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1. Introduction

The evolution of hypersurfaces in Euclidean spaces governed by curvature has been consid-
ered in many aspects in geometric analysis and mathematical physics. In this paper, we consider
a one parameter family of immersions X (-, ) : S" — M; C Rt M, := X(S", t), and its evo-
lution in time governed by the square root of scalar curvature on M, and a given smooth positive
function v in R"*! with compact support: consider the following initial value problem

88—): = (X, 0)RE,HDv,  My=X(S",0), (1.1)
where v is the outward unit normal to M;, and M is a strictly convex smooth hypersurface in
R"*! Here 1, by which we call the anisotropic factor, can be considered as a nonhomogeneous
influence on the curvature flow from the underlying manifold R”*!. Note the dependence of v/
on the position X (-, #), not on the normal vector v as considered in [3,7]. Throughout the paper,
we shall call the flow in (1.1) anisotropic scalar curvature flow in short. The flow we concern in
this paper is the generalisation of that considered by Chow in [1 1] where the speed of the flow is
R'/2, and recently the case in which the speed is R” for p > 1/2, was studied in [1]. Our aim is
to show the smooth convergence of the flow and find a condition on ¥ to have a spherical limit
profile of the rescaled flow.

1.1. Notation

In a local coordinates system {xp, --- , x,}, the induced metric and the second fundamental
form are given by

X 89X 9’ X
gij = @,@ and h,‘j=— W,V s

respectively, where (-, -) is the standard inner product and v is the outward unit normal vector
to M. In terms of these, the Weingarten map WV is given by

W =) = (¢" i),

with the eigenvalues A, --- , A, and its inverse given by w1l = (h_l)i. = Eik(h)kj, where g
is the standard round metric on the n-dimensional sphere S” and V is the connection of g on
S". Let 0k = Y 1 <j| <..cip<n Mt Miy -+ Aii, be the k-th symmetric function of the curvature, and
one can write the mean curvature H = trace(hi.) =0 = lei <nMis the Gauss curvature K =
det(h) =0, = A1 A2 --- A, and the scalar curvature R = Zil#z Ai;Ai, on which we shall focus in
this paper.

For a symmetric function f on R"*!, denote by I'; the connected component of the set
{A € R": f()) > 0} containing the positive cone I'. It follows from [14] that I'; is a cone with
the property that for all A € ',

%f(k)”z >0, f2<o.

OA;OA;
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We consider the following parabolic flow which is expected to converge to a smooth hypersurface
M*:

Xi=—FW,v)p (1.2)
where we take
FOV,v) =y R"?(v,1),

for the flow (1.1). This can be written in terms of the support function S = S(z,t) = (z, X (¢)),
ze€S", as

s 1/2
Sf=—w< ) =W, 2)

Sp—2

for W™, z) = —FOW,v) for z = v € S". For the anisotropic factor ¥, we denote
the sup norm of its differentials by |[DV|| = supyecgn cerntt DY (W)|(x) and [|D*yr|| =
SUPy wesn xeRnt! | D% (v, w)|(x), where D is the gradient in R+

Throughout the paper, C denotes a positive constant depending only on the dimension n and

other fixed constants, and we write c(ay, - - - , ax) for a positive constant depending only on its
arguments ai, -+ , d.
1.2. History

The well known example of evolution of hypersurfaces by curvature is the mean curvature
flow (see [9,12,16,21,23,25,26] among many) for which excellent lecture notes [22,36] are avail-
able, and others are Gauss curvature flow (see, for example, [2,3,10,13,18-20,24,29]), the flows
evolving with the speed of powers of mean curvature (see [17,34,35]) and the flows by homoge-
neous functions of the principal curvatures [4,8]. The scalar curvature flow, that is, F = R, with
a flat side was studied in [27]. Most notably for our interest, for the flow deformed by powers
of the scalar curvature in [1,11], they proved the short time existence and the long time exis-
tence as well as the convergence to a point, and also the convergence of the rescaled flow to a
round sphere. The difference between the flow in [11] and (1.1) is the presence of the anisotropic
factor ¢ and the limit profile is expected to satisfy a non-trivial limit equation. With a further
assumption that the perturbation from v is relatively small compared with the initial data, we
show that the flow under the parabolic rescaling converges to a round sphere. Note that the flow
(1.1) is somewhat related to the logarithmic Gauss curvature flow considered in [15] to solve the
Minkowski problem where the evolution equation is given by

0X K (v)
— =—log

ot f)
Mo =X (S",0),

v, (1.3)

where K (v) is the Gauss curvature of M; and f is a positive smooth function on S”. Along this
flow, the smoothness and the convexity of the hypersurfaces are preserved, and given that the
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weighted centre of mass is equal to zero and starting from suitably chosen initial data, the limit
profile of (1.3) satisfies

K(v) _
f)

log 0,

which is equivalent to have K = f so that the given Borel measure of S” coincides with the area
measure of the convex hypersurface. Likewise, consider the immersions of convex hypersurfaces

with the evolution according to
X F
—=- —1)v, (1.4)
ot fv, X)

where F is a function depending on the curvature of the hypersurface and f is a function given a
priori. Although it is not shown in this paper that under (1.1), the limit hypersurface has its scalar
curvature equal to a given smooth function on S”, one may expect that depending on f, the flow
(1.4) contracts to a point, expand to an asymptotic sphere or converges to a convex hypersurface
with its limit profile satisfying F = f under some conditions.

1.3. Main theorems
We state the main results for the flow (1.1).

Theorem 1.1. Let My = X (S", 0) be a compact, connected and strictly convex smooth manifold
in R"*1. Suppose that hij > €(H + ¢)g;j initially for some € > 0 and ¢ > 0 satisfying

2 211172 3 2
[Sn [|DY|| 3n||D%*y|| 2n3|| Dyr|| 10(||Dl/f|| n 1D Ilfll)}, (1.5)

ey T eyl AN v

¢ > max
where D is the gradient in R"*'. Then there exist a maximal time T > 0 and a unique smooth
solution {M; = X (8", 1)} satisfying (1.1) for t € [0, T'), and M; converges to a point xo = M* as
t approaches T.

Remark 1.2.

(i) From the pinching assumption at t = 0, c is related to initial data by H > cne. The condition
(1.5) can be regarded as the balance between strict convexity and the perturbation of ¥ from
a constant map.

(i1) If the smallest positive principal curvature is large compared with the perturbation of i, the
initial hypersurface satisfies (1.5). Then a pinching estimate follows and the convexity of
the hypersurfaces preserved. Otherwise v dominates and the convexity of the hypersurfaces
may not be preserved.

(iii) If the smallest positive principal curvature is small, then the perturbation of  is required to
be small for (1.5) to be satisfied.

In order to observe the behaviour of the solution near the maximal time 7', we rescale the
solution and the time parameter by
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f(( ) X(x,t)—X(x,T) 11 (T—t) (1.6)
X, T) = , t=——log| — .
NAED) 2 87
Then the rescaled equation of (1.2) is
90X o % B TRl
e =—Fv(x,7)+ X, F=yR"", (L7
T

on S” x [0, 00). For the rescaled hypersurfaces M, we obtain the convergence to a smooth
manifold:

Theorem 1.3. Under the hypotheses in Theorem 1.1, the hypersurfaces M under the parabolic
rescaling converge in the C*°-topology to a smooth manifold M* as t approaches infinity. In
addition, if ¥ has a strict local minimum at xo, then M* is a round sphere S". In dimension
two, with a volume preserving rescaling, the limit hypersurface M* satisfies the equation §* =
C 12/(1%*)1/ 2 for some constant C > 0, where S* and R* are the support function and the scalar
curvature of M*, respectively.

