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Abstract: This paper presents an air-gap magnetic field manipulation by optimized coil currents for
a magnetic force enhancement in electromechanical devices. The external coil is designed near the
device air-gap for manipulating the magnetic field distribution. The distribution of external coil
currents is then optimized for maximizing the magnetic force in the tangential direction to the air-gap
line. For the optimization, the design domain near air-gap is divided into small areas, and design
variables are assigned at each small design area. The design variables determines not only the strength
of coil current density (i.e., number of coil turns) but also whether the material state is coil or iron. In a
benchmark actuator example, it is shown that 11.12% force enhancement is available by manipulating
the air-gap magnetic field distribution using the optimized coil current. By investigating the magnetic
field distribution, it is confirmed that the optimized coil current manipulated the magnetic field,
forwarding a focused and inclined distribution that is an ideal distribution for maximizing the
magnetic force.
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1. Introduction

Electromechanical devices, such as electromagnetic actuators and electric motors, are one of the
main components for automobiles, aerospace, and robotics applications. The primary design goal of
the electromechanical devices might be a strong magnetic force generation in a limited device volume
and mass, which means a high force density. To achieve this design goal, a magnetic field distribution
is a key design factor because the strength and direction of the magnetic force are determined by the
magnetic field distribution inside the devices.

The magnetic field distribution inside the electromechanical devices is mainly affected by the
structural shape of the device components (i.e., soft magnetic material (i.e., iron), hard magnetic
material (i.e., permanent magnet), and coil) [1]. Thus, various structural optimization studies have
been performed to find the optimal shape and configurations of the device components maximizing
the magnetic force. The structural shape of the soft magnetic (i.e., iron) material has been optimized to
maximize the magnetic force of actuators [2–5] and electric motors [6–8]. The structural optimization
of permanent magnet material was studied in [9–12] to determine the optimal magnet shape and
magnetization directions. In [13–17], both iron and permanent magnet materials were simultaneously
designed using structural optimization techniques. In [18,19], all three device components (i.e., iron,

Appl. Sci. 2020, 10, 104; doi:10.3390/app10010104 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-5476-9235
https://orcid.org/0000-0001-7918-8314
http://www.mdpi.com/2076-3417/10/1/104?type=check_update&version=1
http://dx.doi.org/10.3390/app10010104
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 104 2 of 11

permanent magnet, and coil) were co-designed for maximizing the magnetic force of electromagnetic
actuators. While the structural optimization techniques [2–19] are certain to be an efficient approach
for enhancing the magnetic force of electromechanical devices, they have a limitation that the
magnetic field distribution is indirectly handled through optimizing the shape and configuration of
the device components.

As a technique to directly treat the magnetic field distribution, the magnetic field manipulation
scheme was developed in [20–22]. In [20], the magnetic field focusing was proposed using an induced
current in a periodic-ladder structure consisting of a conductivity material. Subsequently, it was
shown that the focused magnetic field distribution in the air-gap enhanced the magnetic force in the
normal direction of the air-gap line [21]. The force enhancement by the focused magnetic field was
then experimentally validated in an actuator [22]. In these previous works [20–22], the magnetic field
distribution in the air-gap was directly optimized using the induced current, and the force enhancement
by the manipulated magnetic field was experimentally validated. However, passive manipulation using
the induced current is limited in the resultant field distribution and force enhancement. Specifically, it
has been observed that the force enhancement in the direction tangential to the air-gap line might not
be available by the passive field manipulation based on the induced current. Thus, the manipulation
by the induced current would not be useful for electric motors and actuators because they operate by
the magnetic force in a tangential direction.

Meanwhile, the magnetic field manipulation using an actively controlled external current was
proposed in [23–26]. In [23], a switch-mounted loop array was proposed for the active control of the
magnetic field, and its analytical model was presented. In [24], the design of a programmable coil
array was presented for the manipulation of the electromagnetic field. In [25], a current-controlled
coil array was proposed for the magnetic field focusing. In [26], the active control of the magnetic
field was implemented using multiple electromagnets. In these previous works [23–26], the active
manipulation of the magnetic field distribution using the external current was theoretically studied and
experimentally validated for wireless power transfer, magnetic field communication, and biomedical
imaging applications. However, none of these previous works have addressed the active magnetic
field manipulation for enhancing the magnetic force in electromechanical devices.

