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1. Introduction

The evolution of hypersurfaces in Euclidean spaces governed by curvature has been consid-
ered in many aspects in geometric analysis and mathematical physics. In this paper, we consider 
a one parameter family of immersions X(·, t) : Sn → Mt ⊂ Rn+1, Mt := X(Sn, t), and its evo-
lution in time governed by the square root of scalar curvature on Mt and a given smooth positive 
function ψ in Rn+1 with compact support: consider the following initial value problem

∂X

∂t
= −ψ(X(x, t))R(x, t)1/2ν, M0 = X(Sn,0), (1.1)

where ν is the outward unit normal to Mt , and M0 is a strictly convex smooth hypersurface in 
Rn+1. Here ψ , by which we call the anisotropic factor, can be considered as a nonhomogeneous 
influence on the curvature flow from the underlying manifold Rn+1. Note the dependence of ψ
on the position X(·, t), not on the normal vector ν as considered in [3,7]. Throughout the paper, 
we shall call the flow in (1.1) anisotropic scalar curvature flow in short. The flow we concern in 
this paper is the generalisation of that considered by Chow in [11] where the speed of the flow is 
R1/2, and recently the case in which the speed is Rp for p > 1/2, was studied in [1]. Our aim is 
to show the smooth convergence of the flow and find a condition on ψ to have a spherical limit 
profile of the rescaled flow.

1.1. Notation

In a local coordinates system {x1, · · · , xn}, the induced metric and the second fundamental 
form are given by

gij =
〈
∂X

∂xi
,
∂X

∂xi

〉
and hij = −

〈
∂2X

∂xi∂xj
,ν

〉
,

respectively, where 〈·, ·〉 is the standard inner product and ν is the outward unit normal vector 
to M . In terms of these, the Weingarten map W is given by

W = (hi
j ) = (gikhkj ),

with the eigenvalues λ1, · · · , λn, and its inverse given by W−1 = (h−1)ij = gik(h)kj , where g

is the standard round metric on the n-dimensional sphere Sn and ∇ is the connection of g on 
Sn. Let σk = ∑

1≤i1<···<ik≤n λi1λi2 · · ·λik be the k-th symmetric function of the curvature, and 
one can write the mean curvature H = trace(hi

j ) = σ1 = ∑
1≤i≤n λi , the Gauss curvature K =

det(h) = σn = λ1λ2 · · ·λn and the scalar curvature R = ∑
i1 	=i2

λi1λi2 on which we shall focus in 
this paper.

For a symmetric function f on Rn+1, denote by �2 the connected component of the set 
{λ ∈ Rn : f (λ) > 0} containing the positive cone �+. It follows from [14] that �2 is a cone with 
the property that for all λ ∈ �2,

∂
f (λ)1/2 > 0,

∂2

f (λ)1/2 ≤ 0.

∂λi ∂λi∂λj
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We consider the following parabolic flow which is expected to converge to a smooth hypersurface 
M∗:

Xt = −F(W,ν)ν (1.2)

where we take

F(W,ν) = ψR1/2(ν, t),

for the flow (1.1). This can be written in terms of the support function S = S(z, t) = 〈z, X(t)〉, 
z ∈ Sn, as

St = −ψ

(
sn

sn−2

)1/2

= �(W−1, z)

for �(W−1, z) = −F(W, ν) for z = ν ∈ Sn. For the anisotropic factor ψ , we denote 
the sup norm of its differentials by ||Dψ || = supw∈Sn,x∈Rn+1 |Dψ(w)|(x) and ||D2ψ || =
supv,w∈Sn,x∈Rn+1 |D2ψ(v, w)|(x), where D is the gradient in Rn+1.

Throughout the paper, C denotes a positive constant depending only on the dimension n and 
other fixed constants, and we write c(a1, · · · , ak) for a positive constant depending only on its 
arguments a1, · · · , ak .

1.2. History

The well known example of evolution of hypersurfaces by curvature is the mean curvature 
flow (see [9,12,16,21,23,25,26] among many) for which excellent lecture notes [22,36] are avail-
able, and others are Gauss curvature flow (see, for example, [2,3,10,13,18–20,24,29]), the flows 
evolving with the speed of powers of mean curvature (see [17,34,35]) and the flows by homoge-
neous functions of the principal curvatures [4,8]. The scalar curvature flow, that is, F = R, with 
a flat side was studied in [27]. Most notably for our interest, for the flow deformed by powers 
of the scalar curvature in [1,11], they proved the short time existence and the long time exis-
tence as well as the convergence to a point, and also the convergence of the rescaled flow to a 
round sphere. The difference between the flow in [11] and (1.1) is the presence of the anisotropic 
factor ψ and the limit profile is expected to satisfy a non-trivial limit equation. With a further 
assumption that the perturbation from ψ is relatively small compared with the initial data, we 
show that the flow under the parabolic rescaling converges to a round sphere. Note that the flow 
(1.1) is somewhat related to the logarithmic Gauss curvature flow considered in [15] to solve the 
Minkowski problem where the evolution equation is given by

∂X

∂t
= − log

K(ν)

f (ν)
ν, (1.3)

M0 = X(Sn,0),

where K(ν) is the Gauss curvature of Mt and f is a positive smooth function on Sn. Along this 
flow, the smoothness and the convexity of the hypersurfaces are preserved, and given that the 
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weighted centre of mass is equal to zero and starting from suitably chosen initial data, the limit 
profile of (1.3) satisfies

log
K(ν)

f (ν)
= 0 ,

which is equivalent to have K = f so that the given Borel measure of Sn coincides with the area 
measure of the convex hypersurface. Likewise, consider the immersions of convex hypersurfaces 
with the evolution according to

∂X

∂t
= −

(
F

f (ν,X)
− 1

)
ν , (1.4)

where F is a function depending on the curvature of the hypersurface and f is a function given a 
priori. Although it is not shown in this paper that under (1.1), the limit hypersurface has its scalar 
curvature equal to a given smooth function on Sn, one may expect that depending on f , the flow 
(1.4) contracts to a point, expand to an asymptotic sphere or converges to a convex hypersurface 
with its limit profile satisfying F = f under some conditions.

1.3. Main theorems

We state the main results for the flow (1.1).

Theorem 1.1. Let M0 = X(Sn, 0) be a compact, connected and strictly convex smooth manifold 
in Rn+1. Suppose that hij ≥ ε(H + c)gij initially for some ε > 0 and c > 0 satisfying

c ≥ max
{5n2||Dψ ||

ε2ψ
,

3n||D2ψ ||1/2

εψ1/2 + 2n3||Dψ ||
ψ

,
10

ε6

( ||Dψ ||
ψ

+ ||D2ψ ||
ψ

)}
, (1.5)

where D is the gradient in Rn+1. Then there exist a maximal time T > 0 and a unique smooth 
solution {Mt = X(Sn, t)} satisfying (1.1) for t ∈ [0, T ), and Mt converges to a point x0 = M∗ as 
t approaches T .

Remark 1.2.

(i) From the pinching assumption at t = 0, c is related to initial data by H ≥ cnε. The condition 
(1.5) can be regarded as the balance between strict convexity and the perturbation of ψ from 
a constant map.

(ii) If the smallest positive principal curvature is large compared with the perturbation of ψ , the 
initial hypersurface satisfies (1.5). Then a pinching estimate follows and the convexity of 
the hypersurfaces preserved. Otherwise ψ dominates and the convexity of the hypersurfaces 
may not be preserved.

(iii) If the smallest positive principal curvature is small, then the perturbation of ψ is required to 
be small for (1.5) to be satisfied.

In order to observe the behaviour of the solution near the maximal time T , we rescale the 
solution and the time parameter by
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X̃(x, τ ) = X(x, t) − X(x,T )√
2(T − t)

, τ = −1

2
log

(T − t

T

)
. (1.6)

Then the rescaled equation of (1.2) is

∂X̃

∂τ
= −F̃ ν̃(x, τ ) + X̃, F̃ = ψ̃R̃1/2, (1.7)

on Sn × [0, ∞). For the rescaled hypersurfaces M̃τ , we obtain the convergence to a smooth 
manifold:

Theorem 1.3. Under the hypotheses in Theorem 1.1, the hypersurfaces M̃τ under the parabolic 
rescaling converge in the C∞-topology to a smooth manifold M̃∗ as τ approaches infinity. In 
addition, if ψ has a strict local minimum at x0, then M̃∗ is a round sphere Sn. In dimension 
two, with a volume preserving rescaling, the limit hypersurface M̂∗ satisfies the equation Ŝ∗ =
Cψ̂(R̂∗)1/2 for some constant C > 0, where Ŝ∗ and R̂∗ are the support function and the scalar 
curvature of M̂∗, respectively.

Remark 1.4. The convergence in C∞-topology here means the uniform convergence of the 
derivatives of rescaled second fundamental form of any order. The exponential decay rate of 
the convergence to a round sphere as in [25] shall be dealt in the sequel to this paper.

1.4. Outline

The paper is organized as follows. In Section 2, we find the evolution equations of tensors 
related to curvature. In Section 3, a pinching estimate for the second fundamental form is shown. 
In general, the pinching estimate derived from a maximum principle to tensors plays a crucial 
role to prove the convergence of convex hypersurfaces. In [6], the second derivative pinching 
estimates for a class of nonlinear parabolic equations were shown when the function describing 
the speed satisfies some structural criteria. For the flow (1.2), F is the function composed of 
the anisotropic factor ψ and second derivatives of X which belongs to the space of concave 
functions. In order to control the trouble terms that appear in the modification of the maximum 
principle in [6], an additional perturbation term is required in the pinching. In Section 5, we give 
upper bounds for the higher derivatives of the second fundamental form in terms of initial data 
and the derivatives of ψ . In Section 4, applying the pinching estimate, we obtain the uniform 
upper bound of curvature before the blow up if Mt is smooth. In Section 6, we show a global Lp

estimate of a scale invariant curvature quantity for large p and consequently obtain a global L∞
estimate using the Moser iteration. This also can be achieved from the De Giorgi method. For 
the rescaled flow, we also acquire a uniform curvature bound. Finally, in Section 7, the proofs 
of Theorem 1.1 and Theorem 1.3 are given: the existence of a smooth limit manifold M∗ and 
the convergence of the rescaled flow to a round sphere under the conditions in Theorem 1.3. 
Moreover, in dimension two, by rescaling the hypersurfaces homothetically so that the volume 
is preserved, it is shown that a soliton equation is realized by the limit profile.
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2. Evolution equations

In this section, we obtain the evolution of the quantities related to the curvature of the hy-
persurface Mt . Prior to the computation, we introduce the first and the second derivatives of the 
curvature F with respect to hij :

Ḟ ij := ψR−1/2(Hgij − hij ), (2.1)

F̈ ij,kl := −ψR−3/2(Hgij − hij )(Hgkl − hkl) + ψR−1/2(gij gkl − δikδjl).