Remark 1.4. The convergence in C*°-topology here means the uniform convergence of the
derivatives of rescaled second fundamental form of any order. The exponential decay rate of
the convergence to a round sphere as in [25] shall be dealt in the sequel to this paper.

1.4. Outline

The paper is organized as follows. In Section 2, we find the evolution equations of tensors
related to curvature. In Section 3, a pinching estimate for the second fundamental form is shown.
In general, the pinching estimate derived from a maximum principle to tensors plays a crucial
role to prove the convergence of convex hypersurfaces. In [6], the second derivative pinching
estimates for a class of nonlinear parabolic equations were shown when the function describing
the speed satisfies some structural criteria. For the flow (1.2), F is the function composed of
the anisotropic factor ¥ and second derivatives of X which belongs to the space of concave
functions. In order to control the trouble terms that appear in the modification of the maximum
principle in [6], an additional perturbation term is required in the pinching. In Section 5, we give
upper bounds for the higher derivatives of the second fundamental form in terms of initial data
and the derivatives of 1. In Section 4, applying the pinching estimate, we obtain the uniform
upper bound of curvature before the blow up if M, is smooth. In Section 6, we show a global L”
estimate of a scale invariant curvature quantity for large p and consequently obtain a global L*>°
estimate using the Moser iteration. This also can be achieved from the De Giorgi method. For
the rescaled flow, we also acquire a uniform curvature bound. Finally, in Section 7, the proofs
of Theorem 1.1 and Theorem 1.3 are given: the existence of a smooth limit manifold M* and
the convergence of the rescaled flow to a round sphere under the conditions in Theorem 1.3.
Moreover, in dimension two, by rescaling the hypersurfaces homothetically so that the volume
is preserved, it is shown that a soliton equation is realized by the limit profile.
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2. Evolution equations

In this section, we obtain the evolution of the quantities related to the curvature of the hy-
persurface M;. Prior to the computation, we introduce the first and the second derivatives of the
curvature F with respect to h;;:

F' .=y R™V2(Hg — hil), 2.1

FUM .= _yy R32(Hgll — hily(HgM — hMy 4 R~V (g1 oM — 5ks1).

Lemma 2.1. Under the parabolic flow (1.2), we have

3
2. —v=V/F—

% dx/

!

3. Ehij =V;V;F — Fhjh;

9 . .9
4. %H =2Fh”h,’j +g”5h,~j
5. E|A|2 =2(V;V; F)h'/ +2F (tr A%)

9
6. 5 F= FUNVF+y*HIA? — ¢ (tr A%) — ¢ R(DY - v),
where trA3 = h,-jhjkh};, and D is the gradient in R+L

Remark 2.2. Due to the term —y R(D - v), a lower bound for F may not follow directly from
Lemma 2.1 (6) in general.

From Lemma 2.1, the detailed evolutions of the second fundamental form and hence the mean
curvature can be derived.

Lemma 2.3. Under the anisotropic scalar curvature flow (1.2), we have

9 ki YR™:
Ehij = F"ViVihij — T(Hvihkz —hiyViH)(HV jhy — higViH)

1L, s (1AP A2
—g VRN T ) Vi T

YR [((HV;H —A-V;A)-Viy + (HViH — A-V;A) - V;y]

1 1
+ R2V; VY + Y RTI[(H|AP? — trA%)hij — 2R(A%);]

where tr A3 = hijhjkh{.‘. Let O :=(Hgl — hij)ViVj.
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9 1 ) Y 2R
—H =R '"?[yoH - HVhy —hyVH|? — —|H*VH + —Vy|?
a7 (v el i —hVHI" = 75| + 7 vl

R R'/2
+ — (VH. V)] + TWW +R'2AY + Y RV2HIHIA? — tr A%,

0 2 ~kl 2 ]/f w 2
EH =F"V,ViH" — R1/2|VH|Hg h— HRl/lethl hyVH|
2 2
Hy 3 Hvy 2y |A] 12
L 2HY T (AR = tr A% = s H (H2)+?vw| F4RV2VH - Viyr
12 2HR'/? 5
+2HRYV2AY + Z———|Vy 2,

2y 2 2y

d .
VAP = FUNVIAR — 15 VRl — o7 | H Vi — hiaVHI;

4hii
2 3 2
(H|A|" —trA”)|Al” + R1/

H* Al? 2

_HYY V(I I)’ L v
2R3/2 R1/2

+2RV2HIV; iy,

3 /1A AR\ 2yR'2 2 AP
E<L>=¢R_l/2[|(u) 14 —————|HVhy — hk[VH| + —— v (VH, V(| | >>Hg—h

— 5 (HV;H — A-V;A)-V;y

H? H?2 H> R\/2H H?2
v H |A|? 2R 2R!/?
2V () + 5 V¥ e = 5V B
4R1/2 2R1/2

(AP — HhI)YV; V.

T (VH, YY) g2_pn —

H3

3. Pinching estimate

In this section, it shall be shown that if all the principal curvatures are of the same order at the
initial time, it remains so until the maximal time. This will be used in later sections to deduce
the convergence to a point and find the limit of the rescaled solution. The pinching estimate in
more general setting was obtained in the earlier work [28], and for the convenience of the reader,

we give the detail of the computation for our case. Denote E = R'/? so that F = y E. With the
notation (2.1), we have

Fil=wEU, — FUM =y gk (3.1)
Define a (2, 0)-tensor W by

Wij =hij —e(H +0)gij,

for some constant ¢ > 0 depending only on n, €, derivatives of ¢ and initial data to be specified
later in this section. A simple computation yields
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08ij

ot

oh;; . . .

3—;] = YLENVVihij + EX PN gV ik + hif EX gPThy by — 2EgM high i) 3.2)
+EVViy +V;EV;y + V¥V, E

= 2y Eh;

Wiy _ gk W K gPa oW Ee b + Nos o Mis

9t —I/fE vkle1]+Wtj1/fE 8 hkphlq WJH”Eg hzk+Nz]+Mz]
where

hijk = Vihij

Nij = WEM PURigh jpg — €818  hrkihspg] + ceVgi EX g7 hiphuy
M;; = E[ViV; ¥ — €gii AU+ EX[hig Vi + hju Vi — €887 h pri Vg 1.

For a symmetric matrix A, we may write E(A) = f(A(A)), where A(A) = (A1,---, X,) is the
map which takes A to its eigenvalues A ;. Thus for A = (h;;), one has

172
Ehig) =[G ) = R = (Y 2ing)
i#]j

Definition 3.1. For a C? function F defined on the cone S, of positive definite symmetric ma-
trices, we say F' is inverse-concave if

F*A) i=—=f0q ",
is concave for any A € S;.