Accordingly, this work aims to present the magnetic field manipulation using external coil currents
for enhancing the magnetic force in a tangential direction to the air-gap line. An ideally manipulated
air-gap magnetic field distribution for maximizing the tangential direction force is first investigated.
The ideally manipulated magnetic field distribution might not be realized using the external coil
current, but it might be available to find the best possible distribution of coil current. In order to find
this best possible distribution, a gradient-based numerical optimization scheme is proposed in this
work. As an optimization strategy, the concept of topology optimization [27] is appropriately modified
and applied. More specifically, the design domain near the air-gap is divided into small design areas,
and design variables are assigned at every small design area. Here, the design variables control not
only the strength of the current density (i.e., number of coil turns) but also the magnetic permeability.
The current density and permeability are related to the magnetic field distribution, determining the
magnetic force. In the optimization, the total sum of external coil currents is constrained in terms of
the magnetic field manipulation. By solving the optimization problem, the best possible coil current
distribution that maximizes the tangential direction magnetic force by the manipulated magnetic field
could be determined.

The paper is organized as follows. Section 2 explains the ideal magnetic field distribution for
maximizing the tangential direction magnetic force. In Section 3, the optimization strategy to find
the optimal coil currents is explained. The optimization problem formulation is then provided in
Section 4. In Section 5, the optimization result is provided, and the effectiveness of the magnetic field
manipulation using an optimized coil current is validated. Conclusions are provided in Section 6.
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2. Ideal Magnetic Field Distribution for Magnetic Force Enhancement

Before performing the optimization of coil currents, ideal air-gap magnetic field distribution for
maximizing the tangential-direction magnetic force is explained in this section. An ideally manipulated
magnetic field distribution between two soft ferromagnetic (i.e., iron) parts could maximize a tangential
direction magnetic force exerted on the iron part. Figure 1a shows the magnetic field lines in a common
operating situation, and Figure 1b shows ideally manipulated magnetic field lines for maximizing the
magnetic force in a tangential direction to the air-gap line.
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Figure 1. Magnetic field lines (a) in a common operating situation, (b) manipulated ideally for
maximizing tangential direction magnetic force.

The ideal magnetic field distribution for maximizing tangential direction magnetic force could
be explained theoretically using Maxwell’s stress tensor formulation [28]. Maxwell’s stress tensor
formulation describes the relation between magnetic force and magnetic field distribution along an
integration path (i.e., air-gap lines):

F =

[∮
1

2µ0

(
Bn

2
− Bt

2
)
dS

]
n +
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1
µ0

BnBtdS
]
t (1)

where S is any closed surface surrounding the object, µ0 is the air permeability, n and t are normal and
tangential unit vectors to the integration path, and Bn and Bt are magnetic flux densities, respectively,
in normal and tangential directions with respect to the integration path. In (1), the second term of the
right-hand side corresponds to the tangential direction magnetic force Ft.

By investigating (1), ideal magnetic field distributions, for maximizing the tangential direction
magnetic force Ft, could be found out. The tangential direction force Ft is calculated as the integral
of the multiplication of normal and tangential magnetic flux density Bn and Bt. If the amount of the
magnetic flux along with the air-gap integration path, Φ =

∮ √
Bn

2 + Bt
2d(Area), stayed constant, the

tangential force Ft might be maximized when the focused normal direction flux density, Bn, is the same
with the focused tangential direction flux density, Bt. In other words, the magnetic field that is focused
on a direction inclined 45 degrees to the integration path might be ideal for maximizing the tangential
force, Ft, as described in Figure 1b.