Lemma 2.1. Under the parabolic flow (1.2), we have

1.
∂

∂t
gij = −2Fhij

2.
∂

∂t
ν = ∇jF

∂X

∂xj

3.
∂

∂t
hij = ∇i∇jF − Fhjlh

l
i

4.
∂

∂t
H = 2Fhijhij + gij ∂

∂t
hij

5.
∂

∂t
|A|2 = 2(∇i∇jF )hij + 2F(trA3)

6.
∂

∂t
F = Ḟ ij∇i∇jF + ψ2H |A|2 − ψ2(trA3) − ψR(Dψ · ν),

where trA3 = hijh
jkhi

k , and D is the gradient in Rn+1.

Remark 2.2. Due to the term −ψR(Dψ · ν), a lower bound for F may not follow directly from 
Lemma 2.1 (6) in general.

From Lemma 2.1, the detailed evolutions of the second fundamental form and hence the mean 
curvature can be derived.

Lemma 2.3. Under the anisotropic scalar curvature flow (1.2), we have

∂

∂t
hij = Ḟ kl∇k∇lhij − ψR− 1

2

H 2 (H∇ihkl − hkl∇iH)(H∇j hkl − hkl∇jH)

− 1

4
ψH 4R− 3

2 ∇i

( |A|2
H 2

)
∇j

( |A|2
H 2

)

+ R− 1
2
[
(H∇jH − A · ∇jA) · ∇iψ + (H∇iH − A · ∇iA) · ∇jψ

]
+ R

1
2 ∇i∇jψ + ψR− 1

2 [(H |A|2 − trA3)hij − 2R(A2)ij ]

where trA3 = hijhjkh
k . Let � := (Hgij − hij )∇i∇j .
i
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∂

∂t
H = R−1/2[ψ�H − ψ

H 2 |H∇hkl − hkl∇H |2 − ψ

4R
|H 2∇H + 2R

ψ
∇ψ |2

+ 2R

H
〈∇H,∇ψ〉] + R1/2

ψ
|∇ψ |2 + R1/2�ψ + ψR−1/2H [H |A|2 − trA3],

∂

∂t
H 2 = Ḟ kl∇k∇lH

2 − 2ψ

R1/2 |∇H |2Hg−h − 2ψ

HR1/2 |H∇hkl − hkl∇H |2

+ 2H 2ψ

R1/2 [H |A|2 − trA3] − Hψ

2R3/2 |H 2∇
( |A|2

H 2

)
+ 2R

ψ
∇ψ |2 + 4R1/2∇iH · ∇iψ

+ 2HR1/2�ψ + 2HR1/2

ψ
|∇ψ |2,

∂

∂t
|A|2 = Ḟ kl∇k∇l |A|2 − 2ψ

R1/2 |∇hij |2Hg−h − 2ψ

H 2R1/2 |H∇hkl − hkl∇H |2h

− H 4ψ

2R3/2

∣∣∣∇( |A|2
H 2

)∣∣∣2

h
+ 2ψ

R1/2 (H |A|2 − trA3)|A|2 + 4hij

R1/2 (H∇jH − A · ∇jA) · ∇iψ

+ 2R1/2hij∇i∇jψ,

∂

∂t

( |A|2
H 2

)
= ψR−1/2�( |A|2

H 2

)
− 2ψR1/2

H 5
|H∇hkl − hkl∇H |2 + 2ψ

R1/2H
〈∇H,∇

( |A|2
H 2

)
〉Hg−h

+ ψH

2R3/2 |∇
( |A|2

H 2

)
+ 2R

ψH 2 ∇ψ |2|A|2g−Hh
− 2R1/2

ψH 3 |∇ψ |2|A|2g−Hh

− 4R1/2

H 4 〈∇H,∇ψ〉|A|2g−Hh − 2R1/2

H 3 (|A|2gij − Hhij )∇i∇jψ.

3. Pinching estimate

In this section, it shall be shown that if all the principal curvatures are of the same order at the 
initial time, it remains so until the maximal time. This will be used in later sections to deduce 
the convergence to a point and find the limit of the rescaled solution. The pinching estimate in 
more general setting was obtained in the earlier work [28], and for the convenience of the reader, 
we give the detail of the computation for our case. Denote E = R1/2 so that F = ψE. With the 
notation (2.1), we have

Ḟ ij = ψĖij , F̈ ij, kl = ψË ij, kl . (3.1)

Define a (2, 0)-tensor W by

Wij = hij − ε(H + c)gij ,

for some constant c > 0 depending only on n, ε, derivatives of ψ and initial data to be specified 
later in this section. A simple computation yields
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∂gij

∂t
= −2ψEhij

∂hij

∂t
= ψ[Ė kl∇k∇lhij + Ë kl, pq∇ihkl∇j hpq + hij Ė

klgpqhkphlq − 2Egklhikhjl]
+ E∇i∇jψ + ∇iE∇jψ + ∇iψ∇jE

∂Wij

∂t
= ψĖ kl∇k∇lWij + WijψĖklgpqhkphlq − 2WjlψEgklhik + Nij + Mij

(3.2)

where

hijk = ∇khij ,

Nij = ψË kl, pq [hiklhjpq − εgij g
rshrklhspq ] + cεψgij Ė

klgpqhkphlq ,

Mij = E[∇i∇jψ − εgij�ψ] + Ė kl[hikl∇jψ + hjkl∇iψ − 2εgij g
pqhpkl∇qψ].

For a symmetric matrix A, we may write E(A) = f (λ(A)), where λ(A) = (λ1, · · · , λn) is the 
map which takes A to its eigenvalues λj . Thus for A = (hij ), one has

E(hij ) = f (λ1, · · · , λn) = R1/2 =
(∑

i 	=j

λiλj

)1/2
.

Definition 3.1. For a C2 function F defined on the cone S+ of positive definite symmetric ma-
trices, we say F is inverse-concave if

F ∗(A) := −f (λ−1
1 , · · · , λ−1

n ),

is concave for any A ∈ S+.

For a symmetric matrix A with eigenvalues λi’s, R1/2(A), a symmetric homogeneous function 
of degree one, is concave and inverse concave since the ratio of symmetric functions σk+1/σk , 
k = 0, · · · , n −1, and their geometric means are concave and inverse-concave as shown in [6,33]. 
Let ḟ k denote the derivative of f (λ(A)) with respect to λk , and (δij ) be the diagonal matrix with 
1 in the entries. From the definition of inverse concavity, one can obtain the following lemma:

Lemma 3.1 (Corollary 5.4 [6]). Let A be a symmetric n × n matrix and let F = F(A) be a 

smooth function of A. Then F ∗ is concave at A if and only if 
(

ḟ k−ḟ l

λk−λl
+ ḟ k

λl
+ ḟ l

λk

)
≥ 0 for all 

k 	= l, and 
(
f̈ kl + 2 ḟ k

λk
δkl

)
≥ 0.

Indeed this holds for A = (hij ) and f = R1/2 whose derivatives are

ḟ i = R−1/2(H − hii) , (3.3)

f̈ ij = −R−3/2(H − hii)(H − hjj ) + ψR−1/2(1 − δij ).
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In order to apply the maximum principle for Wij , one shall see in Lemma 3.3 that a perturbation 
term cεgij in Wij nullifies the effect of ψ . Assuming this, one obtains the following pinching 
estimate adapting Theorem 3.2 in [6].

Theorem 3.2. Let

Wij := hij − ε(H + c)gij , (3.4)

for some constants ε > 0 and c > 0 satisfying

c ≥ max
{5n2||Dψ ||

ε2ψ
,

3n||D2ψ ||1/2

εψ1/2 + 2n3||Dψ ||
ψ

}
, (3.5)

where D is the gradient in Rn+1. Then if Wij is non-negative everywhere in M at time t = 0, 
then it remains so on M × [0, T ].

Proof. Suppose that Wij takes its minimum at (p, t0) ∈ M ×[0, T ] in the direction say v ∈ TpM

where local coordinates {x1, · · · , xn} are chosen to have v = ∂
∂x1 and the connection coefficients 

vanish at (p, t0). Taking p = 0 for convenience, one has

min
(x,t)

min
ξ

Wij ξ
iξ j = W11(0, t0) = 0.

Then for any n × n matrix Bij = Bij (x1, · · · , xn) and ξ = ξ i ∂
∂xi where ξ i = δi

1 + Bij xj ,

W(x, t) := Wij ξ
iξ j (x, t) ≥ 0 for t ∈ [0, t0],

satisfies W(0, t0) = W11(0, t0) = 0. At (0, t0), since ξ i(0) = δi
1 and ∂ξ i

∂xk = Bik , one has

∂W

∂xk
= ∂W11

∂xk
+ 2Wi1B

ik = 0

∂2W

∂xk∂xl
= ∂2W11

∂xk∂xl
+ 2

∂Wj1

∂xk
Bjl + 2

∂Wi1

∂xl
Bik + 2WijB

ikBjl

so that for i > 1,

Ėkl∇k∇lW = Ė kl ∂2W11

∂xk∂xl
− 2ḟ k

hii − h11
δklδij

∂Wj1

∂xk

∂Wi1

∂xl

+ 2(hii − h11)ḟ
kδklδij

(
Bik + 1

hii − h11

∂Wi1

∂xk

)(
Bjl + 1

hjj − h11

∂Wj1

∂xl

)
.

By taking Bik = − 1
hii−h11

∂Wi1
∂xk , one obtains

Ė kl ∂2W11

∂xk∂xl
(0, t0) ≥ 2ḟ k

hii − h11
h2

1ik ,
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where i > 1 since ∂Wi1
∂xk = h1ik − εhppkδ1i = h1ik(1 − δi1) at (0, t0). From (3.2), at (0, t0),

∂W

∂t
≥ 2ψḟ k

hii − h11
h2

1ik + N11 + M11 , (3.6)

where

N11 = ψË kl, pq [h1klh1pq − εhrklhrpq ] + cεψĖklgpqhkphlq ,

M11 = E[∇1∇1ψ − ε�ψ] + Ė kl[h1kl∇1ψ + h1kl∇1ψ − 2εhpkl∇pψ] .