For a symmetric matrix A with eigenvalues ;’s, R'/?(A), a symmetric homogeneous function
of degree one, is concave and inverse concave since the ratio of symmetric functions oy1/0%,
k=0, ---,n—1, and their geometric means are concave and inverse-concave as shown in [6,33].
Let f k denote the derivative of f(A(A)) with respect to Ai, and (§;;) be the diagonal matrix with
1 in the entries. From the definition of inverse concavity, one can obtain the following lemma:

Lemma 3.1 (Corollary 5.4 [6]). Let A be a symmetric n X n matrix and let F = F(A) be a
ck Al tk ;l
smooth function of A. Then F* is concave at A if and only if (f L+ L4 {—k) > 0 for all

A=A A
Pkl o f
k#1l and ( f +2)~k8kl > 0.

Indeed this holds for A = (h;;) and f = RY/% whose derivatives are

Fi=R"2H—hy), (3.3)

f=—R3PH = hi)(H—hj;)+yR™V2(1 - 8V).
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In order to apply the maximum principle for W;;, one shall see in Lemma 3.3 that a perturbation
term ceg;; in W;; nullifies the effect of . Assuming this, one obtains the following pinching
estimate adapting Theorem 3.2 in [6].
Theorem 3.2. Let

Wiji=hij —e(H +0)gij, 34

for some constants € > 0 and ¢ > 0 satisfying

5n2||D 3n||D*¢||V2 263D
szax{ n“||Dy || 3n|| D"y n’|| wn}’ 3.5)

621// ’ 61//1/2 w

where D is the gradient in R"*1. Then if W; j is non-negative everywhere in M at time t = 0,
then it remains so on M x [0, T].

Proof. Suppose that W;; takes its minimum at (p, tp) € M x [0, T] in the direction say v € T, M
where local coordinates {xy, - - -, x,,} are chosen to have v = 667 and the connection coefficients
vanish at (p, tp). Taking p = 0 for convenience, one has

min min W;;&'£7 = W11 (0, 1) = 0.

(1) &
Then for any n x n matrix B = B (x,---,x,) and £ = éia% where £/ = 8! + B'x;,

W (x, 1) :=Wi;'&/ (x,1) =0 forz €0, 1],

satisfies W(0, 19) = W11 (0, ) = 0. At (0, 10), since &/ (0) = 8} and % = B* one has

oW Wy "
dxk axk il
82W 32W11 ale . 8W-1 . . .
= jt 2 pik . pik pjl
axkax! — axkox! +2 3k B/ +2 9x! B +2W;;B"*B
so that for i > 1,
W 21k AW, dW;
! 11 f 1 OW;

EkIVkVIW = EX

axkox!  hy —hyy OU ok ol

_ | L Wiy, I Wi
(hii — h11) f " O bij hii —hy; 0xk hjj—hy dx!

1 IW;1
hii—hi1 9xk

By taking B* = — , one obtains

. 32W11 ka

kl 2
0,t0) > ———hi;,

8xk8xl( O)_/’l,','—hu lik
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where i > 1 since 3l Rk — €hpprdii = hiik(1 — 8;1) at (0, 7). From (3.2), at (0, 19),

oW 2¢fk 2
—>——h7. + N1 + M, 3.6
Jat hii —hn lik H 1 (3.6)

where

1 =YEXPUhyghpg — €hrihypg] + ceW EM gP i,y

My = E[ViViy — e AY]+ EM[hig Vi + hig Viy — 2€hpiq V.
By applying a maximum principle, it suffices to show that the right hand side of (3.6) is non-
negative. The conclusion follows from Lemma 3.3 below which provides the required null

eigenvector condition. O

Lemma 3.3. Suppose that c is chosen to satisfy

5n2||D 3n||D>y||V? 2#3||D
n“||Dy || 3n|I DY n’|| 1/f||}7 37)

e el” v

and that local coordinates are taken as in Theorem 3.2. Then one has

czsup{

¢k
%hﬁkﬂvu + My >0 ar(0,1). (3.8)
hii —hu1
Proof. It suffices to consider the case in which A = (h;;) has distinct principal curvatures A;;,
i=1,---,n, as one can take a sequence of perturbed A with distinct eigenvalues converging to
that with repeated eigenvalues. The computation in this lemma is carried at the point (0, #p) of
minimum of W defined in Theorem 3.2. With respect to an orthonormal frame {eq, --- , e,} of
eigenvectors for A, choosing v = ey, with the corresponding eigenvalues {A11, - - - , h,, } arranged
in ascending order, one has A =diag(h11,--- , hyn) and h1; = €(H 4 c). We denote ¥ for Vi
and v;; for V; V4 for short.
Considering the first and the second derivatives of the smooth map Z : Sym(n) x R" x
O(n) — Sym(n) given by Z(A, A, M) = M'AM — diag().), one can show that for a sym-
metric n X n matrix B,

F(B, B)—wa“BkkBmszf f;l i

where its proof can be found in Theorem 5.1 in [6]. This implies that (3.8) can be written as

Q=Y [Flhi,hwa) =€) Fhju, h,kz>]+2wZ /! — i}y + RV [y — eAy]

k,I>1 j=>1 k>1
I>1

—hy

+2ij[h11jlﬂ1 —Ethjjl//k]‘FCGI//Zf:khzk

Jj=1 k>1 k>1
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—¢Zf h1kkhuz+2wsz f Ry — ey Z Fn ik ju

ki>1 k<l hu Jl=1
f*
~2ey Z ,k1+ thl ki + R = eav)
>
15w iz
+22fj[h1jj‘ﬂ1 —EZhijﬂﬁi] +c€1ﬂ2fkh1%k-
j=1 i>1 k>1

Since W11(0, t9) = 0, one has

hi = k>1, (3.9

j>1

which shall be used frequently in the computation below. The sum Q of quadratic terms can be
decomposed into Qy, k > 1, ones with repeated indices, and Q ji;, ones with distinct indices:

Q=00+ Y, O+ Y. Qju.

1<k<n 1<j<k<l<n

where

Qo=R"[y11 — Ayl +cey Y frng + cewf Han

1<k<n
Q1—(1—6)¢Zf”hmhl”Jr%/fZ 1,,—2ewa ——hiy
i,j>1 j>1 j>1 1
+200—e) > Y1 flhij;+ —cewf M
j=1
f'1 =1,
=— Thiiih 2 2 ———h
Qr=—ey Y fVhiihjj + 1/f - Iy + whkk_hll ki1

i,j>1

—261//Zf - hijj—2€ > Wi f T higj + —061//f h2,, fork>1

izl ik izl

JFk

fh— 7 f* f! =i =\
Qiu=2|(1—¢) + + —¢ + Pk »
= [ hik — hy (hll_hll hkk—hu) (hkk_hll hzz—hu)] ki

J _ fk ck £l (L fJ
o= ad SIS S S

n ]h L l<j<k<l<n.
hjj —hw bk —hy by —hj; 1M

We will show that each of these is non-negative with appropriate choice of c. For the computation
below, we use the following estimates which can be easily obtained from the definition f' and
the pinching condition at (0, #p):
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. "