The conceptual comparison of an evenly and focused distribution with 45 degrees inclination is
presented in Figure 2. The tangential direction magnetic force, Ft, is zero when the air-gap magnetic
field is evenly distributed in the normal direction, as shown in Figure 2a. The magnetic force, Ft, for
focused and 45-degree inclined field in Figure 2c, is five times higher than that for evenly distributed
and 45-degree inclined field in Figure 2b. In all three cases, the magnetic flux Φ is identical. This
comparison showed how the focused and 45-degree inclined magnetic field could be considered as an
ideal distribution.
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Figure 2. Conceptual comparison of (a) evenly distributed normal-direction magnetic field, (b) evenly
distributed and 45 degrees inclined magnetic field, (c) focused and inclined magnetic field.

3. Optimization Strategy

This section explains the optimization strategy for finding the optimal coil currents for maximizing
the magnetic force. Figure 3 shows the two-dimensional finite element model of a benchmark actuator
used in this work. The magnetostatic analysis is performed using Maxwell’s equation with vector
potential A formulation.

∇×

(
1

µrµ0
∇×A

)
= J (B = ∇×A) (2)

where B is magnetic flux density, µr is relative permeability, and J is a current density. In the
two-dimensional analysis, only z-directional vector potential Az is a state variable. The yoke and
plunger are made of silicon steel with a relative permeability of 1200, and the coil winding is located
around the yoke pole. A current in the winding is also set to 10 A with 100 number of turns. The
Dirichlet boundary condition is applied at the outer boundary of the model. For the optimization, x
directional (i.e., tangential direction to the air-gap line) magnetic force Fm

x at 21 equally spaced plunger
locations (m = 0, . . . , 20) is calculated.
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Figure 3. Finite element model of a benchmark actuator with boundary condition and design domain.

In the benchmark model in Figure 3, the design domain is located at the tip of the yoke near the
air-gap. As with topology optimization [27], the design domain is divided into N small areas, and
the design variable βi(i = 1, . . . , N) is assigned at ith design area. Here, the physical meaning of the
design variable βi ∈ [−βmax, βmax] is set as the number of coil turns at ith design area, and the sign of βi
represented the direction of coil currents. If the number of coil turns is zero (i.e., βi = 0), the ith design
area represented the iron material instead of a coil. It means that the design variable βi determined
whether the ith design area is iron or coil material. For this, not only the coil current density Ji

a but also
relative magnetic permeability µi

r of ith design area are determined by the design variable βi. In order
to apply the gradient-based optimization algorithm, Ji

a and µi
r are interpolated using the following

functions:

Ji
a =

I0βi

Si
(3)
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µi
r = µcoil + (µiron − µcoil)e

−pβ2
i (4)

where I0 is the coil current, Si is the volume of ith design area, µcoil and µiron are, respectively, the
relative permeability of coil and iron material, and p is the parameter for the relaxed interpolation
function. Figure 4a,b, respectively, show the plot of the proposed interpolation functions (3) and (4)
with respect to the design variable βi. The coil current density Ji

a in (3) is simply proportional to the
design variable βi. The relative permeability µi

r in (4) became the iron permeability µiron when the
design variable βi is zero (i.e., zero coil turns), while it became the coil permeability µcoil when the
design variable βi is not zero. The exponential function in (4) is introduced to relax a discontinuous
function for discrete material states (i.e., iron or coil) into the continuous function. Here, the continuous
function is required to apply a gradient-based optimization algorithm; refer to interpolation functions
in topology optimization to control material states in [2–19]. The proposed interpolation functions in
(3) and (4) could determine the number of coil turns together with the material state.
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In the optimization result, the number of coil turns need to be an integer value. To achieve this,
the continuous and discrete optimization scheme proposed in [17], ref. [29] is employed in this work.
In this scheme, a physical property is penalized when a corresponding design variable is located
at intermediate values between the desired integer values. The optimization in this work aimed to
maximize the magnetic force. The magnetic force becomes large when the magnetic flux density B is
large. The magnetic flux density B is large when the electric current input is large. Therefore, reduced
current magnitude worked as penalization in this optimization problem for maximizing the magnetic
force. Using this working principle, the physical property I0 in (3) is penalized (i.e., reduced) when the

design variable βi is not located at an integer value. For this, the current
¯
I0 is first defined as

¯
I0 = I0·

1 + (1− s)
∑
∞

n=1 0.7n−1(cos(2πnβi) − 1)∑
∞

n=1 0.7n−1(cos(2πn) − cos(πn))