By applying a maximum principle, it suffices to show that the right hand side of (3.6) is non-
negative. The conclusion follows from Lemma 3.3 below which provides the required null 
eigenvector condition. �
Lemma 3.3. Suppose that c is chosen to satisfy

c ≥ sup
{5n2||Dψ ||

ε2ψ
,

3n||D2ψ ||1/2

εψ1/2 + 2n3||Dψ ||
ψ

}
, (3.7)

and that local coordinates are taken as in Theorem 3.2. Then one has

2ψḟ k

hii − h11
h2

1ik + N11 + M11 ≥ 0 at (0, t0). (3.8)

Proof. It suffices to consider the case in which A = (hij ) has distinct principal curvatures hii , 
i = 1, · · · , n, as one can take a sequence of perturbed A with distinct eigenvalues converging to 
that with repeated eigenvalues. The computation in this lemma is carried at the point (0, t0) of 
minimum of W defined in Theorem 3.2. With respect to an orthonormal frame {e1, · · · , en} of 
eigenvectors for A, choosing v = e1, with the corresponding eigenvalues {h11, · · · , hnn} arranged 
in ascending order, one has A = diag(h11, · · · , hnn) and h11 = ε(H +c). We denote ψk for ∇kψ

and ψij for ∇i∇jψ for short.
Considering the first and the second derivatives of the smooth map Z : Sym(n) × Rn ×

O(n) −→ Sym(n) given by Z(A, λ, M) = MtAM − diag(λ), one can show that for a sym-
metric n × n matrix B ,

F̈ (B,B) = ψ
∑
k,l

f̈ klBkkBll + 2ψ
∑
k<l

ḟ k − ḟ l

hkk − hll

B2
kl,

where its proof can be found in Theorem 5.1 in [6]. This implies that (3.8) can be written as

Q :=
∑
k,l≥1

[F̈ (h1kl, h1kl) − ε
∑
j≥1

F̈ (hjkl, hjkl)] + 2ψ
∑
k≥1
l>1

ḟ k

hll − h11
h2

1kl + R1/2[ψ11 − ε�ψ]

+ 2
∑

ḟ j [h1jjψ1 − ε
∑

hkjjψk] + cεψ
∑

ḟ kh2
kk
j≥1 k≥1 k≥1
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= ψ
∑
k,l≥1

f̈ klh1kkh1ll + 2ψ
∑
k<l

ḟ k − ḟ l

hkk − hll

h2
1kl − εψ

∑
j,k,l≥1

f̈ klhjkkhjll

− 2εψ
∑
j≥1

1≤k<l

ḟ k − ḟ l

hkk − hll

h2
jkl + 2ψ

∑
k≥1
l>1

ḟ k

hll − h11
h2

1kl + R1/2[ψ11 − ε�ψ]

+ 2
∑
j≥1

ḟ j [h1jjψ1 − ε
∑
i≥1

hijjψi] + cεψ
∑
k≥1

ḟ kh2
kk .

Since W11(0, t0) = 0, one has

hk11 = ε

1 − ε

∑
j>1

hkjj , k ≥ 1, (3.9)

which shall be used frequently in the computation below. The sum Q of quadratic terms can be 
decomposed into Qk , k ≥ 1, ones with repeated indices, and Qjkl , ones with distinct indices:

Q = Q0 +
∑

1≤k≤n

Qk +
∑

1≤j<k<l≤n

Qjkl,

where

Q0 = R1/2[ψ11 − ε�ψ] + cεψ
∑

1≤k<n

ḟ kh2
kk + 1

2
cεψḟ nh2

nn ,

Q1 = (1 − ε)ψ
∑
i,j≥1

f̈ ij h1iih1jj + 2ψ
∑
j>1

ḟ j

hjj − h11
h2

1jj − 2εψ
∑
j>1

ḟ j − ḟ 1

hjj − h11
h2

1jj

+ 2(1 − ε)
∑
j≥1

ψ1ḟ
j h1jj + 1

2n
cεψḟ nh2

nn ,

Qk = −εψ
∑
i,j≥1

f̈ ij hkiihkjj + 2ψ
ḟ 1

hkk − h11
h2

k11 + 2ψ
ḟ k − ḟ 1

hkk − h11
h2

k11

− 2εψ
∑
j≥1
j 	=k

ḟ j − ḟ k

hjj − hkk

h2
kjj − 2ε

∑
j≥1

ψkḟ
jhkjj + 1

2n
cεψḟ nh2

nn , for k > 1

Q1kl = 2
[
(1 − ε)

ḟ k − ḟ l

hkk − hll

+
( ḟ k

hll − h11
+ ḟ l

hkk − h11

)
− ε

( ḟ k − ḟ 1

hkk − h11
+ ḟ l − ḟ 1

hll − h11

)]
h2

1kl ,

Qjkl = −2ε
[ ḟ j − ḟ k

hjj − hkk

+ ḟ k − ḟ l

hkk − hll

+ ḟ l − ḟ j

hll − hjj

]
h2

jkl , 1 < j < k < l ≤ n.

We will show that each of these is non-negative with appropriate choice of c. For the computation 
below, we use the following estimates which can be easily obtained from the definition ḟ i and 
the pinching condition at (0, t0):
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ḟ i − ḟ k

hii − hkk

= −R−1/2,

hii ≥ ε(hjj + c) ≥ cε for i, j = 1, · · · , n,

ε1/2

n
≤ hn−1 n−1

n(hnnhn−1 n−1)1/2 ≤ ḟ i ≤ hnn

h11
≤ ε−1.

(i) From Lemma 3.1, it follows that Q1kl ≥ 0.
(ii) From the concavity of f and Lemma 3.1, one has Qjkl ≥ 0 for 1 < j < k < l.
(iii) For a fixed k > 1,

Qk ≥ 2ψ
ḟ k

hkk

h2
k11 + 2εψ

∑
j≥1
j 	=k

R−1/2h2
kjj − 2ε

∑
j≥1

ψkḟ
jhkjj + 1

2n
cεψḟ nh2

nn.

By Young’s inequality and (3.9),

∑
j≥1

ψkḟ
jhkjj ≤

∑
j≥1
j 	=k

ψ

2R1/2 h2
kjj + 2n|ψk|2

ψ
|ḟ j |2R1/2 + ψkḟ

k
(1 − ε

ε
hk11 −

∑
j>1
j 	=k

hkjj

)

≤
∑
j≥1
j 	=k

ψ

2R1/2 h2
kjj + 2n|ψk|2

ε2ψ
R1/2 + ψ

ḟ k

εhkk

h2
k11 + hkk|ψk|2

εψ
ḟ k

+
∑
j>1
j 	=k

ψ

2R1/2 h2
kjj + 2n|ψk|2

ψ
|ḟ k|2R1/2

≤
∑
j≥1
j 	=k

ψ

R1/2 h2
kjj + ψ

ḟ k

εhkk

h2
k11 + |ψk|2

ε2ψ
H + 4n|ψk|2

ε2ψ
R1/2 ,

which yields

Qk ≥ −2
|ψk|2
εψ

H − 8n|ψk|2
εψ

R1/2 + 1

2n
cεψḟ nh2

nn ≥ −10n|ψk|2
εψ

H + 1

2n4 cε3/2ψH 2.

Therefore since H ≥ cnε, Qk ≥ 0 if

c ≥ 5n2||Dψ ||
ε7/4ψ

. (3.10)
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(iv) Consider Q1:

Q1 = (1 − ε)ψ
∑
i,j≥1

f̈ ij h1iih1jj + 2ψ
∑
j>1

ḟ j

hjj − h11
h2

1jj − 2εψ
∑
j>1

ḟ j − ḟ 1

hjj − h11
h2

1jj

+ 2(1 − ε)
∑
j≥1

ψ1ḟ
j h1jj + 1

2n
cεψḟ nh2

nn .

Using (3.9), the first sum above can be written as

(1 − ε)
∑
k,l>1

(
f̈ kl + ε

1 − ε
(f̈ k1 + f̈ l1) +

( ε

1 − ε

)2
f̈ 11

)
h1kkh1ll .

Let φ(x2, · · · , xn) := f ( ε
1−ε

(x2 + · · · + xn), x2, · · · , xn), and then its derivatives are

φ̇k = ḟ k + ε

1 − ε
ḟ 1,

φ̈ kl = f̈ kl + ε

1 − ε
(ḟ k1 + ḟ l1) +

( ε

1 − ε

)2
f̈ 11

for k, l > 1. The coefficients of the second and the third sum in Q1 above are

2ψ
( ḟ k

hkk − h11
− ε

ḟ k − ḟ 1

hkk − h11

)
≥ 2ψ

hkk − h11
[(1 − ε)ḟ k + εḟ 1] = 2(1 − ε)ψ

φ̇k

hkk − h11
,

so that

Q1 ≥ (1 − ε)ψ
∑
k,l>1

(φ̈ kl + 2φ̇k

hkk − h11
δkl)h1kkh1ll + 2(1 − ε)

∑
j≥1

ψ1ḟ
j h1jj + cε

2n
ψḟ nh2

nn

≥ 2ψ
∑
k>1

( 1

hkk − h11
− 1

hkk

)[
(1 − ε)ḟ k + εḟ 1]h2

1kk + 2(1 − ε)
∑
j≥1

ψ1ḟ
j h1jj

+ cε

2n
ψḟ nh2

nn ,

where the last inequality can be shown from the fact that the inverse-concavity of φ follows from 
that of f and Lemma 3.1 (ii). By Young’s inequality and (3.9) for the terms involving ψ1,

2(1 − ε)
∑
j≥1

ψ1ḟ
j h1jj ≥ − 2ψ

R1/2

∑
k>1

h11h
2
1kk

hkk(hkk − h11)
Hk − 2|ψ1|2

R1/2ψ

∑
k>1

hkk(hkk − h11)

h11
Hk,

where Hk = H − hkk + ε(hkk − h11), one has
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Q1 ≥ − 2|ψ1|2
R1/2ψ

∑
k>1

hkk(hkk − h11)

h11
Hk + cεψ

2nR1/2 (H − hnn)h
2
nn

≥ −2n|ψ1|2
R1/2ψ

h2
nn

h11
H + cεψ

2nR1/2 h11h
2
nn,

which implies Q1 ≥ 0 if

c ≥ 2n3/2||Dψ ||
ε2ψ

. (3.11)

(v) The terms involving D2ψ in Q0 can be bounded below as

R1/2(∇1∇1ψ − ε�ψ) ≥ −R1/2(|∇1∇1ψ | + ε|�ψ |) ≥ −R1/2[3||D2ψ || + εH |Dψ |]
since |�Mψ | ≤ (n + 1)||D2ψ || + H |Dψ |. Thus one has

Q0 ≥ −R1/2[3||D2ψ || + εH |Dψ |] + cεψ

2R1/2 (H − hnn)h
2
nn ,

and hence Q0 ≥ 0 if

c ≥ 2R

εψ(H − hnn)h2
nn

[
3||D2ψ || + εH |Dψ |].