S

hij — hi

hii > €(hjj+c) > ce fori,j=1,---,n,

ﬁ < hp—1n-1 fl < hon < 6_1
n n(hpphn—1p-)Y? ~ hi1

(i) From Lemma 3.1, it follows that Qz; > 0.
(ii) From the concavity of f and Lemma 3.1, one has Qi >0for1 < j <k <.
(iii) For a fixed k > 1,

f* _ X
Qk>2¢—hk“+2e¢ZR V2hi = 2e Y f Ty + —ncewf"hﬁn
jz1 izl

JFk

By Young’s inequality and (3.9),

s 14 2n |y |?
D v f g SZZR—I/Q}H%,U + |f PR+ f —hkll > hji)

j=1 j=1 v j>1
J#k J#k
2n|wk|2 f hkk|wk|2 :
2 1/2 k
RY? + h
/ZEZRW kjj + 2y Vf i ey f
J#k
2n|wk|2 :
2 k12 pl/2
+Z 2R1/2 ku v lf7I°R
j>1
J#k
Voo o P Al
SjZ;Rl/zhkjj—i_wehkkhk“—'_ezlﬂH+ €2y K
j#k
which yields
lyal® . 8alyal® Lip 1 > 10n |y |? LYy
>_2 H— R — " Y H+4 —cePyH.
Q=27 Y 3 ceV S i 2 ey At paceV
Therefore since H > cne, Qy > 0 if
5n%||D
_ 2Dyl (3.10)

c= Ty
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(iv) Consider Qjg:

e s ‘j
Q1=(1—e)wZf”hmhljﬂrwzh..]:hl i zwzf j = hii "

ij>1 j=1" j>1

. 1 .
+200=0) Y V1 f hjj + o-cew Uiy,

j=1

Using (3.9), the first sum above can be written as

(e (fkl + lej(f.kl + M+ <1€T6>2f11)h1kkhlll-

k,>1
Letp(xz, -+, x,) 1= f(le:(xz + -+ Xxp), X2, -, Xp), and then its derivatives are
ik fk € 4
A i
vkl _ Fk € kil 21 ( € )2 11
G = P P M+ (=) 7

for k, [ > 1. The coefficients of the second and the third sum in Q| above are

f* fE—fl 2y % _ P
2w<hkk_h11 B hkk—hn) hik — hn [(-aff+efl= 2(1_6)wh ik —hi’
so that
> (1 bkl 29! Sk hikih 2(1 Ih h?
012> ( —G)Iﬁkglw +ﬁ ik + 2( —E)JZ;WUC 1u+ Wf nn

1 .
zzwé(hkk_h” hk)[(l—e)f +ef hig +20—0 3 v f Iy

k j=1

ce
S A

where the last inequality can be shown from the fact that the inverse-concavity of ¢ follows from
that of f and Lemma 3.1 (ii). By Young’s inequality and (3.9) for the terms involving ¥,

. 2y hllh%kk 2|1ﬂ1|2 hig(hgr — hy1)
2(1 — E Thyji > — H; — E H,
( € - vif Ljj R1/2 hik(hie — h11) k Rl/zlﬂ i
j>1 k>1 k>1

where H, = H — hyy + €(hgr — h11), one has
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2|1/f1|22hkk(hkk—h11) cey

_R1/2¢ Hi +

2
hi1 2nR1/2 (H = )iy

01>

k>1

20|y | h2 cey

nn

= R\2y hy, 2nR1/2

which implies Q1 > 0 if

3/2
> 2n IIDWII‘

2y (3.11)

(v) The terms involving Dzl// in Qg can be bounded below as
R'VZ(ViViy —eAy) = —R'Z(ViViy | + €| Ay ) = —R'Z[3]|D*y|| + € H|Dy|]
since |Ay Y| < (n+ 1)||D21ﬁ|| + H|D1r|. Thus one has

ce
Qo= —R'[3||D*y|| +eH|Dy ] + M—I@(H — by

and hence Qg > 0 if

cx— 2K 132yt eHIDY)
- Ew(H _hnn)h%n )

. 3L )
The estimate < 47 implies that Q¢ > 0 if

___ R
(H_hrm)h%n

3n||D*y |12 203Dy

¢z —_in J (3.12)

Finally, from the conditions (3.10), (3.11) and (3.12), one can conclude that Q is non-negative if
c satisfies the condition (3.7). O

Corollary 3.4. Let h,,;,, and hy| be the largest and the smallest nonzero eigenvalues of the Wein-
garten map respectively. With the conditions in Theorem 3.2, we have the following curvature
pinching:

1
ce* <ehyy <hpp < —hy;. (3.13)
€

In particular, F > ceinfy .



2224 H. Kang et al. / J. Differential Equations 268 (2020) 2210-2245

4. Curvature estimates

In this section, we obtain the uniform upper bounds for curvatures of the evolving manifolds
before the maximal time 7. With the Gauss map v, one can parametrise the hypersurface so that
the support function S is written as

Sz, 1) =(z, X0 1(2), 1)), forzeS"andt €[0,T — 8],

for some fixed &p. Along the flow (1.2),

s [ ov! vx+ X\ _p
or — \" o a )

Let g be the standard metric on S” and V be its connection. Note that g is independent of 7. From
the definition, one has

— kl 2 ij—=
iy =hichjug™, A" =g"%
i _l_/ - i (4'1)
hij=ViV;S+5g;;,
and therefore,

ohij ¥, 0SS
ar 1 T8

Lemma 4.1. With the metric g;;, we have the following evolution equation for F :

OF I/ngl]

L0 Y,V F+y*(H|A]> — tr A% — y R(DY - v).
at R2

Proof. Lemma 2.1 and (4.1) give
o oH o _
H=g,(h"H¥, W=g’f(v,-ij+F-g,-j).

From these and Lemma 2.1, we can compute the evolution of F' = wR% :

oF pog’f

T2V, V;F +y*(H|A> —trAY) =y R(DY -v). O
3t R

Let r;, and r,,; be the inner and the outer radii of X, respectively, and let w(z) := S(z) +
S(—z), z € S", be the width on z-direction. Then we have the maximum width wmax = w(z4)
and the minimum wpi, = w(z—) for some z4 and z_ in S”.

Lemma 4.2. [f the initial hypersurface is pinched as in Theorem 3.2, we have

(1) wWmax < CWmin,
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@11) rour < wy%" and riy > —’::‘4“_‘5‘, and in particular, ryy; < Crip,
for some positive constant C.

Proof. (i) For the parametrisation of a totally geodesic 2-sphere in S”, choose a pair of angular
variables (64, ¥) mapped to (cosf, sinyr, sinf4 siny4, cosyy) such that ¥ =0 is
corresponding to z4. Expressing the second fundamental form IT in terms of the support
function S in the v direction, one has

w(z4) = S(z4) + S(—z4) = / @Y+, 0y )duge.
S2

See Theorem 5.1 in [4] for the detail. Similarly, we also have w(z—) = S(z-) + S(—z-) =
/. 2 [I(@Y—, 9y _)d g for the corresponding parametrisation (60—, ¥—). From Corollary 3.4,
we have IT(0Y4, 0y 4) < CIT(0y—, 0v—) which implies wmax < CWnin-

(i) Consider the intersection of the hypersurface and its largest enclosed sphere. Then the inter-
section has at most (n + 2) elements. For the detailed proof, see Lemma 5.4 in [4]. O

Lemma 4.3. Let My be convex and let §g > 0 be a fixed constant. Set ty = T — 8y and pg =
%rm (t0). Suppose that the pinching condition holds at t = 0 with the condition (3.5) on ¢ as in

Theorem 3.4, and € < % Then there is a constant Cp = Cg(ty) > 0 such that

C
sup F(x,t)Sszmax<sup F(x,0), sup —) , “4.2)
xeM, 0<t<y xeM xeM PO

where C is the constant given in Lemma 4.2.