 (5)

where I0 is the fixed maximum current, and s ∈ [0, 1] is the penalty parameter. Figure 5 shows the

plot of the current
¯
I0 with respect to the design variable βi. When the penalty parameter s is set to 1,

the current
¯
I0 is not penalized, which means

¯
I0 is fixed as I0 at every value of βi. As the parameter

s decreased, the strong penalty is applied to
¯
I0 when the design variable βi is not located at integer

values. Consequently, the design variable βi tended to locate at integer values to avoid the penalization

on the current
¯
I0. It is noted that the parameters p in (4) and s in (5) are updated using the continuation

scheme proposed in [17], ref. [27] during the optimization iteration.
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Figure 5. The plot of the current
¯
I0 in (5) with respect to the design variable βi

When the design variable βi is located around zero, the aforementioned penalization scheme did

not work because the penalization in
¯
I0 did not pass to the current density Ji

a in (3) due to the small
value of βi. To resolve this problem, the electric current I0 in (3) is defined as

I0 =

 0, if − 0.7 ≤ βi ≤ 0.7
¯
I0, otherwise

(6)

Here, the current
¯
I0 is set as zero when the design variable βi is located near zero. If the design

variable βi is located near zero, it tended to move to zero (i.e., desired discrete integer number) through
the penalization of the permeability in (4) instead of the penalization in (5). Thus, the range ±0.7 in (6)
is related to the function shape of (4). A smaller range (e.g., ±0.5) might be suitable when the function
shape in Figure 4b is narrow (i.e., large p in (4)), and vice versa. When the design variable βi is located
far away from zero, the penalization scheme in (5) is applied to achieve the design result with discrete
integer numbers. The proposed continuous and discrete optimization scheme in (5) and (6) enabled us
to achieve a discrete integer number of coil turns with continuous design variables.

4. Optimization Problem Formulation

The design goal of this work is set to find the optimal coil current distribution maximizing the
average force Favg acting on the plunger during its movement, as shown in Figure 3. To achieve the
design goal, the optimization problem is formulated as

find βi (7)

Maximize Favg (8)

Subject to KA = f (9)

N∑
i=1

∣∣∣βi
∣∣∣ ≤ β∗total (10)

− βmax ≤ βi ≤ βmax (11)

In the benchmark actuator model in Figure 3, the objective function (8) is calculated as the average
of the x directional (i.e., tangential direction to the air-gap line) magnetic force Fx at 21 equally spaced
plunger locations:

Favg =
1

21

21∑
m=1

Fm
x (12)

Here, the magnetic force Fx is calculated using Maxwell’s stress tensor formulation in (1). In (9),
the element stiffness matrix K and force vector f are derived using the finite element formulation of
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Maxwell’s equation in (2). The design variable βi control the distributions of current density Ji
a and

relative permeability µi
r through (3) and (4), which are related to the magnetic flux density B through

(2). The magnetic flux density B is then connected with the objective function Favg through (1) and (12).
The constraint in (10) is applied to confining the total number of coil turns below the target value β∗total.
The constraint in (11) is for setting the maximum value of a number of coil turns as βmax.

In this work, the objective function (8) and the system of linear Equation (9) are computed using
the finite element commercial software, COMSOL V5.3. The optimization problem (7)–(11) is solved
using the globally convergent method of moving asymptotes (GCMMA) algorithm. The GCMMA
code in MATLAB R2013b is combined with COMSOL for the implementation.

5. Optimization Result

The proposed optimization strategy and problem formulation are applied for finding the optimal
coil current distribution in the benchmark actuator model in Figure 3. Specifically, the number of coil
turns (i.e., design variable βi) at the design domain located at the yoke near the air-gap is determined
for maximizing the average force during the plunger movement in a tangential direction to the air-gap
line. In this work, the number of design variable N is set to 20, which means the design domain is
divided into 20 small areas. The total number of coil turns, β∗total in (10), is set to 20, which is empirically
determined as a value that could reveal the magnetic field manipulation effect. When β∗total is too large
or small compared to winding turns, the manipulation effect is reduced. The maximum number of coil
turns βmax in (11) is also set to 20, and the coil current coil I0 in (5) is set to 10 A.

