manifold of |ρ2AB〉〈ρ2AB | and TrHB⊗H?
B
|ρ2AB〉〈ρ2AB |. Note that the hermitian

conjugate 〈ρ2AB | has a switched the position on (H?
A, H?

B) in comparison with |ρ2AB〉 in figure 1.

The trace TrHB⊗H?
B

is done by gluing intervals B (and B?) on different sheets.

Twist operator representation of Sn(AA?)ψm: in the same way as the entanglement

entropy in 2d CFTs [50, 51], the path integral representation of Sn(AA?)ψm on the replica

manifold can be expressed by correlation functions of the twist operators [19]:

Sn(AA?)ψm =
1

1− n
log

〈
σgA(x1)σg−1

A
(x2)σgB (x3)σg−1

B
(x4)

〉
CFT⊗mn(〈

σgm(x1)σg−1
m

(x2)σgm(x3)σg−1
m

(x4)
〉
CFT⊗m

)n , (2.15)

where we take the two intervals A = [x1, x2] and B = [x3, x4] with x1 < x2 < x3 < x4,

and CFT⊗mn is the product theory on 2d flat spacetime, which contains mn replica fields

for the mn replica sheets as in figure 3. The twist operators σgA , σg−1
A

, σgB , and σg−1
B

are

defined such that the replica fields satisfy boundary conditions around the twist operators,

and these boundary conditions are determined by the connection between the replica sheets.

However, unlike above twist operators, the twist operators σgm and σg−1
m

are defined to be

the cyclic connections between m replica sheets, namely, (σgm , σg−1
m

) can only be applied

to m-direction. Thus, when n = 1, these three operators(σgA , σgB , σgm) are equal,

σgA = σgB = σgm (n = 1). (2.16)

Note that the product theory CFT⊗mn in (2.15) is not an orbifold theory.3 Thus, σgA
3As explained in [19], the twist operators in (2.15) without orbifolding are not quite local operators,
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Figure 3. Replica manifolds of Zn,m = TrHA⊗H?
A

(
TrHB⊗H?

B
|ρm/2

AB 〉〈ρ
m/2
AB |

)n
with replica indices

n = 2 and m = 4. The small colored panel on each sheet have a numbering mark on them. It

represents the connections between the same numbered panel (or the same colored panel).

and σgB are not identified at n 6= 1, and the OPE between σg−1
A

and σgB includes not the

unit operator but rather a twist operator σgBg−1
A

,

σg−1
A
σgB → σgBg−1

A
+ · · · . (2.17)

The conformal dimensions hg−1
A

of σg−1
A

and hgB of σgB are [19]4

hg−1
A

= hgB =
nc

24

(
m− 1

m

)
. (2.18)

These values can be explained as follows. The replica manifold in figure 3 includes n cyclic

loops which connect the m replica sheets through B and B?. Hence, we may say that the

conformal dimension of σgB is hgB = nhm, where hm := c
24(m − 1/m) is the conformal

dimension of usual twist operators for m replica sheets [50, 51]. The same is true for hg−1
A

.

On the other hand, the conformal dimension hgBg−1
A

of σgBg−1
A

is given as [19]

hgBg−1
A

=
2c

24

(
n− 1

n

)
. (2.19)

however, we can define the OPE (2.17). See [19, 52] for more details.
4For the twist operators, h

g−1
A

= hgA and h
g−1
B

= hgB .
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Figure 4. σg−1
A
σgB ∼ σgBg−1

A
in the replica manifold Z2,4. Two cyclic loops are represented in

red and blue colored arrows with numbering. The numbering follows the sequence of connection

between each replica sheet in figure 3.

This conformal dimension (2.19) is a consequence of two things: i) the way of satisfying

boundary conditions of twist operator, related to the rotation around the end points of

intervals [50, 51], ii) specific intertwined structure of replica manifold in figure 3. Here,

we give an example of σg−1
A
σgB with n = 2 ,m = 4 to explain how (2.19) can be obtained.