Proof. Reparametrize the hypersurface to be defined on S". Let Fs = £ 0
on S" x [0, tp], and suppose that Fg takes its maximum at (zy, #{) on S x [0, fy]. Assume ¢; > 0

and unless stated otherwise, the computation below is carried out at (z1, #1).

1
where po = 57in(t0)

— Vl'F F$55
V;Fs = - = =0.
S—po (S—=po0) 43)
BFS - Fl‘ FS[ - O
it S—po (S—po)?
By Lemma 4.1, this implies that
0<(S—po)Hg"V;V;F + F(H|A> - trA%) — R¥*(Dy - v)] + FR. 4.4)

From (4.3), one easily gets
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and using (4.1), one then has
0> (S—po)[Hg'V;V;F + HF|A*1 + poFH|A> — H*F. 4.5)
Combining (4.4) and (4.5),
H?’F +FR>(S—po)lF - trA> + R¥*>(Dy - v)| + poFH|A|*. (4.6)

On the other hand, one also has H2F + FR < 2H?F, and for € < 3

n

(S — po)[F - 1r A3 + R¥2(Dyr - v)] + po FH|A]* = 22 F 3,
n

since one has ce2y > 5n2|Dyr| from (3.5) and
F-trA> + RY2(Dy - v) > reehl, —n®|Dy |k,

from the pinching condition. Thus for € < %, (4.6)yields H(z1,t) < %—:)’. If F takes its maximum
at (z2, 1), take ty = t1, and then one has

S(z2,11) — 2 t
(z2,11) pOF(Zl,fl)f Tour (t1)

F(z,11) <
S(z1,t1) — po rin(t1)

F(z1,1) < CF(z1,1),
from Lemma 4.2. Since F(z1,11) < ¥ (z1)H(z1, 1) < ?)—z%, one has

F(z2,11) < Crin(t) ™"

If F takes its maximum at (z», t2) where t, < t1, then reduce f( so that Fg takes its maximum at
1 = tr, and follow the argument above. O

Lemma 4.4. Let My be convex, and suppose that the initial hypersurface is pinched as in Theo-
rem 3.2. Then there exists a positive constant C = C(n, €, ¥, Cr) such that

H < Crou (1‘0)71
Proof. From (4.2), we have
hunhi1 < R < CRyg >,

where h,, and hj; are the largest and the smallest principal curvatures, respectively, and the
pinching estimate (3.13) implies

H? < nzhin < nzeflh,mh“ < n2C12pe*11p0_2.

Then the result follows from Lemma 4.3. O
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To obtain the short time existence of the flow (1.2), using a radial function r(z, 1), z € S", we
parametrise the hypersurface by

X(x,1)=r(z 1)z,
for x =7~ 1(z) € M, where  : M" — S" is the normalising map.

Lemma 4.5. If the initial hypersurface is pinched as in Theorem 3.2, then one has the short time
existence for the flow (1.1).

Proof. One can compute that

. VY 1 i
guzr—2<§z/_2"—_r2>’ =——(@z-3"V'z-V'n
r=+|Vr| \/72+|Vr|2

1 o — —
hij =~ (—r ViV + 29V i 4 1755)),

V2 + |Vr|2

which can be found in Chapter 3 in [36]. Then % = —5\/ r24+|Vr|2, and since F =
Yl(g7hij)* — g™ g/ hijhii]'/?, we have

0 VY e =i y
a_; B _%[{(E” - ﬁ)(—rv’vh +2V'rV r 4+ 1782
) V’ v . . -
-@"* - — = rﬁ r|2)(—erV]r +2V'rVr 412 4.7
r<+|Vr
; vV —k— —k — 1/2
x @ - 5= +rﬁr|2)(—rv"vlr +2V V42|
r r

For M = S", we have the following evolution equation of the radial function:

n% — 1y <dr_ «/nz—llﬁ< vn? — 1
r ~dr r - r
so that

[r(0)2 —Cc (T - z)]l/2 <r< [r(O)2 _CH(T - z)]l/z, 4.8)

where C~ :=2(n? — 1)/2y; and CT :=2(n? — 1)!/?y. Regarding the hypersurface X (-, t) as
a graph in (4.7), the short time existence follows from the standard parabolic theory. O

With the parabolic rescaling (1.6), one also has the following typical regularity of the rescaled
flow as such is given for the mean curvature flow in Lemma 7.2 of [4] and in Lemma 3.5 of
[36]:
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Lemma 4.6. If the initial hypersurface is pinched as in Theorem 3.2, we have

@) C'< Fin(T) < Foul(r) < C‘fgr all t >0, and
(ll) Sup(X,T)EZOX[O,OO) H(.X, 7,') < C.

Proof. (i) Fort' € (¢, T), the hypersurface X (-, ') is enclosed by 0B, (1)(p) by the maximum
principle for some p € R"*! where ry (t') < (r2,,(t) — CT(t' — t))l/2 from (4.8). Thus we

have rou (1) > (CT(t' — 1))/ and, letting ¢ tend to T, we have rou (1) > (CT(T —1))'/*.
With the rescaling, from Lemma 4.2,

+

5 < Fout (T)? < CFin (1)

On the other hand, suppose that X (-, ) encloses the ball B,_;)(p) for some p € Rt where

a2 )2 (0 — @ —n)

Recall that X (-, t) shrinks to a point as t — 7', one has ”51 (t) < C (T — 1), and hence
P2 (1) < $C™.

(ii) From Lemma 4.3 and Lemma 4.4, one has H < Crin(t9)~' < Crou(t9)~!. Also the
parametrisation in (1.6) gives

~ -1
1 Tout (T0) C
Tour(fo)” = =<

V2T 1) T V2T —19)
Thus one has H(x,7) =2(T —H)H(x,1) <C. O
5. Higher regularity of |A|?

In this section, we show that the rescaled second fundamental form A and its derivatives are
bounded depending only on the initial data and the derivatives of . That is,

VAl < C(n,m, €, Ho. ¢, DY, -, D" "2y]) forallmeN.
Recall that F = R~'/2(Hg — h) and R ~ O (H) from the pinching estimate (3.13). Let A % B
denote any tensor field which is a linear combination of tensor field formed by contracting tensors
A and B with the metric. Since
. .1
F=vyR 2(Hg—h) =y R '?A, VF = E(wVA +VYyA),

one can show that

VEE= Y RIVIY s VIAK. .k VRHA
i+i1+-+ikyr1=k
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for m € 7, using an induction on m. Since V¢ = D>y — (v - Dv/)A where D is the gradient
in R, and

VEH VvV TIA) = FEVVIVA + VA 5 AV A+ A« A« VA

1 ; .
+ g:lvmp * VIA « V'HIA
T =

one can easily compute that

%vazﬁpqvpqu’"A+ Yo VigxVIA«VRIA«VIA+ Y VI viA
i+j+k+l=m i+j=m
m+1 1 ‘ ' '
Jrzm Y Vg VTRALVIA S« VEA
k=1 i+ip+-Fig=k

5.1
and therefore, one can obtain

Lemma 5.1. Given the pinching estimate (3.13), one has

F) . B
a|V’”A|2 = FHVvi | VAP — 2y RV VAL,

m+1
_1 [ i .
+2Hk E Vlllf*Vm_k+2A*VllA*"'*V”‘A*VmA
k=1 i4i1 i =k

+ ) Vi sVAxVFAxVIAxV"A+ Y VITPy« VIARVTA.
i+j+k+l=m it+j=m

By rescaling the hypersurface with X = ¢~ 12X where ¢(t) = 2(T — 1), as in (1.6), one has
Lemma 5.2. Given the pinching estimate (3.13), one has
IV"A| < C(n,m, €, Ho, ¥, DY, -, ID"y|) forallmeN.
Proof. Since |1&|2 is bounded, we use an induction on m so that we assume