The estimate R
(H−hnn)h2

nn
≤ n3

H
implies that Q0 ≥ 0 if

c ≥ 3n||D2ψ ||1/2

εψ1/2 + 2n3||Dψ ||
ψ

. (3.12)

Finally, from the conditions (3.10), (3.11) and (3.12), one can conclude that Q is non-negative if 
c satisfies the condition (3.7). �
Corollary 3.4. Let hnn and h11 be the largest and the smallest nonzero eigenvalues of the Wein-
garten map respectively. With the conditions in Theorem 3.2, we have the following curvature 
pinching:

cε2 ≤ εh11 ≤ hnn ≤ 1

ε
h11. (3.13)

In particular, F ≥ cε infM ψ .
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4. Curvature estimates

In this section, we obtain the uniform upper bounds for curvatures of the evolving manifolds 
before the maximal time T . With the Gauss map ν, one can parametrise the hypersurface so that 
the support function S is written as

S(z, t) = 〈z,X(ν−1(z), t)〉, for z ∈ Sn and t ∈ [0, T − δ0],

for some fixed δ0. Along the flow (1.2),

∂S

∂t
=

(
z,

∂ν−1

∂t
· ∇X + ∂X

∂t

)
= −F.

Let g be the standard metric on Sn and ∇ be its connection. Note that g is independent of t . From 
the definition, one has

gij = hikhjlg
kl, |A|2 = gij gij ,

hij = ∇ i∇j S + Sgij ,
(4.1)

and therefore,

∂hij

∂t
= ∇ i∇j

∂S

∂t
+ ∂S

∂t
gij .

Lemma 4.1. With the metric gij , we have the following evolution equation for F :

∂F

∂t
= ψHgij

R
1
2

∇i∇jF + ψ2(H |A|2 − trA3) − ψR(Dψ · ν).

Proof. Lemma 2.1 and (4.1) give

H = gkl(h
−1)kl,

∂H

∂t
= gij (∇ i∇jF + F · gij ).

From these and Lemma 2.1, we can compute the evolution of F = ψR
1
2 :

∂F

∂t
= ψHgij

R
1
2

∇i∇jF + ψ2(H |A|2 − trA3) − ψR(Dψ · ν). �
Let rin and rout be the inner and the outer radii of �t , respectively, and let w(z) := S(z) +

S(−z), z ∈ Sn, be the width on z-direction. Then we have the maximum width wmax = w(z+)

and the minimum wmin = w(z−) for some z+ and z− in Sn.

Lemma 4.2. If the initial hypersurface is pinched as in Theorem 3.2, we have

(i) wmax ≤ Cwmin,
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(ii) rout ≤ wmax√
2

and rin ≥ wmin
n+2 , and in particular, rout ≤ Crin,

for some positive constant C.

Proof. (i) For the parametrisation of a totally geodesic 2-sphere in Sn, choose a pair of angular 
variables (θ+, ψ+) mapped to (cos θ+ sinψ+, sin θ+ sinψ+, cosψ+) such that ψ+ = 0 is 
corresponding to z+. Expressing the second fundamental form � in terms of the support 
function S in the ψ+ direction, one has

w(z+) = S(z+) + S(−z+) =
ˆ

S2

�(∂ψ+, ∂ψ+)dμS2 .

See Theorem 5.1 in [4] for the detail. Similarly, we also have w(z−) = S(z−) + S(−z−) =´
S2 �(∂ψ−, ∂ψ−)dμS2 for the corresponding parametrisation (θ−, ψ−). From Corollary 3.4, 

we have �(∂ψ+, ∂ψ+) ≤ C�(∂ψ−, ∂ψ−) which implies wmax ≤ Cwmin.
(ii) Consider the intersection of the hypersurface and its largest enclosed sphere. Then the inter-

section has at most (n + 2) elements. For the detailed proof, see Lemma 5.4 in [4]. �
Lemma 4.3. Let M0 be convex and let δ0 > 0 be a fixed constant. Set t0 = T − δ0 and ρ0 =
1
2 rin(t0). Suppose that the pinching condition holds at t = 0 with the condition (3.5) on c as in 
Theorem 3.4, and ε ≤ 5

n
. Then there is a constant CF = CF (t0) > 0 such that

sup
x∈M, 0≤t≤t0

F(x, t) ≤ CF = max

(
sup
x∈M

F(x,0), sup
x∈M

C

ρ0

)
, (4.2)

where C is the constant given in Lemma 4.2.

Proof. Reparametrize the hypersurface to be defined on Sn. Let FS = F
S−ρ0

where ρ0 = 1
2 rin(t0)

on Sn ×[0, t0], and suppose that FS takes its maximum at (z1, t1) on Sn ×[0, t0]. Assume t1 > 0
and unless stated otherwise, the computation below is carried out at (z1, t1).

∇ iFS = ∇ iF

S − ρ0
− F∇ iS

(S − ρ0)2 = 0.

∂FS

∂t
= Ft

S − ρ0
− FSt

(S − ρ0)2 ≥ 0.

(4.3)

By Lemma 4.1, this implies that

0 ≤ (S − ρ0)[Hgij∇ i∇jF + F(H |A|2 − trA3) − R3/2(Dψ · ν)] + FR. (4.4)

From (4.3), one easily gets

0 ≥ ∇ i∇jFS = ∇i∇jF

S − ρ0
− F∇ i∇j S

(S − ρ0)2 ,
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and using (4.1), one then has

0 ≥ (S − ρ0)[Hgij∇ i∇jF + HF |A|2] + ρ0FH |A|2 − H 2F. (4.5)

Combining (4.4) and (4.5),

H 2F + FR ≥ (S − ρ0)[F · trA3 + R3/2(Dψ · ν)] + ρ0FH |A|2. (4.6)

On the other hand, one also has H 2F + FR ≤ 2H 2F , and for ε ≤ 5
n

,

(S − ρ0)[F · trA3 + R3/2(Dψ · ν)] + ρ0FH |A|2 ≥ ρ0

n
FH 3,

since one has cε2ψ ≥ 5n2|Dψ | from (3.5) and

F · trA3 + R3/2(Dψ · ν) ≥ ψcεh3
nn − n3|Dψ |h3

nn

from the pinching condition. Thus for ε ≤ 5
n

, (4.6) yields H(z1, t1) ≤ 2n
ρ0

. If F takes its maximum 
at (z2, t1), take t0 = t1, and then one has

F(z2, t1) ≤ S(z2, t1) − ρ0

S(z1, t1) − ρ0
F(z1, t1) ≤ 2rout (t1)

rin(t1)
F (z1, t1) ≤ C F(z1, t1),

from Lemma 4.2. Since F(z1, t1) ≤ ψ(z1)H(z1, t1) ≤ 2n
ρ0

ψ1, one has

F(z2, t1) ≤ Crin(t1)
−1.

If F takes its maximum at (z2, t2) where t2 < t1, then reduce t0 so that FS takes its maximum at 
t1 = t2, and follow the argument above. �
Lemma 4.4. Let M0 be convex, and suppose that the initial hypersurface is pinched as in Theo-
rem 3.2. Then there exists a positive constant C = C(n, ε, ψ, CF ) such that

H ≤ Crout (t0)
−1

Proof. From (4.2), we have

hnnh11 ≤ R ≤ C2
F ψ−2

0 ,

where hnn and h11 are the largest and the smallest principal curvatures, respectively, and the 
pinching estimate (3.13) implies

H 2 ≤ n2h2
nn ≤ n2ε−1hnnh11 ≤ n2C2

F ε−1ψ−2
0 .

Then the result follows from Lemma 4.3. �
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To obtain the short time existence of the flow (1.2), using a radial function r(z, t), z ∈ Sn, we 
parametrise the hypersurface by

X(x, t) = r(z, t)z,

for x = π−1(z) ∈ M , where π : Mn → Sn is the normalising map.

Lemma 4.5. If the initial hypersurface is pinched as in Theorem 3.2, then one has the short time 
existence for the flow (1.1).

Proof. One can compute that

gij = r−2
(
g ij − ∇ i

r∇j
r

r2 + |∇r|2
)

, ν = 1√
r2 + |∇r|2

(rz − g ij∇ i
z · ∇ j

r)

hij = 1√
r2 + |∇r|2

(−r∇ i∇j r + 2∇ i r∇j r + r2gij ),

which can be found in Chapter 3 in [36]. Then ∂r
∂t

= −F
r

√
r2 + |∇r|2, and since F =

ψ[(gij hij )
2 − gikgjlhij hkl]1/2, we have

∂r

∂t
= − ψ

r3

[
{(gij − ∇ i

r∇j
r

r2 + |∇r|2 )(−r∇ i∇j
r + 2∇i

r∇j
r + r2gij )}2

− (gik − ∇ i
r∇k

r

r2 + |∇r|2 )(−r∇ i∇j
r + 2∇i

r∇j
r + r2gij )

× (gjl − ∇j
r∇ l

r

r2 + |∇r|2 )(−r∇k∇ l
r + 2∇k

r∇ l
r + r2gkl)

]1/2
.

(4.7)

For Mn = Sn, we have the following evolution equation of the radial function:

−
√

n2 − 1ψ1

r
≤ dr

dt
= −

√
n2 − 1ψ

r
≤ −

√
n2 − 1ψ0

r

so that

[
r(0)2 − C−(T − t)

]1/2 ≤ r ≤
[
r(0)2 − C+(T − t)

]1/2
, (4.8)

where C− := 2(n2 − 1)1/2ψ1 and C+ := 2(n2 − 1)1/2ψ0. Regarding the hypersurface X(·, t) as 
a graph in (4.7), the short time existence follows from the standard parabolic theory. �

With the parabolic rescaling (1.6), one also has the following typical regularity of the rescaled 
flow as such is given for the mean curvature flow in Lemma 7.2 of [4] and in Lemma 3.5 of 
[36]:
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Lemma 4.6. If the initial hypersurface is pinched as in Theorem 3.2, we have

(i) C̃−1 ≤ r̃in(τ ) ≤ r̃out (τ ) ≤ C̃ for all τ > 0, and
(ii) sup(x,τ )∈�0×[0,∞) H̃ (x, τ) ≤ C̃.