In terms of twist operators, boundary conditions in the replica manifold are satisfied by

performing a rotation around end points of intervals: for instance, anti-twist operator σg−1
A

is acting on the right point of interval A and a twist operator σgB does on the left point of

interval B. By combining those two twist operator’s rotational effect with the intertwined

structure of replica manifold in figure 3, we display how σg−1
A
σgB relates the sheets in the

manifolds in figure 4. Note that the rotation for σg−1
A
σgB is only on the half region of

each sheet, which is represented as shaded regions in red (or blue) color. Then, we can

recognize that there are two cyclic loops in figure 4. One loop is represented with red

arrows with numbering, and the other loop is with blue arrows.5 Since four half pieces of

sheets correspond to two complete sheets, each loop can be regarded as the usual rotations

in n = 2 manifold as in the Renyi entropy. Thus, the conformal dimension of σgBg−1
A

is

hgBg−1
A

= 2hn where hn is given in (2.25).6

2.3 Reflected entropy in the 2d holographic CFTs up to first order in m − 1

Using conformal dimensions of twist operators (2.18) and (2.19), we compute correlation

functions in (2.15). In any 2d CFTs with the Virasoro symmetry, the four point func-

tion
〈
σgA(x1)σg−1

A
(x2)σgB (x3)σg−1

B
(x4)

〉
CFT⊗mn

can be expanded by conformal blocks in

5One can easily check this numbering with figure 3.
6See also explanation by group elements gB and g−1

A in [19].
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t-channel (see, for example, [18, 53–55])〈
σgA(x1)σg−1

A
(x2)σgB (x3)σg−1

B
(x4)

〉
CFT⊗mn

(2.20)

=
1

(x4 − x1)2(h+h̄)(x3 − x2)2(h+h̄)

∑
p

C2
ABp F(mnc, h, hp, 1−z) F(mnc, h̄, h̄p, 1−z̄),

where h = h̄ = nc
24

(
m− 1

m

)
are the conformal dimensions of the twist operators (2.18), the

sum
∑

p is over primary operators Op with the conformal dimensions hp and h̄p,
7 and CABp

is the OPE coefficient of three point functions. In addition, F is the Virasoro conformal

block and mnc represents the central charge of CFT⊗mn. In our set up of the two intervals,

the cross ratios z := (x2−x1)(x4−x3)
(x3−x1)(x4−x2) and z̄ := (x̄2−x̄1)(x̄4−x̄3)

(x̄3−x̄1)(x̄4−x̄2) in (2.20) are real value as z = z̄.

The conformal blocks in (2.20) are not easily computable objects in general. However,

in the semiclassical limit, which is defined by

mnc→∞, ε :=
6h

mnc
and εp :=

6hp
mnc

fixed, (2.21)

the Virasoro conformal block F is expected to be exponentiated [56, 57]

log [F(mnc, h, hp, 1− z)] ∼ −mnc
6

f(ε, εp, 1− z), (2.22)

by an analysis of the Liouville theory. The author of [54], using (2.21) and (2.22), argued

that (2.20) in the 2d holographic CFTs for some finite range around z = 1 can be approx-

imated by the single conformal block in t-channel with the lowest conformal dimension

hp = h low.

In our case (2.20), OPE in (2.17) determines the lowest conformal dimension for

t-channel:

h low = hgBg−1
A

=
2c

24

(
n− 1

n

)
, εp = εlow :=

6h low

mnc
, (2.23)

where, we use (2.19). This is because the exchange of the unit operator is forbidden unless

n = 1. Accordingly, in the large c limit with m and n held fixed, one can confirm that

εp = εlow := 6h low
mnc satisfies the semiclassical limit (2.21).

Plugging (2.22) into the (2.20) with hp = h low and εp = ε low, we obtain the following

log
〈
σgA(x1)σg−1

A
(x2)σgB (x3)σg−1

B
(x4)

〉
CFT⊗mn

∼ −4h log[(x4 − x1)(x3 − x2)] + 2 logCn,m −
mnc

3
f(ε, εlow, 1− z), (2.24)

where Cn,m is the OPE coefficient CABp with exchange of σgBg−1
A

. Its explicit form is given

by [19, 58]

Cn,m = (2m)−4hn , hn =
c

24

(
n− 1

n

)
. (2.25)

7In this paper, we mainly consider the exchange of the twist operators with hp = h̄p.
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Using (2.24), the denominator of (2.15)
〈
σgm(x1)σg−1

m
(x2)σgm(x3)σg−1

m
(x4)

〉
CFT⊗m

can be

computed by

log
〈
σgm(x1)σg−1

m
(x2)σgm(x3)σg−1

m
(x4)

〉
CFT⊗m

= lim
n→1

log
〈
σgA(x1)σg−1

A
(x2)σgB (x3)σg−1

B
(x4)

〉
CFT⊗mn

∼ lim
n→1

[
−4h log[(x4 − x1)(x3 − x2)] + 2 logCn,m −

mnc

3
f(ε, εlow, 1− z)

]
, (2.26)

where, the first equality is justified because (2.16) and (2.24) is used in the last line.