IVEA| < Cn,m, e, ¢, DY, -, D" y)) fork<m—1.
Note that one has

d - - - d - - iy~
— V™A =2(V"A, —V"A) 4+ 2y RZ V" A,
ot ot h

FRUG, ¥ VA2 = 2(FFI, 9,9 A, VA + 2 N Ve
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Using these and Lemma 5.1, one can compute
0 ~ -~ Ty~ o~ o~ ~ ~ ~ - -
S IVIAR < FHVVIVPAR = 2y RTVZIVIHARL L f 4 Ciln €, IDY DIV TIAP
21
Crnm, )y — VEy| |V —IT2A||VIA] - VA VA
+OmmeaYy — 3 IV [IVIA[--|[VIA[IV"A

J=2 T et k=j

+C3(ne) Y IVIYIIVIA[IVEA[IVIA] VA
i+ j+k+l=m

+Caln,€) Y VP2 VA [VA].
i+j=m

Using Young’s inequality, this yields

9 . - . ez oo o
S IVIAPR < FUVVIVTAR — o —— VI TIAR + Cu (VAP + 1),
where C,, = C(n,m, €, I:Io, (/PR |D’”+ZW|) is a positive constant. Consider

9 - o~ - . P . . ez L
aT“VmA'Z +BIV"TIAPRT < FRIV VAR + BIVTTTAR + (G — B¢07)|V'”A|2
€1/2 5 N 5 5 N 5
— w07|vm+1A|2 + BCp_1|V"'AP 4+ Cpy + BCpy
5.2)

2nC,,
el/2 Yo
V™A is unbounded. Then this leads to a contradiction when one applies the maximum principle
to(5.2). O

where B is a positive constant. Choose B sufficiently large so that B > , and suppose that

6. Global boundedness

In this section we show that the curvature quantity defined below is uniformly bounded with
the pinching estimate given. It shall be seen in Section 7 that the limit manifold under the
parabolic rescaling is a round sphere. Suppose that h;; > € (H +¢)g;;, for some € > 0 and ¢ > 0,
holds initially. Then from Theorem 3.2, it remains so until the maximal time 7. This implies that
€H? < R < H? which will be used repeatedly throughout this section. Let

|AI?2 — H?/n
f —_
o — H2-o

and f = fp. Note that f, < O(H?). The aim in this section is to show that f; is bounded for
some small o. With the straightforward computation
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H1+<7 2R
|Vf+ w VWMA‘zg Hh
Hl—" 2 fo f3 2
— o
_W|Vf”|IA|2g7Hh HJR<VH Vfd)\A\zg Hh+0 leHMAPg,Hh
2R 5
e VSV ape-n + rpa VY e
the time derivative of f, follows from Lemma 2.3:
fo ~12 2 2 fa 2R 2
R (0fs — HVhy — hgVH? — v v
o — ¥ fo — 51 ki —huVH| | f+1//H2 vl
f 2(1—o0) Je
—aH—‘g|Hv,»hkz—hkzv,-H|2+T<VH Vfo)ug-n+0(@ = D5 VHI,
+ H V fy |2 Jo_ (VH,V + 2_Js VH
7R | fa'\A\Zg—Hh HUR fU |A|2[,7 Hh o 2H1+JR| ||A|2g Hh
Je
+ o fs (HIAP = 1rA%)) + =1 H<Vfa — 0T VH, w>|A|zg Hh (6.1)
2R!/2 1o fo 2
i {2(VH, V) apg—pn —0fc H°(VH, Vlﬂ>}+0 V|
1/2 H2 .
+ [o(|Al? ——)Allf 2(|APg"Y — HhY)V;V ]
H3——©° iVvVj .

To estimate the last line above, note that

ViV 1> = (D>¥)ij — (DoY) hij|* < 2(1 + H)>(||D*¥ || + | DY),
I(|AI2gY — HR)YV; V> <nlAPH?™ f, ViV > <nHY° £,V V¢

Thus one has

R1/2 ) H? 5 i .
Al* — —)AY —2(|A|°gY — HhY)V;V;
sl (A = =) Ay —2(APg WiVl 62

< R'V2H(DY|+ |D*y|D[2nPHE (H + 1) £} + 20 (H + 1) £,]

. 2
since |A|2 — f”T = Hz_"fg, R < H? and

X 90X

Vi = D2 (ZZ 22y _(y. .
ViViy =D (5=, o) = (v DY)
Choose o sufficiently small so that
fo fs

<0.

2
oo —D7 SIVHGg o+ 0 2H1+0R| Hlapg—mn =

The pointwise bounds for some of the terms in (6.1) can be easily obtained:
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1/2
- H4—cr

2 Jo R fy
RI/ZH vfa OEVH VI//>|A|2g Hh T O VH

{2AVH, V) apqpn — 0 fo H O (VH, V)

+ V|2

(6.3)

\V/ 2
<SHTVVH|IVy| +2¢7V2(V 5| + 0 HO |V H ]V +aH"%

|V 1/f|2
y

Thus the terms involving the gradient of ¥ in (6.1) are bounded above by

<10 V2|V fo | + H T \VH) VY| + o H" ——

Cle,o, ¥)(IV [yl + H ' \VH| + H), (6.4)

since f, < H?, where Cle, o, V) = 10e V2| Vy| + a% for € < 1. As computed in
Lemma 2.3 (ii) in [25], one can show that

W o1 ) 2o 2
|[HVihy — ViH - hy| 22h22|VH| 226 (H+ o)’ |IVH|, (6.5)

where the second inequality is obtained by choosing an orthonormal frame with the first element
being VH/|VH|. From (6.1), (6.2), (6.3), (6.4) and (6.5), one has

0fo —12 2 2, 2(0-0)
22 <y R0 e — S m o IVHE + S (VHY foh e
Hl—o’ 5 f
+ S Vo lfapetin = O o g (VH VIo)iapg-mn + o fo H } (6.6)

+RV2H(DY| + ||D21//||){2n]/2H (H+ D2 420 (H + 1)fg]
+C(e,0,0)(IVfsl + HYVH|+ H).

6.1. LP bound

In order to prove that there exists a positive constant C such that || f5 ||, < C for some large
p, we generalise the argument in Lemma 5.5 in [25]: it is sufficient to show that

—/f”du<0

Then, multiplying the factor pf ~lin (6.6) and integrating by parts, it follows that

ad _ _ P _ _ _
5/]‘5’61/15/[1/* VA = pp = DA ol — SR STV fally
M M
o SR PV H S fo) g+ pHT 2TV fo) i
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e p—1 pyo—3 2 p-120 —0)
—PEfg RH®°|VH|" + pfy T(VHsvfo)Hg—h (6.7)
H'-° o
—1 2
+pf(£? 2R |Vfg|\A\2g—Hh_pRHU
+ pf T RTPHADY + 1D ID{2n 2 HE (H 4+ 1) £ + 20 (H + 1) fs

L(VH, fo) g+ po S H

+ pCle.a ) 27NV ol + HO'\VH| + HO) |dp.