Proof. (i) For t ′ ∈ (t, T ), the hypersurface X(·, t ′) is enclosed by ∂Br+(t)(p) by the maximum 

principle for some p ∈ Rn+1 where r+(t ′) ≤ (
r2
out (t) − C+(t ′ − t)

)1/2
from (4.8). Thus we 

have rout (t) ≥ (C+(t ′ − t))1/2 and, letting t ′ tend to T , we have rout (t) ≥
(
C+(T − t)

)1/2
. 

With the rescaling, from Lemma 4.2,

C+

2
≤ r̃out (τ )2 ≤ Cr̃in(τ )2.

On the other hand, suppose that X(·, t) encloses the ball Br−(t)(p) for some p ∈ Rn+1 where

rin(t
′) ≥ r−(t ′) ≥

(
r2
in(t) − C−(t ′ − t)

)1/2
.

Recall that X(·, t) shrinks to a point as t → T , one has r2
in(t) ≤ C−(T − t), and hence 

r̃2
in(τ ) ≤ 1

2C−.
(ii) From Lemma 4.3 and Lemma 4.4, one has H ≤ Crin(t0)

−1 ≤ Crout (t0)
−1. Also the 

parametrisation in (1.6) gives

rout (t0)
−1 = r̃out (τ0)

−1

√
2(T − t0)

≤ C√
2(T − t0)

.

Thus one has H̃ (x, τ) = √
2(T − t)H(x, t) ≤ C. �

5. Higher regularity of |A|2

In this section, we show that the rescaled second fundamental form Ã and its derivatives are 
bounded depending only on the initial data and the derivatives of ψ . That is,

|∇̃mÃ| ≤ C(n,m, ε, H̃0,ψ, |Dψ |, · · · , |Dm+2ψ |) for all m ∈N .

Recall that Ḟ = ψR−1/2(Hg − h) and R ∼ O(H) from the pinching estimate (3.13). Let A ∗ B

denote any tensor field which is a linear combination of tensor field formed by contracting tensors 
A and B with the metric. Since

Ḟ = ψR−1/2(Hg − h) = ψR−1/2A, ∇Ḟ = 1

H

(
ψ∇A + ∇ψA

)
,

one can show that

∇kḞ =
∑

i+i1+···+i2k+1=k

R−k− 1
2 ∇ iψ ∗ ∇ i1A ∗ · · · ∗ ∇ i2k+1A
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for m ∈ Z+, using an induction on m. Since ∇2ψ = D2ψ − (ν · Dψ)A where D is the gradient 
in R, and

∇(Ḟ k l∇k∇l∇m−1A) = Ḟ k l∇k∇l∇mA + ∇A ∗ ∗A∇m−1A + A ∗ A ∗ ∇mA

+ 1

H

∑
i+j=1

∇ iψ ∗ ∇j A ∗ ∇m+1A ,

one can easily compute that

∂

∂t
∇mA = Ḟ p q∇p∇q∇mA +

∑
i+j+k+l=m

∇ iψ ∗ ∇j A ∗ ∇kA ∗ ∇ lA +
∑

i+j=m

∇ i+2ψ ∗ ∇j A

+
m+1∑
k=1

1

Hk

∑
i+i1+···+ik=k

∇ iψ ∗ ∇m−k+2A ∗ ∇ i1A ∗ · · · ∗ ∇ ik A

(5.1)

and therefore, one can obtain

Lemma 5.1. Given the pinching estimate (3.13), one has

∂

∂t
|∇mA|2 = Ḟ k l∇k∇l |∇mA|2 − 2ψR−1/2|∇m+1A|2Hg−h

+
m+1∑
k=1

1

Hk

∑
i+i1+···+ik=k

∇ iψ ∗ ∇m−k+2A ∗ ∇ i1A ∗ · · · ∗ ∇ ik A ∗ ∇mA

+
∑

i+j+k+l=m

∇ iψ ∗ ∇j A ∗ ∇kA ∗ ∇ lA ∗ ∇mA +
∑

i+j=m

∇ i+2ψ ∗ ∇j A ∗ ∇mA .

By rescaling the hypersurface with X̃ = φ−1/2X where φ(t) = 2(T − t), as in (1.6), one has

Lemma 5.2. Given the pinching estimate (3.13), one has

|∇̃mÃ| ≤ C(n,m, ε, H̃0,ψ, |Dψ |, · · · , |Dm+2ψ |) for all m ∈ N .

Proof. Since |Ã|2 is bounded, we use an induction on m so that we assume

|∇̃kÃ| ≤ C(n,m, ε,ψ, |Dψ |, · · · , |Dm+1ψ |) for k ≤ m − 1 .

Note that one has

∂

∂τ
|∇̃mÃ|2 = 2〈∇̃mA,

∂

∂τ
∇̃mÃ〉 + 2ψR̃1/2|∇̃mÃ|2

h̃
,

˜̇Fk l∇̃k∇̃l |∇̃mÃ|2 = 2〈 ˜̇Fk l∇̃k∇̃l∇̃mÃ, ∇̃mÃ〉 + 2ψR̃−1/2|∇̃m+1Ã|2
H̃−g̃h̃

.
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Using these and Lemma 5.1, one can compute

∂

∂τ
|∇̃mÃ|2 ≤ ˜̇Fk l∇̃k∇̃l |∇̃mÃ|2 − 2ψR̃−1/2|∇̃m+1Ã|2

H̃ g̃−h̃
+ C1(n, ε,ψ, |Dψ |)|∇̃m+1Ã|2

+ C2(n,m, ε)

m∑
j=2

1

H̃ j

∑
i1+···+ij +k=j

|∇̃kψ | |∇̃m−j+2Ã| |∇̃i1Ã| · · · |∇̃ij Ã| |∇̃mÃ|

+ C3(n, ε)
∑

i+j+k+l=m

|∇̃ iψ | |∇̃j Ã| |∇̃kÃ| |∇̃ lÃ| |∇̃mÃ|

+ C4(n, ε)
∑

i+j=m

|∇̃i+2ψ | |∇̃j Ã| |∇̃mÃ| .

Using Young’s inequality, this yields

∂

∂τ
|∇̃mÃ|2 ≤ ˜̇Fk l∇̃k∇̃l |∇̃mÃ|2 − ψ0

ε1/2

n
|∇̃m+1Ã|2 + Cm(|∇̃mÃ|2 + 1) ,

where Cm = C(n, m, ε, H̃0, ψ, · · · , |Dm+2ψ |) is a positive constant. Consider

∂

∂τ
[|∇̃mÃ|2 + B̃|∇̃m−1A|2] ≤ ˜̇Fk l∇̃k∇̃l[|∇̃mÃ|2 + B̃|∇̃m−1Ã|2] + (

Cm − B̃ψ0
ε1/2

n

)|∇̃mÃ|2

− ψ0
ε1/2

n
|∇̃m+1Ã|2 + B̃Cm−1|∇̃m−1Ã|2 + Cm + B̃Cm−1

(5.2)

where B̃ is a positive constant. Choose B sufficiently large so that B ≥ 2nCm

ε1/2ψ0
, and suppose that 

|∇̃mA| is unbounded. Then this leads to a contradiction when one applies the maximum principle 
to (5.2). �
6. Global boundedness

In this section we show that the curvature quantity defined below is uniformly bounded with 
the pinching estimate given. It shall be seen in Section 7 that the limit manifold under the 
parabolic rescaling is a round sphere. Suppose that hij ≥ ε(H + c)gij , for some ε > 0 and c > 0, 
holds initially. Then from Theorem 3.2, it remains so until the maximal time T . This implies that 
εH 2 ≤ R ≤ H 2 which will be used repeatedly throughout this section. Let

fσ = |A|2 − H 2/n

H 2−σ

and f = f0. Note that fσ ≤ O(Hσ ). The aim in this section is to show that fσ is bounded for 
some small σ . With the straightforward computation
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H 1+σ

2R
|∇f + 2R

ψH 2 ∇ψ |2|A|2g−Hh

= H 1−σ

2R
|∇fσ |2|A|2g−Hh

− σ
fσ

Hσ R
〈∇H,∇fσ 〉|A|2g−Hh + σ 2 f 2

σ

2H 1+σ R
|∇H |2|A|2g−Hh

+ 2

ψH 1−σ
〈∇f,∇ψ〉|A|2g−Hh + 2R

ψ2H 3−σ
|∇ψ |2|A|2g−Hh

,

the time derivative of fσ follows from Lemma 2.3:

∂fσ

∂t
= ψR−1/2

(�fσ − 2R

H 5−σ
|H∇hkl − hkl∇H |2 − σ

H 3fσ

4R
|∇f + 2R

ψH 2 ∇ψ |2

− σ
fσ

H 3 |H∇ihkl − hkl∇iH |2 + 2(1 − σ)

H
〈∇H,∇fσ 〉Hg−h + σ(σ − 1)

fσ

H 2 |∇H |2Hg−h

+ H 1−σ

2R
|∇fσ |2|A|2g−Hh

− σ
fσ

Hσ R
〈∇H,∇fσ 〉|A|2g−Hh + σ 2 f 2

σ

2H 1+σ R
|∇H |2|A|2g−Hh

+ σfσ (H |A|2 − trA3)
)

+ 2

R1/2H
〈∇fσ − σ

fσ

H
∇H,∇ψ〉|A|2g−Hh (6.1)

− 2R1/2

H 4−σ
{2〈∇H,∇ψ〉|A|2g−Hh − σfσ H 2−σ 〈∇H,∇ψ〉} + σ

R1/2fσ

ψH
|∇ψ |2

+ R1/2

H 3−σ
[σ(|A|2 − H 2

n
)�ψ − 2(|A|2gij − Hhij )∇i∇jψ] .

To estimate the last line above, note that

|∇i∇jψ |2 = |(D2ψ)ij − (Dνψ)hij |2 ≤ 2(1 + H)2(||D2ψ || + |Dψ |)2 ,

|(|A|2gij − Hhij )∇i∇jψ |2 ≤ n|A|2H 2−σ fσ |∇i∇jψ |2 ≤ nH 4−σ fσ |∇i∇jψ |2.
Thus one has

R1/2

H 3−σ
[σ(|A|2 − H 2

n
)�ψ − 2(|A|2gij − Hhij )∇i∇jψ]

≤ R−1/2H(|Dψ | + ||D2ψ ||)[2n1/2H
σ
2 (H + 1)f 1/2

σ + 2σ(H + 1)fσ ]
(6.2)

since |A|2 − H 2

n
= H 2−σ fσ , R ≤ H 2 and

∇i∇jψ = D2ψ
( ∂X
∂xi

,
∂X
∂xj

) − (ν · Dψ)hij .