Since ε in (2.21) and εlow in (2.23) are proportional to m − 1 and n − 1 respectively,

ε and εlow become small around m = 1 and n = 1. Thus we can express (2.24) and (2.26)

using a perturbative expansion about ε� 1 and εlow � 1. The perturbative expansion of

f(ε, εlow, 1− z) in ε and εlow is given as [59]:8

f(ε, εlow, 1− z) = εlow log

[
1 +
√
z

4(1−
√
z)

]
+ (2ε2 − ε2low) log z + 2ε2low log

[
1

2
(1 +

√
z)

]
+ (εlow − 2ε)2 +

(εlow − 2
√
zε)2 log z

1− z
+ · · · , (2.27)

where · · · means that we consider the perturbation up to quadratic order in ε and εlow.

Finally, putting (2.24) with Cn,m in (2.25) and f(ε, εlow, 1− z) in (2.27) into (2.15), we

obtain the reflected entropy in the 2d holographic CFTs up to first order in m− 1:

lim
n→1

Sn(AA?)ψm ∼
c

3
log

[
1 +
√
z

1−
√
z

]
− 2c(m− 1)

3

√
z log z

1− z
+O((m− 1)2). (2.28)

The first term in (2.28) is the reflected entropy for ρAB, which was computed in [19],9

and the second term is the first order correction in m − 1. Note that (2.28) is valid for

some finite range of z around z = 1 because we use the conformal block in t-channel. Let

us sketch how the leading (and sub-leading) terms of (2.28) in the m − 1 expansion are

obtained. Note that the result (2.28) is originated from n− 1 order contributions in (2.24)

through out the formula (2.15).10 Because of the following facts with the series expansion

by n− 1 and m− 1,

logCn,m ∝ c1(n− 1) + c2(n− 1)(m− 1) , εlow ∝ n− 1 , ε ∝ m− 1 , (2.29)

one can notice that there are three n−1 order terms in (2.24) using (2.27):11 i) logCn,m, ii)

εlow-order, iii) εlow ε-order. Then, we can finally see which contributions make the leading

8The formula (2.27) for t-channel is obtained from the formula (D.24) for s-channel in [59] with an

exchange z ↔ 1− z. Since our definition of the Virasoro conformal block F does not include 1/(x3 − x2)2h

as shown in (2.20), (2.27) does not include 2ε log[1− z].
9The cross ratio x in [19] is related to our cross ratio z as x = 1− z.

10The higher order contribution O((n− 1)2) will vanish after taking n→ 1 limit.
11Strictly speaking, εlow depends on m and includes the sub-leading term of (n−1)(m−1) order. However,

because of mnc factor for mncf(ε, εlow, 1− z) in (2.24), the final result does not depend on this sub-leading

term. Another logarithm term 4h log[(x4 − x1)(x3 − x2)] also does not contribute to the final result due to

the cancelation.
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(and sub-leading) terms in (2.28) as follows

Leading term: logCn,m ∝ c1(n− 1) , εlow ∝ (n− 1) ,

Sub-leading term: logCn,m ∝ c2(n− 1)(m− 1) , εlow ε ∝ (n− 1)(m− 1) .
(2.30)

3 Entanglement wedge cross section with the small backreaction

In this section, we compute the entanglement wedge cross section for two intervals at the

boundary of AdS3 with the small backreaction from cosmic branes which are anchored at

boundaries of the intervals. In particular, we evaluate a first order correction in m − 1

to the entanglement wedge cross section, where m is related to the tension of the cosmic

branes Tm = m−1
4mGN

with the gravitational constant GN . As the QFT dual, m is carried out

through the replica index of ρmAB. When the replica index m is 1, the cosmic branes become

tensionless minimal surfaces, and they no longer backreact on the geometry, reproducing

the Ryu-Takayanagi surface. Thus we can think of the cosmic branes as an extension of the

Ryu-Takayanagi surface in m 6= 1 direction. Adding one more description of holographic

setup, one might wonder what the holographic interpretation of the other replica index n

of CFTs is. It is, in the same way as the cosmic brane, related to the tension of the cosmic

branes in the entanglement wedge [40]. Similarly to the CFTs in previous section, we

focused on the perturbative expansion of m only. Therefore, in this paper, we will consider

the tensionless cosmic branes (n = 1) in the entanglement wedge. As a methodological

perspective, we apply the same prescription given in [48], which is used to obtain the

minimal area of cosmic branes anchored at the AdS boundary, to compute the entanglement

wedge cross section up to first order in m− 1. Then, we compare the entanglement wedge

cross section to the reflected entropy (2.28) in the previous section and explicitly show the

duality between them.