Note that it suffices to consider the case in which

/fgpdu>/du. (6.8)

M M

For H> Hy:=cneand 0 <k <2,
/ H*fP < HS? / H>fPdu < Hf™? / H?fPdpu. (6.9)
Similarly, for 0 <k <3/2 and p > 2, one has
/kaf—l/Z < ( Hﬁ_ﬂf;’du)lii (/du>]/2p - Hé‘_z/Hz Pdp. (6.10)
Then from (6.9), (6.10) and R~'/2H < ¢~1/2 which follows from the pinching estimate, one has

/pfé"lR—”zHqu + D>y |DI2n PHE (H + 1) £ + 20 (H 4+ 1) f,1dp

M
b D2 (6.11)
<2pe 2 (sup (21 4 B2 VY )i oyt + 012 [z
MY 14
M
Since we want the integral in the right side of (6.11) to be bounded above by
ope !/ / VH? fldp,
M
we take ¢ and o satisfying
D D2 2
Sup(II w||+|| 1/f||>S (62116) o 6.12)
M v v 2[n(cne)?/?2 + o](cne + 1)
which holds if one take o sufficiently small, say o(e”), and Hy > 1 satisfying
10 D D?
—6sup<m+|| w“)sc. (6.13)
€ m N Y v
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For the four terms involving (VH, V f5) gg—, noting that R > eH?, fo < H° and |A|2g —
Hh < H(Hg — h), there exists a positive constant C (¢, o) such that those terms are bounded by

pC(e,a)/
M

where C(¢,0) = O(e~1/?). Similarly the three terms involving |V f, |%-Ig—h in (6.7) are bounded
by

ldp, (6.14)

—p(p—1) / YRV LIV fo g pd . (6.15)
Thus, from (6.7), (6.11), (6.14) and (6.15),

d
o / frdu<—p(p—1 / YRV PN fo 3y pdi +20pe 2 / Y H? fPdu
M M M

2
€ _ _
+pc<e,o)/ |du—p5/wff 'RV2HO|\VHPdp
M M

+pCle,o, Iﬁ)/f(f’_l(lvfal +H T \VH|+ H%)dp.

Note that (3.13) implies that Hg;; —h;; > e Hg;; and €H? < R < H?. Then by choosing p > po,
where pg :=2C (e, (7)26_7/2 + 1, one has

/fg M_——p(p—l)/llff” 2|V £ zdu——p/W” "HO 2\ VH|Xdp

(6.16)

zif/szf”dpr(e o, w)/f” WV fol+ HTHVH|+ H )dp.

Note that using Young’s inequality, one has
pH’ fF~' < (p— DHy'H* P + H; ",

where o1 = W

< 0. Thus, for Hy > 1 and sufficiently large p, one has

p/HGf&DildMS%H&n/IﬁHzfoPd/,L—i-/HoadeSw_’;Hgl/wH2f£dM’
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where Y := infgn+1 ¥, and similarly,

2H!
p [ ‘|VH|du<—/wH" 2 pp IV H P [ e sz
M M

M

2H!
p / £ foldu < % / VAP fo Pt / VHfPd,
M M

where B is a positive constant. For I{o > 1, choose C‘(e,a, Y) satisfying C‘(e,o,w) <
min{e>/?, e~ 1/2H,”'} which holds if C(e,0,%) < /2. Thus, by choosing g = % (6.16)
yields

/ffdu <~ Sp(n- 1)/1/f 2V £, Py

oS (6.17)

——p/wH" 2UVHPdp o+ l/z/szf”du

To eliminate the last integral above, we apply the following Michael-Simon Sobolev type in-
equality as given in Lemma 5.4 in [25].

Lemma 6.1. If H > 0 and h;j > €(H + c)g;; for some € > 0 and c > 0 initially, then we have

2 5
/ R / s glVledqu o / AP £ P,

for p>2,anyy >0andany 0 <o <1/2, where Y| := supga+1 V.

From Lemma 6.1 and (6.17), one has

9 4yr10p € ) 2
g/ff@i(m(p—1)—Zp(p—1))/1/ffé’ IV fol"du (6.18)
M M

4nop € / 2 ep—1 2
2yp+5) = —p) [ WHO2 2TV H Pdp.
(MS/%(VM )= gp) [ WHT T VHPdR
By choosing y = n§7¢/|2?//0 and o < o(e”), one concludes that for ¢ satisfying (6.13),

ne’ 2y ( ne’ 5)

3
- pd <O, f < < =
ar/f" H= of POSP=Po="3 0 3200

(6.19)
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Therefore one can conclude that for ¢ satisfying (3.5) and (6.13),

fsllp =C for po < p < ps. (6.20)

6.2. Moser iteration

In this subsection, we obtain the uniform bound for f, for some small o assuming that ¢ in
the pinching estimate in (3.5) satisfies (6.13). Let 1 be a smooth test function which will be given
explicitly later. Integrating by parts, one has

/nsz_mefduz
M

p - - - p - -
—E/HZWR VEHPO £ 1|Vfa|%,g,h+ag/n2w1e YEHIOSPVHY fo) g

M M

+p / Py RVPHT fPNNH Y £ Hgn — p / RTVZEPUV YY), V o) Hgoh-

M M

Note that only the last term above involves the derivative of 1. Multiplying (6.6) by pn? £ ~land
proceeding as in subsection 6.6, from (6.7), using the pinching estimate and Young’s inequality,
one then obtains

8/ Fdp — Z/fan—du

€ B 65/2 _ _
S—Zp(p—l)/nzwfé’ ZIVfolzdu—Tp/nzlllH" 2 01V HPdp
M
1/2/ VH fPdu+ 1/2/wn|Vn||fo’|du—ez/n VH [P du 6.21)
M

2
+2p<s}l‘]/]p(|l?/fﬂ ||D wn /1# 2 (H + 1) f2 4202 HOP(H + 1) £7~/1d

The last integral in the third line comes from the derivative of the measure du and that R > e H 2,
Let¢;, i =1, 2,3, be any positive numbers. Since

2 32 502 L rproai2 5 5
NIV 1T =1V(nfe )l +fa IVnl© =21 (V(nfs ), Vn),
g g g 2 —1 ¢p 2
2f5 KV(nfs ), V) <ellV(nfo )l + € fe1Vnl®,

P
NV IVIIV £2] < 2eu|V(nf)I> + 26 il [Vl
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taking €] = % and €) = 31—263/2, (6.21) becomes

il 5 an

— Pdu—2 Pn—d

8t/nfg % /fgnat iz
M

M

€ 2, 200 2 ep
=g [ YV dut — [ VIValTfidp
M M

5/2 2
€ — - op
=S [rne g P 20 [P (6.22)
M M
—6%/n2¢H2f§du«
M

D D?
+2p(silll/1p<—| X'Jr” ww“))/lﬁnz[d(h’%—l)f(f—|—2n1/2H"/2(H+1)f(;”—1/2]d'u.

M

With this parabolic equation, we run the Moser iteration which is also useful for extending mean
curvature ﬂ0w~past singular~ time as shqwn in [31] and [32]. Rescale and translate time ¢ in
[T —6,T) by 51 (t — T + ), for some § > 0, so that the rescaled time, also denoted by ¢, is in
[0,1). Let

D = Up<;<1(B(x0, 1) N M;), D= Ui

n=Iis

1
1(B(o, )N My),
where xg is the limit point of M/, and let

1 1 1 1 1

ne=gtgmr k=l Aesner T = o

Consider the set
Dy = U <t<1(B(x0, 1) N My).