Choose σ sufficiently small so that

σ(σ − 1)
fσ

H 2 |∇H |2Hg−h + σ 2 f 2
σ

2H 1+σ R
|∇H |2|A|2g−Hh

≤ 0.

The pointwise bounds for some of the terms in (6.1) can be easily obtained:
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− 2R1/2

H 4−σ
{2〈∇H,∇ψ〉|A|2g−Hh − σfσH 2−σ 〈∇H,∇ψ〉}

+ 2

R1/2H
〈∇fσ − σ

fσ

H
∇H,∇ψ〉|A|2g−Hh + σ

R1/2fσ

ψH
|∇ψ |2

≤ 5Hσ−1|∇H ||∇ψ | + 2ε−1/2(|∇fσ | + σHσ−1|∇H |)|∇ψ | + σHσ |∇ψ |2
ψ

≤ 10ε−1/2(|∇fσ | + Hσ−1|∇H |)|∇ψ | + σHσ |∇ψ |2
ψ

.

(6.3)

Thus the terms involving the gradient of ψ in (6.1) are bounded above by

C̃(ε, σ,ψ)(|∇fσ | + Hσ−1|∇H | + Hσ ), (6.4)

since fσ ≤ Hσ , where C̃(ε, σ, ψ) := 10ε−1/2|∇ψ | + σ
|∇ψ |2

ψ
for ε < 1. As computed in 

Lemma 2.3 (ii) in [25], one can show that

|H∇ihkl − ∇iH · hkl |2 ≥ 1

2
h2

22|∇H |2 ≥ 1

2
ε2(H + c)2|∇H |2, (6.5)

where the second inequality is obtained by choosing an orthonormal frame with the first element 
being ∇H/|∇H |. From (6.1), (6.2), (6.3), (6.4) and (6.5), one has

∂fσ

∂t
≤ ψR−1/2

{�fσ − ε2 R

2H 3−σ
|∇H |2 + 2(1 − σ)

H
〈∇H,∇fσ 〉Hg−h

+ H 1−σ

2R
|∇fσ |2|A|2g−Hh

− σ
fσ

Hσ R
〈∇H,∇fσ 〉|A|2g−Hh + σfσ H 3

}
+ R−1/2H(|Dψ | + ||D2ψ ||)

{
2n1/2H

σ
2 (H + 1)f 1/2

σ + 2σ(H + 1)fσ

}
+ C̃(ε, σ,ψ)(|∇fσ | + Hσ−1|∇H | + Hσ ) .

(6.6)

6.1. Lp bound

In order to prove that there exists a positive constant C such that ||fσ ||p ≤ C for some large 
p, we generalise the argument in Lemma 5.5 in [25]: it is sufficient to show that

∂

∂t

ˆ

M

f p
σ dμ ≤ 0.

Then, multiplying the factor pf
p−1
σ in (6.6) and integrating by parts, it follows that

∂

∂t

ˆ

M

f p
σ dμ ≤

ˆ

M

[
ψR−1/2

{
− p(p − 1)f p−2

σ |∇fσ |2Hg−h − p

2
R−1H 2−σ f p−1

σ |∇fσ |2Hg−h

+ σ
p

R−1H 1−σ f p
σ 〈∇H,∇fσ 〉Hg−h + pH−1f p−1

σ 〈∇H,∇fσ 〉Hg−h

2
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− p
ε2

2
f p−1

σ RHσ−3|∇H |2 + pf p−1
σ

2(1 − σ)

H
〈∇H,∇fσ 〉Hg−h (6.7)

+ pf p−1
σ

H 1−σ

2R
|∇fσ |2|A|2g−Hh

− p
σ

RHσ
f p

σ 〈∇H,∇fσ 〉|A|2g−Hh + pσf p
σ H 3

}
+ pf p−1

σ R−1/2H(|Dψ | + ||D2ψ ||)
{

2n1/2H
σ
2 (H + 1)f 1/2

σ + 2σ(H + 1)fσ

}
+ pC̃(ε, σ,ψ)f p−1

σ (|∇fσ | + Hσ−1|∇H | + Hσ )
]
dμ.

Note that it suffices to consider the case in which
ˆ

M

f p
σ dμ >

ˆ

M

dμ . (6.8)

For H ≥ H0 := cnε and 0 ≤ k ≤ 2,

ˆ
Hkf p

σ ≤ Hk−2
0

ˆ
H 2f p

σ dμ ≤ Hk−2
0

ˆ
H 2f p

σ dμ. (6.9)

Similarly, for 0 ≤ k ≤ 3/2 and p ≥ 2, one has

ˆ
Hkf p−1/2

σ ≤
(ˆ

H
2kp

2p−1 f p
σ dμ

)1− 1
2p

(ˆ
dμ

)1/2p ≤ Hk−2
0

ˆ
H 2f p

σ dμ. (6.10)

Then from (6.9), (6.10) and R−1/2H ≤ ε−1/2 which follows from the pinching estimate, one has

ˆ

M

pf p−1
σ R−1/2H(|Dψ | + ||D2ψ ||)[2n1/2H

σ
2 (H + 1)f 1/2

σ + 2σ(H + 1)fσ ]dμ

≤ 2pε−1/2
(

sup
M

( |Dψ |
ψ

+ ||D2ψ ||
ψ

))
(nH

σ
2

0 + σ)(H0 + 1)H−2
0

ˆ

M

ψH 2f p
σ dμ.

(6.11)

Since we want the integral in the right side of (6.11) to be bounded above by

σpε−1/2
ˆ

M

ψH 2f p
σ dμ,

we take c and σ satisfying

sup
M

( ||Dψ ||
ψ

+ ||D2ψ ||
ψ

)
≤ (cnε)2σ

2[n(cnε)σ/2 + σ ](cnε + 1)
(6.12)

which holds if one take σ sufficiently small, say o(ε5), and H0 ≥ 1 satisfying

10

ε6
sup
M

( |Dψ |
ψ

+ ||D2ψ ||
ψ

)
≤ c. (6.13)



2234 H. Kang et al. / J. Differential Equations 268 (2020) 2210–2245
For the four terms involving 〈∇H, ∇fσ 〉Hg−h, noting that R ≥ εH 2, fσ ≤ Hσ and |A|2g −
Hh ≤ H(Hg − h), there exists a positive constant C(ε, σ) such that those terms are bounded by

pC(ε,σ )

ˆ

M

ψ
f

p−1
σ

H
|∇H ||∇fσ |dμ, (6.14)

where C(ε, σ) = O(ε−1/2). Similarly the three terms involving |∇fσ |2Hg−h in (6.7) are bounded 
by

−p(p − 1)

ˆ

M

ψR−1/2f p−2
σ |∇fσ |2Hg−hdμ. (6.15)

Thus, from (6.7), (6.11), (6.14) and (6.15),

∂

∂t

ˆ

M

f p
σ dμ ≤ −p(p − 1)

ˆ

M

ψR−1/2f p−2
σ |∇fσ |2Hg−hdμ + 2σpε−1/2

ˆ

M

ψH 2f p
σ dμ

+ pC(ε,σ )

ˆ

M

ψ
f

p−1
σ

H
|∇H ||∇fσ |dμ − p

ε2

2

ˆ

M

ψf p−1
σ R1/2Hσ−3|∇H |2dμ

+ pC̃(ε, σ,ψ)

ˆ

M

f p−1
σ (|∇fσ | + Hσ−1|∇H | + Hσ )dμ.

Note that (3.13) implies that Hgij −hij ≥ εHgij and εH 2 ≤ R ≤ H 2. Then by choosing p ≥ p0, 
where p0 := 2C(ε, σ)2ε−7/2 + 1, one has

∂

∂t

ˆ

M

f p
σ dμ ≤ −ε

2
p(p − 1)

ˆ

M

ψf p−2
σ |∇fσ |2dμ − ε5/2

4
p

ˆ

M

ψf p−1
σ Hσ−2|∇H |2dμ

+2σp

ε1/2

ˆ

M

ψH 2f p
σ dμ + pC̃(ε, σ,ψ)

ˆ

M

f p−1
σ (|∇fσ | + Hσ−1|∇H | + Hσ )dμ.

(6.16)

Note that using Young’s inequality, one has

pHσ f p−1
σ ≤ (p − 1)H

σ1
0 H 2f p

σ + H
−σp
0 ,

where σ1 = 2p(σ−1)+2
p−1 < 0. Thus, for H0 ≥ 1 and sufficiently large p, one has

p

ˆ

M

Hσ f p−1
σ dμ ≤ p − 1

ψ0
H

σ1
0

ˆ

M

ψH 2f p
σ dμ +

ˆ

M

H
−σp

0 dμ ≤ 2p

ψ0
H

σ1
0

ˆ

M

ψH 2f p
σ dμ ,
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where ψ0 := infRn+1 ψ , and similarly,

p

ˆ

M

f p−1
σ Hσ−1|∇H |dμ ≤ βp2

ψ0

ˆ

M

ψHσ−2
0 f p−1

σ |∇H |2dμ + 2H
σ1
0

βψ0

ˆ

M

ψH 2f p
σ dμ,

p

ˆ

M

f p−1
σ |∇fσ |dμ ≤ βp2

ψ0

ˆ

M

ψf p−2
σ |∇fσ |2dμ + 2H

σ1
0

βψ0

ˆ

M

ψH 2f p
σ dμ,

where β is a positive constant. For H0 ≥ 1, choose C̃(ε, σ, ψ) satisfying C̃(ε, σ, ψ) <
min{ε5/2, σε−1/2H

−σ1
0 } which holds if C̃(ε, σ, ψ) < ε9/2. Thus, by choosing β = 1

p
, (6.16)

yields

∂

∂t

ˆ

M

f p
σ dμ ≤ −ε

4
p(p − 1)

ˆ

M

ψf p−2
σ |∇fσ |2dμ

− ε5/2

8
p

ˆ

M

ψHσ−2f p−1
σ |∇H |2dμ + 4σp

ε1/2

ˆ

M

ψH 2f p
σ dμ.

(6.17)

To eliminate the last integral above, we apply the following Michael-Simon Sobolev type in-
equality as given in Lemma 5.4 in [25].