3.1 Entanglement wedge cross section: a quick review

Entanglement wedge cross section EW (A : B) without backreaction: we start

explaining, without considering the backreaction, the minimal surfaces of two intervals in

the pure AdS3:

ds2 =
`2

ξ2
dξ2 +

ξ2

`2
(
dt2 + dx2

)
, (3.1)

where the AdS boundary is located at ξ → ∞, and ` is the AdS radius which will be set

to one for simplicity. Two intervals (A,B) of our interest are placed at the AdS boundary

at a fixed time slice t = 0: A = [x1, x2] and B = [x3, x4] with x1 < x2 < x3 < x4.

In this set-up, we have two possible configurations of the minimal surfaces Γmin
AB for

A ∪ B. One is a disconnected minimal surface (figure 5(a)), and the other is a connected

minimal surface (figure 5(b)). The question to ask here is which configuration is the

dominant minimal surface. The answer to this question depends on the cross ratio z :=
(x2−x1)(x4−x3)
(x3−x1)(x4−x2) . The disconnected surface is dominant in 0 < z < 1/2, whereas the connected

surface is dominant in 1/2 < z < 1 [60].
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(a) Disconnected minimal surface (b) Connected minimal surface

Figure 5. Schematic pictures of the minimal surface Γmin
AB (the blue curves) and the entanglement

wedge MAB (the blue shaded region). The blue dashed line in (b) represents the minimal surface

Σmin
AB in MAB , and it plays a role of dividing MAB into MA and MB .

Next, we define the entanglement wedge cross section EW (A : B) based on entan-

glement wedge MAB [12, 13]. The entanglement wedge MAB (the blue shaded region in

figure 5) is defined by a region whose boundary is ∂MAB = A ∪ B ∪ Γmin
AB . Inside the

entanglement wedge MAB, we can consider the minimal surface Σmin
AB which divides MAB

into MA and MB where ∂MA ⊃ A and ∂MB ⊃ B. This Σmin
AB is displayed as a blue dashed

line in figure 5(b). Using the area of Σmin
AB , we can finally define the entanglement wedge

cross section EW (A : B) as

EW (A : B) :=
Area[Σmin

AB ]

4GN
, (3.2)

where GN is the gravitational constant. Note that EW (A : B) = 0 for the discon-

nected surface since MAB for the disconnected minimal surface is initially disconnected

(Area[Σmin
AB ] = 0).

Entanglement wedge cross section EW (A : B) with backreaction: we will shortly

explain how the backreacted geometry can be introduced. Before doing so, we first give

the reformed entanglement wedge cross section formula by a backreaction of cosmic brane:

EmW (A : B) :=
Area[Σmin

mAB ]

4GN
. (3.3)

Note that equation (3.3) has one more index m than (3.2). This m represents the replica

index in the field theory and is related to the tension Tm of the cosmic branes in the gravity

theory via Tm = m−1
4mGN

[48]. This reformulated entanglement wedge cross section (3.3)

is obtained by replacing Σmin
AB in (3.2) with the backreacted minimal surface Σmin

mAB , in

other words, the minimal surface Γmin
AB is replaced by the cosmic branes giving the conical

singularity with the tension [61].

Generally, for the computation of EW (A : B) with the two intervals A and B, we

need to consider the backreaction from the two cosmic branes together. However, at the

first order in m − 1, we do not need to consider the two backreaction together because
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the simultaneous backreaction from the two cosmic branes is only affected by the second

and higher order. Therefore, EW (A : B) at the first order in m − 1 can be computed by

the sum of EW (A : B) with the backreaction from the single cosmic brane. From the next

subsection, we will compute EW (A : B) with the backreaction from the single cosmic brane.

3.2 Explicit computation of EmW (A : B) up to first order in m − 1

The 3d bulk geometry for Einstein gravity with the backreaction from the single cosmic

brane can be described by [48, 49]

ds2 =
dr2

r2 − r2
h

+ (r2 − r2
h)dτ2 + r2dρ2 , (3.4)

where we have the black hole horizon as rh = 1/m, and the period of τ is fixed as 2π.