Figure 6a–d shows the distribution of design variables βi during the optimization iteration. As
shown in Figure 6a, the design variables are evenly distributed as 0.1 at the initial iteration. As
the optimization iteration proceeded, the design variables moved to find the optimal distribution in
Figure 6b,c. Then, the design variables βi tended to converge into discrete integer numbers, as shown
in Figure 6d, due to the proposed continuous and discrete optimization scheme in (5) and (6).
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The final optimization results are described in Figure 7. Figure 7a,b shows the distribution
of current density magnitude Ji

a (i = 1 . . . 20) and relative permeability µi
r at 20 small design areas,

respectively. In Figure 7b, the area where the relative permeability µi
r is 1200 represents the iron

material, and the area where µi
r is 1 represents the coil. Using the proposed formulation, both the

current density and material state at the design domain are successfully determined simultaneously.
In the optimization result, it is observed that the left part of the design domain is optimized to have a
strong current density, while the right part is designed as iron material.
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To validate the effectiveness of the design result, the force profile of the design with magnetic field
manipulation by optimized current distribution is compared with that of an original design without
manipulation (i.e., no coil currents near the air-gap) in Figure 8. Here, the original design is built
by setting all design variables βi as zero, which means that every design domain is simply set as the
iron material. In the original design, the number of winding turns is set as 120, which is 20 (i.e., the
total number of coil turns in design domain) higher than the optimized coil current case, for a fair
comparison. As shown in Figure 8, the design with optimized coil current successfully enhances the
average magnetic force compared to the original design. The average force Favg (i.e., objective function
in (8)) of the design with optimized coil current is calculated as 128 N, which is 11.12% higher than that
of the original design. This force enhancement might come from the magnetic field manipulation by
the optimized current distribution.
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Figure 8. Force profile comparison between original design without manipulation and design with
manipulation by optimized coil current.

In order to confirm that the force enhancement results from the manipulated magnetic field, the
magnetic flux density along the air-gap line is investigated. Figure 9a,b compares the magnetic flux
density distribution along the air-gap line of the original design without magnetic field manipulation
and the design with the manipulation by optimized coil currents. As expected, it is observed that the
optimized coil currents manipulated the air-gap magnetic field toward the ideal field distribution. In
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the original design, the magnetic field in the left part of the air-gap line mainly flew in an upward
direction, and its magnitude was uniform. On the other hand, the magnetic field of the optimal design
was manipulated into the right-upward direction, and its magnitude became focused-shape. It was
noted again that the focused and inclined magnetic field was the ideal field distribution that could
lead to the magnetic force enhancement in the tangential direction, as discussed in Section 2.
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Figure 9. Magnetic flux density (black-colored arrow) on air-gap at 9th plunge location (m = 9):
(a) original design without magnetic field manipulation, (b) design with the field manipulation by
optimized coil current. The red color in the design domain represents the strength of the current density.

6. Conclusions

This work aimed to propose a magnetic field manipulation using optimized coil current to enhance
the tangential direction magnetic force. An ideal field distribution for maximizing the tangential
direction force was first provided by investigating Maxwell’s stress tensor formulation. Subsequently,
the optimization for determining the coil current near air-gap was performed. For the optimization,
the design domain near air-gap was divided into small areas, and the design variables were assigned
at each small area. The design variables determined not only the number of coil turns but also whether
the material state was coil or iron. For this, the appropriate material property interpolation functions
were proposed in this work. The optimization problem was then formulated to determine the design
variables maximizing the averaged magnetic force. By solving the optimization problem using the
mathematical programming method, the optimal coil current distribution was successfully obtained.
The average force of the design with the magnetic field manipulated by optimized coil current was
expected to 11.12% higher than that of the original design without magnetic field manipulation. The
future work would include the experimental validation of the magnetic field manipulation using the
optimized coil currents for force enhancement. The construction of two current sources for winding
and coils near the air-gap is a challenging but interesting topic.
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