Lemma 6.1. If H > 0 and hij ≥ ε(H + c)gij for some ε > 0 and c > 0 initially, then we have

ˆ

M

ψf p
σ H 2dμ ≤ (2γp + 5)ψ1

nε2ψ0

ˆ

M

ψ
f

p−1
σ

H 2−σ
|∇H |2dμ + (p − 1)ψ1

nε2γψ0

ˆ

M

ψf p−2
σ |∇fσ |2dμ,

for p ≥ 2, any γ > 0 and any 0 ≤ σ ≤ 1/2, where ψ1 := supRn+1 ψ .

From Lemma 6.1 and (6.17), one has

∂

∂t

ˆ

M

f p
σ dμ ≤

( 4ψ1σp

nγ ε5/2ψ0
(p − 1) − ε

4
p(p − 1)

)ˆ
M

ψf p−2
σ |∇fσ |2dμ (6.18)

+
( 4ψ1σp

nε5/2ψ0
(2γp + 5) − ε5/2

8
p
)ˆ

M

ψHσ−2f p−1
σ |∇H |2dμ.

By choosing γ = 8ψ1σ

nε7/2ψ0
and σ ≤ o(ε5), one concludes that for c satisfying (6.13),

∂

∂t

ˆ

M

f p
σ dμ ≤ 0, for p0 ≤ p ≤ pσ := nε7/2ψ0

32σψ1

( nε5

32ψ1σ
− 5

)
. (6.19)



2236 H. Kang et al. / J. Differential Equations 268 (2020) 2210–2245
Therefore one can conclude that for c satisfying (3.5) and (6.13),

||fσ ||p ≤ C for p0 ≤ p ≤ pσ . (6.20)

6.2. Moser iteration

In this subsection, we obtain the uniform bound for fσ for some small σ assuming that c in 
the pinching estimate in (3.5) satisfies (6.13). Let η be a smooth test function which will be given 
explicitly later. Integrating by parts, one has

ˆ

M

η2ψR−1/2�f p
σ dμ =

− p

2

ˆ

M

η2ψR−3/2H 2−σ f p−1
σ |∇fσ |2Hg−h + σ

p

2

ˆ

M

η2ψR−3/2H 1−σ f p
σ 〈∇H,∇fσ 〉Hg−h

+ p

ˆ

M

η2ψR−1/2H−1f p−1
σ 〈∇H,∇fσ 〉Hg−h − p

ˆ

M

R−1/2f p−1
σ 〈∇(η2ψ),∇fσ 〉Hg−h.

Note that only the last term above involves the derivative of η. Multiplying (6.6) by pη2f
p−1
σ and 

proceeding as in subsection 6.6, from (6.7), using the pinching estimate and Young’s inequality, 
one then obtains

∂

∂t

ˆ

M

η2f p
σ dμ − 2

ˆ

M

f p
σ η

∂η

∂t
dμ

≤ −ε

4
p(p − 1)

ˆ

M

η2ψf p−2
σ |∇fσ |2dμ − ε5/2

8
p

ˆ

M

η2ψHσ−2f p−1
σ |∇H |2dμ

+ 2σp

ε1/2

ˆ

M

η2ψH 2f p
σ dμ + 2

ε1/2

ˆ

M

ψη|∇η||∇f p
σ |dμ − ε

1
2

ˆ

M

η2ψH 2f p
σ dμ (6.21)

+ 2p
(

sup
M

( |Dψ |
ψ

+ ||D2ψ ||
ψ

))ˆ
M

ψη2[σ(H + 1)f p
σ + 2n1/2Hσ/2(H + 1)f p−1/2

σ ]dμ.

The last integral in the third line comes from the derivative of the measure dμ and that R ≥ εH 2. 
Let εi , i = 1, 2, 3, be any positive numbers. Since

η2|∇f
p
2

σ |2 = |∇(ηf
p
2

σ )|2 + f p
σ |∇η|2 − 2f

p
2

σ 〈∇(ηf
p
2

σ ),∇η〉,

2f
p
2

σ |〈∇(ηf
p
2

σ ),∇η〉| ≤ ε1|∇(ηf
p
2

σ )|2 + ε−1
1 f p

σ |∇η|2,

ηψ |∇η||∇f p
σ | ≤ 2ε2ψ |∇(ηf

p
2

σ )|2 + 2ε−1
2 ψf p

σ |∇η|2,
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taking ε1 = 1
2 and ε2 = 1

32ε3/2, (6.21) becomes

∂

∂t

ˆ

M

η2f p
σ dμ − 2

ˆ

M

f p
σ η

∂η

∂t
dμ

≤ −ε

8

ˆ

M

ψ |∇(ηf
p
2

σ )|2dμ + 200

ε2

ˆ

M

ψ |∇η|2f p
σ dμ

− ε5/2

8
p

ˆ

M

η2ψHσ−2f p−1
σ |∇H |2dμ + 2σp

ε1/2

ˆ

M

η2ψH 2f p
σ dμ (6.22)

− ε
1
2

ˆ

M

η2ψH 2f p
σ dμ

+ 2p
(

sup
M

( |Dψ |
ψ

+ ||D2ψ ||
ψ

))ˆ
M

ψη2[σ(H + 1)f p
σ + 2n1/2Hσ/2(H + 1)f p−1/2

σ ]dμ.

With this parabolic equation, we run the Moser iteration which is also useful for extending mean 
curvature flow past singular time as shown in [31] and [32]. Rescale and translate time t in 
[T − δ̃, T ) by δ̃−1(t − T + δ̃), for some δ̃ > 0, so that the rescaled time, also denoted by t , is in 
[0, 1). Let

D = ∪0≤t≤1(B(x0,1) ∩ Mt), D̃ = ∪ 1
12 ≤t≤1(B(x0,

1

2
) ∩ Mt),

where x0 is the limit point of Mt , and let

rk = 1

2
+ 1

2k+1 , tk = 1

12
(1 − 1

4k
), ρk = rk−1 − rk = 1

2k+1 .

Consider the set

Dk = ∪tk≤t≤1(B(x0, rk) ∩ Mt).

Note that D0 = D and tk − tk−1 = ρ2
k . For convenience, we write M for Mt . Let η = ηk be the 

smooth test function defined on M × [0, 1) by

ηk(x, t) := vk(|x − x0|2)φk(t),

where

vk(s) =
{

1 for s ≤ r2
k ,

0 for s ≥ r2 ,
(6.23)
k−1
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and vk(s) ∈ [0, 1] with |v′
k(s)| ≤ cnρ

−2
k for r2

k ≤ s ≤ r2
k−1, and

φk(t) =
{

0 for 0 ≤ t ≤ tk−1,

1 for tk ≤ t ≤ 1,
(6.24)

and φk(t) ∈ [0, 1] with |φ′
k(t)| ≤ cnρ

−2
k for tk−1 ≤ t ≤ tk . From (6.22), in the time internal [0, 1),

δ̃
∂

∂t

ˆ

M

η2f p
σ dμ + ε

8

ˆ

M

ψ |∇(ηf
p
2

σ )|2dμ + ε
1
2

ˆ

M

η2ψH 2f p
σ dμ

≤ 200

ε2

ˆ

M

ψ |∇η|2f p
σ dμ + 2δ̃

ˆ

M

f p
σ η

∂η

∂t
dμ + 2σp

ε1/2

ˆ

M

η2ψH 2f p
σ dμ (6.25)

+ 2p
(

sup
M

( ||Dψ ||
ψ

+ ||D2ψ ||
ψ

))ˆ
M

ψη2[σ(H + 1)f p
σ + 2n1/2Hσ/2(H + 1)f p−1/2

σ ]dμ.

For u ∈ W 1,1(M) and T1 ≤ T2, using the Sobolev inequality and the Schwarz inequality, one has

T2ˆ

T1

(ˆ
M

u
2n

n−1 dμ
) n−1

n
dt ≤ c(n)

(
sup

[T1,T2)

ˆ

M

u2dμ
) 1

2
( T2ˆ

T1

ˆ

M

(|∇u|2 + H 2u2)dμdt
) 1

2
,

(6.26)

and using the interpolation inequality,

ˆ

M

u
2(n+1)

n dμ ≤
(ˆ

M

u2dμ
) 1

n
(ˆ

M

u
2n

n−1 dμ
) n−1

n
,

one has

T2ˆ

T1

ˆ

M

u
2(n+1)

n dμdt ≤ c(n)
(

sup
[T1,T2)

ˆ

M

u2dμ
) n+2

2n
( T2ˆ

T1

ˆ

M

(|∇u|2 + H 2u2)dμdt
) 1

2
. (6.27)

Integrating (6.25) over [0, 1), we have

δ̃ sup
t∈[0,1)

ˆ
η2f p

σ dμ + ψ0ε

8

1ˆ ˆ
|∇(ηf

p
2

σ )|2dμdt + ε
1
2 ψ0

1ˆ ˆ
η2H 2f p

σ dμdt (6.28)
M 0 M 0 M
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≤ 200ψ1

ε2

1ˆ

0

ˆ

M

|∇η|2f p
σ dμdt + δ̃

1ˆ

0

ˆ

M

2f p
σ η

∂η

∂t
dμdt + 2ψ1σp

ε1/2

1ˆ

0

ˆ

M

η2H 2f p
σ dμdt

+ 2pC′(ψ)

1ˆ

0

ˆ

M

ψη2[σ(H + 1)f p
σ + 2n1/2Hσ/2(H + 1)f p−1/2

σ ]dμdt,

where C′(ψ) = supM

( ||Dψ ||
ψ

+ ||D2ψ ||
ψ

)
. Note that one can choose δ̃ small enough so that H ≥ 1

in [0, 1). This can be achieved applying the pinching estimate in Corollary 3.4. Assuming that 
εψ0 ≤ 8 and δ̃ ≤ 1, this implies

¨

supp η

(|∇(ηf
p
2

σ )|2 + η2H 2f p
σ )dμdt

≤ 1600ψ1

ε3ψ0

¨

supp η

f p
σ (|∇η|2 + 2η

∂η

∂t
+ σpη2H 2)dμdt, (6.29)

and the same bound also holds for δ̃ sup[0,1)

´
M

η2f
p
σ dμ. For H ≥ 1, denoting f p

σ H 2 = f
p

σ̃

where σ̃ = σ + 2
p

, one has fσ ≤ fσ̃ . Substituting u by ηf
p
2

σ in (6.27), one obtains

¨

supp η

(ηf
p
2

σ )
2(n+1)

n dμdt ≤ c(n, ε)
( ¨

supp η

f p
σ (|∇η|2 + 2η

∂η

∂t
) + (1 + C′′)σpη2f

p

σ̃
)dμdt

+ pC′′
1ˆ

0

(ˆ
M

η2f
p

σ̃
dμ

)1− 1
2p dt

) n+1
n

(6.30)

where c(n, ε) := c(n)
(

1600ψ1
ε3ψ0

) n+1
n

and C′′ = C′(ψ)ψ1. Typically, as in [21,31], one has

|∇ηk|2 + ∂

∂t
η2

k ≤ c̃(n)ρ−2
k = c̃(n)4k on Dk−1 (6.31)

and the left hand side vanishes in M × [0, 1)\Dk−1, where c̃(n) is a constant depending only on 
n. Without loss of generality, we only consider the case in which 