Here, the cosmic brane covers the horizon and is anchored at ρ = −∞ and ρ = ∞. The

reason why this metric (3.4) is used to express the bulk geometry with the cosmic brane is

that (3.4) includes the same conical singularity of the cosmic brane at the horizon. Let us

see the near horizon geometry of (3.4) as,

ds2|r∼rh ∼
dr2

2
m(r − rh)

+
2

m
(r − rh)dτ2 + r2

hdρ2

= dr̃2 + r̃2d

(
τ

m

)2

+ r2
hdρ2,

(3.5)

where r̃ :=
√

2m(r − rh). When we fix the period of τ as 2π, the metric (3.5) has a conical

opening angle 2π/m at r ∼ rh. In addition to the view of conical singularity from cosmic

brane, there is another way to see this conical singularity in other language: the quotient

replica manifold Bm/Zm [45, 47].12

Let us explain how coordinates of backreacted geometry (r, τ, ρ) in (3.4) can be related

to the coordinate of two intervals (ξ, t, x) in (3.1) by following the same strategy in [48].13

By using an appropriate conformal transformation on (3.1), we can start with:

x1 → −1, x2 → −R0, x3 → R0, x4 → 1, (3.6)

where 0 < R0 < 1. Since the cross ratio z := (x1−x2)(x3−x4)
(x1−x3)(x2−x4) is invariant under a global

conformal transformation, R0 is determined by

z =
(1−R0)2

(1 +R0)2
. (3.7)

12The main logic of it is as follows. We can think of the periodicity around a fixed point on the bulk replica

manifold Bm as 2πm. Then, by taking a quotient by Zm replica symmetry, this periodicity is changing

into 2π with the conical singularity therein. These 2π periodicity and conical singularity are related to

the periodicity of τ in (3.4) and the singularity in (3.5), respectively. For a comprehensive review of this,

see [62], for example.
13In the appendix of [48], the bulk geometry for the disconnected minimal surface was considered. Thus,

our coordinate transformation is different from one in [48].
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Figure 6. The change of configuration of two intervals by the conformal transformation (3.9).

The blue dashed line is the minimal surface Σmin
mAB , ρ0 is given by (3.10), and r∗ is determined

from (3.12).

In addition to the transformation (3.6), we use a following conformally map

tan τ =
2t

1− t2 − x2
, tanh ρ =

2x

1 + t2 + x2
, (3.8)

where the period of τ is 2π. Then, the intervals are conformally mapped as

A : −1 ≤ x ≤ −R0 (t = 0) → −∞ ≤ ρ ≤ −ρ0 (τ = 0) ,

B : R0 ≤ x ≤ 1 (t = 0) → ρ0 ≤ ρ ≤ ∞ (τ = 0) ,
(3.9)

where

ρ0 := arctanh
2R0

1 +R2
0

= −1

2
log z. (3.10)

In the last equality in (3.10), the cross ratio (3.7) is used. The change of configuration

of two intervals along (3.9) are displayed in figure 6. Furthermore, under the conformal

transformation (3.8), the 2d flat metric at the AdS boundary in (3.1), ds2
R2 = dt2 + dx2, is

mapped to

ds2
S1×R = dτ2 + dρ2, (3.11)

up to the pre-factor. According to the fact that the metric given in (3.11) is conformally

equivalent to (3.4) at the boundary, we can use the backreacted geometry (3.4) to compute

the area of Σmin
mAB for the two intervals A and B.

Next, we genuinely compute the area of the minimal surface Σmin
mAB in the geome-

try (3.4), which includes the backreaction from the single cosmic brane. As shown in

figure 6, Σmin
mAB is placed between r = rh and r = r∗ at ρ = 0. Here r∗ is determined as

a value of r on minimal surface Γmin
mAB at ρ = 0, which is placed in −ρ0 < ρ < ρ0, and is

given as [17, 62, 63]

r∗ = rh coth[rh ρ0] =
1

m
coth

[
ρ0

m

]
, (3.12)
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where we use rh = 1/m in the last equality. Then, using the area formula, we can directly

compute the area of Σmin
mAB :

Area[Σmin
mAB ] =

∫ r∗

rh

dr√
r2 − r2

h

= log
[
coth

ρ0

2m

]

= log

[
1 +
√
z

1−
√
z

]
− (m− 1)

√
z log z

1− z
+O

(
(m− 1)2

)
. (3.13)

Here, we replaced ρ0 with the cross ratio z via (3.10). The final result of Area[Σmin
mAB ]

in (3.13) consists of two terms. The first term corresponds to the minimal area without

the backreaction, and the second term shows the first order correction in (m− 1) from the

single cosmic brane.