˜
supp η

η2f
p

σ̃
dμdt > 1. Then,

1ˆ

0

(ˆ
M

η2f
p

σ̃
dμ

)1− 1
2p dt ≤ C̃

¨

supp η

η2f
p

σ̃
dμdt,

for some constant C̃ > 0. Thus for σ̃ ≥ σ , (6.30) and (6.31) yield

¨
(η2

kf
p
σ )

n+1
n dμdt ≤ c̃(n, ε)

( ¨
4kpf

p

σ̃
dμdt

) n+1
n

(6.32)
supp ηk supp ηk
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where c̃(n, ε) := (C + σ)(1 + C′′)c(n, ε)(2c̃(n))
n+1
n . Let λ = n+1

n
, p = λk−1 and σk = σ +

2λ−k+1. If Ip(t) ≥ 1, then (6.32) implies that

¨

Dk

η2λ
k f λk

σ dμdt ≤ c̃(n, ε)
( ¨

Dk−1

4kλk−1f λk−1

σk
dμdt

)λ

, (6.33)

since ηk ≡ 1 on Dk and supp ηk ⊂ Dk−1. That is,

||fσ ||
Lλk

(Dk)
≤ (c̃(n, ε)λ

−1
4kλk−1)λ

−k+1 ||fσk
||

Lλk−1
(Dk−1)

. (6.34)

Note 
∑∞

k=1 kλ−k = O(1), and in (6.19), σ can be chosen sufficiently small so that

σ − 2
∞∑

j=0

λ−kσ +1−j = σ − 2(n + 1)p−1
σ > 0,

where pσ = λkσ −1 for some kσ > 1 since pσ = O(ε17/2σ−2) for σ ≤ o(ε5). Thus from (6.20), 
one has an iteration relation:

||fσ ||
L∞(D̃)

≤ c′(n, ε)||fσkσ
||

Lλkσ −1
(Dkσ −1)

≤ C, (6.35)

for a fixed kσ = kσ (ε, σ) and some constants c′(n, ε) = (∏∞
k=kσ

(c̃(n, ε)λ
−1

4kλk−1)λ
−k+1)−1 and 

C > 0, where the last inequality follows from (6.20). Therefore, given the conditions (3.5) and 
(6.13), one has

sup
[T −δ′,T )

sup
M∩B(x0,

1
2 )

fσ ≤ C,

where δ′ = δ̃
12 . From Lemma 4.3, we conclude that

Theorem 6.2. If hij ≥ ε(H + c)gij for some ε > 0 and c > 0 initially satisfying (3.5) and (6.13), 
then one has

|A|2 − H 2

n
≤ CH 2−σ̃ , for some small σ̃ .

7. Proofs of main theorems

7.1. Proof of Theorem 1.1

From Lemma 4.2 and the containment principle, one can conclude that X(·, t) converges to a 
point as t tends to T via the regularity theory of uniformly parabolic equations (see, for example, 
[30] for the regularity theory). �
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7.2. Limit equation in dimension two

In this subsection, we consider the general case without the condition (1.5). The monotone 
quantity is a useful tool to analyse the asymptotic behaviour of geometric flows. For the mean 
curvature flow, a monotonicity formula using the backwards heat kernel gives a limit equation 
which leads to the classification of self-similar solutions [26]. Here, we simply use the volume 
of a convex region with its boundary being Mt to normalise the hypersurface. In general, without 
the divergence structure for the speed F depending on the curvature, it is difficult to deduce a 
limit equation. However, in dimension two, this can be overcome since R = 2K , where K is the 
Gauss curvature, and K has a quantity that is not quite monotone but enough to obtain the limit 
behaviour. For this reason, we consider Xt = −ψ(2K)1/2ν which coincides with the flow (1.2)
in dimension two, and call this the anisotropic Gauss curvature flow (to be precise, (1/2)-Gauss 
curvature flow).

The (half) volume of a convex region with its boundary Mt can be written in an integral form 
using the support function S:

V (t) = 1

n + 1

ˆ

Sn

S

2K
dσSn,

where dσSn is the standard measure on Sn. This is used to define a mixed volume of convex 
regions in [5] where it is shown that given specific speeds of evolution, some dilation invariant 
integral quantities monotonically decrease.

Lemma 7.1. Under the flow (1.1), we have

∂

∂t
V (t) = −

ˆ

Sn

ψ

(2K)1/2 dσSn .

Proof. Denote K = 1/K . Using integration by parts and the fact that ∇̄iK(h−1)ij = 0, one has

ˆ

Sn

SKt dσSn =
ˆ

Sn

SK(h−1)ij (∇̄i∇̄j St + Stgij ) dσSn

=
ˆ

Sn

StK(h−1)ij (∇̄i∇̄j S + Sgij ) dσSn = n

ˆ

Sn

StK dσSn .

Then we have

∂

∂t
V (t) = 1

2(n + 1)

ˆ

Sn

(KSt + SKt ) dσSn = −
ˆ

Sn

ψ

(2K)1/2 dσSn . �

From this, one can write V (t) = V (0) − ´ t

0 η(s) ds where η(t) := ´
Sn

ψ

(2K)1/2 dσSn . In order 
to normalize the volume, rescale the hypersurface by
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X̂(τ ) = X(t)

V (t)1/(n+1)
and τ(t) = − log

( V (t)

V (0)

)
.

One can easily compute that

∂X̂

∂τ
= − ψ̂(2K̂)1/2

η̂
ν̂ + 1

n + 1
X̂. (7.1)

Lemma 7.2. Let

Î(τ ) =
⎛
⎝ ˆ

Sn

ψ̂2

Ŝ
dσSn

⎞
⎠

−1

.

In dimension two, under the volume preserving rescaling, with the initial pinching condition 
satisfying (1.5) given, one has

d

dτ
Î(τ ) → 0,

as τ → ∞, and the limit profile satisfies Ŝ∗ = Cψ̂(R̂∗)1/2 for some constant C > 0, where Ŝ∗
and R̂∗ are the support function and the scalar curvature of the rescaled limit manifold M̂∗, 
respectively.

Proof. From (7.1), one obtains

ψ̂2

Ŝ2

(
∂Ŝ

∂τ
− 1

n + 1
Ŝ

)
= − ψ̂3(2K̂)1/2

η̂Ŝ2
,

which implies

d

dτ
Î(τ ) = Î(τ )2[ 1

n + 1

ˆ

Sn

ψ̂2

Ŝ
dσSn − 1

η̂

ˆ

Sn

ψ̂3(2K̂)1/2

Ŝ2
dσSn − 2

ˆ
ψ̂

Ŝ

∂ψ̂

∂τ

]
.

Using Hölder’s inequality and the definition of η yield

⎛
⎝ ˆ

Sn

ψ̂2

Ŝ
dσSn

⎞
⎠

⎛
⎝ˆ

Sn

ψ̂

(2K̂)1/2
dσSn

⎞
⎠

1/2

≤
⎛
⎝ ˆ

Sn

ψ̂3(2K̂)1/2

Ŝ2
dσSn

⎞
⎠

1/2 ⎛
⎝ ˆ

Sn

Ŝ

2K̂
dσSn

⎞
⎠

1/2 ⎛
⎝ ˆ

Sn

ψ̂2

Ŝ
dσSn

⎞
⎠

1/2

.
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The fact that V̂ (τ ) = 1
n+1

´
Sn

Ŝ

2K̂
dσSn = 1 implies

⎛
⎝ ˆ

Sn

ψ̂2

Ŝ
dσSn

⎞
⎠

⎛
⎝ ˆ

Sn

ψ̂

(2K̂)1/2
dσSn

⎞
⎠ ≤ (n + 1)

ˆ

Sn

ψ̂3(2K̂)1/2

Ŝ2
dσSn ,

where the equality holds if and only if Ŝ = Cψ̂K̂1/2 for some constant C > 0, and therefore,

d

dτ
Î(τ ) ≤ −2Î(τ )2η̂

ˆ

Sn

ψ̂

Ŝ

∂ψ̂

∂τ
dσSn .

Since Dψ → 0 as τ → ∞ and, in dimension two, the pinching estimate controls K̂ and Ŝ, one 

has ∂ψ̂
∂τ

→ 0 as τ → ∞. Also V̂ (τ ) = 1 implies that

ˆ

S2

ψ̂

Ŝ
dσS2 ≤ C,

for some positive constant C, and hence,

lim
τ→∞

d

dτ
Î(τ ) = 0 ,

so that the limit profile satisfies Ŝ∗ = Cψ̂(R̂∗)1/2 for some constant C > 0, where Ŝ∗ and R̂∗ are 
the support function and the scalar curvature of M̂∗, respectively. �
7.3. Proof of Theorem 1.3

Parametrizing the rescaled hypersurface as a graph by

X̃(x, t) = r̃(z, t)z, (7.2)

where x = π−1(z), z ∈ Sn and π : Mn → Sn is the normalizing map, Lemma 4.6 (i) and the 
convexity guarantee the uniform boundedness of the first derivative of r̃ in the rescaled version of 
(4.7). Then the regularity theory of uniformly parabolic equation provide the boundedness of the 
higher derivatives of r̃ . Thus, recalling Lemma 5.2, each time slice X̃(·, τk) has a C∞-convergent 
subsequence to a smooth strictly convex limit hypersurface M̃∗. In dimension two, the limit 
hypersurface M̂∗ of the volume preserving anisotropic scalar curvature flow satisfies the equation 
Ŝ∗ = Cψ̂(R̂∗)1/2 for some C > 0 by Lemma 7.2.

Suppose that hij ≥ ε(H +c)gij initially. We follow the argument in Sect. 7 in [11]. Since there 
is a point p0 in M̃∗ with K̃(p0) > 0, there is an open neighbourhood Ũ containing p0 with K̃ > 0
in Ũ . However the unnormalized H blows up in the open neighbourhood U corresponding to Ũ
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and then from Theorem 6.2 and the scale invariance of f , we have f = 0 in U which implies 
that Ũ is totally umbilical. Thus K̃ is constant in M̃∗ so that M̃∗ is a round sphere Sn. �
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