To complete the full calculation of the area of the minimal surface Σmin
mAB of the two

cosmic branes, we also need to consider the contribution from the other cosmic brane

anchored at ρ = −ρ0 and ρ = ρ0. It can be done by considering a transformation on (3.1):

x1 → −R0, x2 → −1, x3 → 1, x4 → R0 . (3.14)

After using this transformation, one can notice that the cosmic brane anchored at ρ = −ρ0

and ρ = ρ0 with the transofmration (3.6) is now located at ρ = −∞ and ρ =∞ with (3.14).

Thus we can apply the same procedure used in the previous paragraph, and we will have

the same result as (3.13).

Using the definition given in (3.3), we can summarize that the entanglement wedge

cross section EmW (A : B) of the connected minimal surface with the backreaction from

the two cosmic branes is

EmW (A : B) =
1

4GN
log

[
1 +
√
z

1−
√
z

]
− (m− 1)

2GN

√
z log z

1− z
+O

(
(m− 1)2

)
. (3.15)

Note that when the replica index m approaches to 1, (3.15) reproduces the entanglement

wedge cross section EW (A : B) without the backreaction [12].14

As a main result of this paper, now we can show that, even in the presence of the

backreaction from the cosmic branes, the holographic calculation (3.15) perfectly matches

with the field theory calculation in (2.28):

2EmW (A : B) =
1

2GN
log

[
1 +
√
z

1−
√
z

]
− (m− 1)

GN

√
z log z

1− z
+O

(
(m− 1)2

)
=
c

3
log

[
1 +
√
z

1−
√
z

]
− 2c(m− 1)

3

√
z log z

1− z
+O((m− 1)2)

(3.16)

where we used c = 3
2GN

[64] in the last equality. This is an explicit check of the dual-

ity (1.2) between the reflected entropy and the entanglement wedge cross section without

the quantum correction up to first order in m− 1.

14Our definition of the cross ratio z is different from one in [12]. By replacing the cross ratio in (3.15)

with m = 1 as z → z/(z + 1), one can obtain the expression in [12].
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4 Summary and discussion

In this paper, we have studied the following holographic duality giving a surprising rela-

tionship between the reflected entropy and the entanglement wedge cross section [19]:

lim
n→1

Sn(AA?)ψm = 2EmW (A : B) +O(G0
N ) , (4.1)

where, limn→1 Sn(AA?)ψm is the reflected entropy for ρmAB, and EmW (A : B) is the entan-

glement wedge cross section in the quotient spacetime Bm/Zm. The main result of this

paper is that we explicitly show this duality up to the first order in m−1. In the conformal

field theory framework (CFT2), Sn(AA?)ψm of two intervals A and B is expressed in terms

of twist operators (2.15). In the 2d holographic CFTs, we can compute Sn(AA?)ψm by

using a perturbative expansion on the conformal block in the semiclassical limit (2.21) as

shown in (2.27). The final form of the reflected entropy from this field theory calculation

is given in (2.28).

On the other hand, in the gravity theory framework (AdS3), the entanglement wedge

cross section is computed in a backreacted bulk spacetime generated from cosmic branes.

We used the fact that the pure AdS3 (3.1) with the backreaction from a single cosmic

brane can be mapped to the backreacted black hole geometry (3.4) after doing several

transformations [49]. Then, the entanglement wedge cross section is obtained to be the

form as (3.15) with the first order correction in m− 1. By comparing the two main results

from CFTs (2.28) and AdS3 (3.15), we show that the holographic duality in (1.2) is perfectly

satisfied using c = 3
2GN

.

We end with a description of some future works of interests. One of the future directions

from this study is a checking the duality at higher order terms in m− 1. The monodromy

method [54, 59, 65] and the Zamolodchikov’s recursion relation [57, 66] might be useful

to evaluate the dominant conformal block in the reflected entropy. For the entanglement

wedge cross section at higher order in m−1, we need to consider the backreaction from two

cosmic branes simultaneously, and it may be difficult to construct an analytic solution of the

geometry. However, as used in section 3, the geometry with the backreaction from a single

cosmic brane is known analytically [49], and it is interesting to compare the entanglement

wedge cross section in this geometry with some higher order terms in the conformal block.

Another future work is generalization to higher dimensional AdS/CFT. Since the

computation method in [48] can be applied to the holographic Rényi entropy between two

disks in general dimensions, the entanglement wedge cross section in general dimensions

may be also computable. On the other hand, we cannot use 2d CFT techniques to obtain

the reflected entropy in general dimensions, so it is necessary to develop a procedure for

an explicit computation. We leave these for future works.
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