Note that Dg = D and t; — ty—1 = p,f. For convenience, we write M for M,. Let n = n; be the
smooth test function defined on M x [0, 1) by

me(x, 1) = v (|x — X0/ ) (1),
where

1 fors<r?
vi(s) = =T (6.23)
0 fors>r;_;,
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and vi(s) € [0, 1] with v} (s)| < cup; > forr? <s <rf_,,and

P (1) = {O for=7 < te, (6.24)

1 fory, <t <1,

and ¢ (¢) € [0, 1] with |¢,’((t)| < c,,,ok_2 for ty_1 <t < tx. From (6.22), in the time internal [0, 1),

~ 0 € 14 1
i / PSP+ / VIVEE) Pdp + ¢ / Py H2 £l du
M M M

p 2 2 2 rp

M

2
+2p(s;14p<||le//H+”D 1/f|| /]// [o(H + 1) £ + 20" 2HO2(H + 1) £7~11d

For u € W' (M) and T; < T, using the Sobolev inequality and the Schwarz inequality, one has

T 1 T
/(/un 1du> dt<c(n)< sup /u du //(qul +H2u2)d//,dt) ,
[T1,T2)
n M M Tn M
(6.26)
and using the interpolation inequality,
2nt1) 5 20 ",,;]
/u nody < /u du)’ / )
M M
one has
L n+2
2(n+1) 2 2n 2.2
//u n d,udtfc(n)( sup /u du) //(|Vu| + Hu )dudt) . (6.27)
TN M [TI’TZ)M N M

Integrating (6.25) over [0, 1), we have

1 1
~ € )4
5 sup / n2ffdu+w?0 / / IV(nfi? ) Pdudt + €2 / / n*H? fPdudt (6.28)
0 M 0 M

tel0,1)
M
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1 1
2
/|vn| fPdudt +38 //2f§n§d di + ‘”l‘gp//nsz Pdudt
€
0 M 0o M

0 M

200w1

—

1
+2pc’(1/f)//¢n2[a(H+ V) fP 420" 2HO2(H + 1) 271 d pdr,
oM

2 ~
where C' () = sup,, (W?//ﬂ + %) Note that one can choose § small enough so that H > 1

in [0, 1). This can be achieved applying the pinching estimate in Corollary 3.4. Assuming that
€Yo < 8 and § < 1, this implies

/ (Va1 + n*H? fP)dudt

suppn
1600 an
<19 ””l / FEQVAP 42027 4 opif B dpdr, 6.29)
suppn

and the same bound also holds for & supyg ) [, n* f& du For H > 1, denoting fJ H* = f7
where 6 =0 + ;, one has f, < f5. Substituting u by n fg in (6.27), one obtains

2 ol
| wrr? ([ #2avn?+2030 + 4 Chopi? rdud

supp n suppn

1 (6.30)
1 n+l
+pc”/ / 2 fPdp)! zl’dt) "
0 M
n+1
where c(n, €) := c(n)(f?%‘) " and C” = C'(Y)¥;. Typically, as in [21,31], one has
2 0 2 ~ -2 ~ k
IVirl® + —n; <cm)p, “ =c(n)4 on Dy_ (6.31)

Jt

and the left hand side vanishes in M x [0, 1)\ Dg_1, where ¢(n) is a constant depending only on

n. Without loss of generality, we only consider the case in which |] fY uppn fé’ dudt > 1. Then,

1
/ /n fpdu 2Pdt<C // n* fFdudt,
0 M

suppn

for some constant C > 0. Thus for & >0, (6.30) and (6.31) yield

// (n]%ff)%ldudtgé(n,e)< // 4kpf§dudt)n7 (6.32)

SUpp Nk SUpp Nk
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where ¢(n, €) := (C + o)(1 + C")c(n, e)(25(n))nnil. Let A = ”ni], p=x"1and oy =0 +
207K If 1, (1) > 1, then (6.32) implies that

_ A
// n? f(ﬁ"dudrga(n,e)( // 4okt g ld,udt) , (6.33)
Dy Dy

since Ny = 1 on Dy and supp nr C Dy—1. That s,
- -1 1oy —k+1
1 foll oty < @™ HXD T foll it (6.34)
Note Z,fil kxr=F = O(1), and in (6.19), o can be chosen sufficiently small so that
o0
o — 22)7’“’“71 =0 —2(n+ l)p(;1 >0,
j=0

where p, = 2k =1 for some k, > 1 since Do = 0(€'2672) for o < 0(€”). Thus from (6.20),
one has an iteration relation:

[ oll oo ) = € 0Ol o, Nl o1y, =€ (6.35)

for a fixed ko = ko (€, 0) and some constants ¢’ (n, €) = (e (¢(n, VLY )71 and
C > 0, where the last inequality follows from (6.20). Therefore, given the conditions (3.5) and
(6.13), one has

sup sup  fo <C,
[T—=8.T) MNB(xo, 1)

where §’ = % From Lemma 4.3, we conclude that

Theorem 6.2. If h;; > €(H + c)g;; for some € > 0 and c > 0 initially satisfying (3.5) and (6.13),
then one has

H? -
|A]> — - <CH*™°, for some small & .
7. Proofs of main theorems
7.1. Proof of Theorem 1.1
From Lemma 4.2 and the containment principle, one can conclude that X (-, #) converges to a

point as ¢ tends to T via the regularity theory of uniformly parabolic equations (see, for example,
[30] for the regularity theory). 0O



H. Kang et al. / J. Differential Equations 268 (2020) 2210-2245 2241

7.2. Limit equation in dimension two

In this subsection, we consider the general case without the condition (1.5). The monotone
quantity is a useful tool to analyse the asymptotic behaviour of geometric flows. For the mean
curvature flow, a monotonicity formula using the backwards heat kernel gives a limit equation
which leads to the classification of self-similar solutions [26]. Here, we simply use the volume
of a convex region with its boundary being M, to normalise the hypersurface. In general, without
the divergence structure for the speed F' depending on the curvature, it is difficult to deduce a
limit equation. However, in dimension two, this can be overcome since R = 2K, where K is the
Gauss curvature, and K has a quantity that is not quite monotone but enough to obtain the limit
behaviour. For this reason, we consider X; = -y (2K W 2y which coincides with the flow (1.2)
in dimension two, and call this the anisotropic Gauss curvature flow (to be precise, (1/2)-Gauss
curvature flow).

The (half) volume of a convex region with its boundary M; can be written in an integral form

using the support function S:
V(i) =—— / — dosn,

where dogn is the standard measure on S”. This is used to define a mixed volume of convex
regions in [5] where it is shown that given specific speeds of evolution, some dilation invariant
integral quantities monotonically decrease.

Lemma 7.1. Under the flow (1.1), we have

9 _ v
a—V(t)_—/ (2K)1/2d
NK

Proof. Denote K = 1/K. Using integration by parts and the fact that V;C(h~!)"/ = 0, one has

/SIC,doSn :/S/C(h_l)ij(v_,'v—jst—i—Stgij)dorgn

S S
=/S,/C(h*‘)"f(v',-v',-SJrSgij)das,, :n/S,ICdaSn.
S Sn

Then we have

9 _ 4
EV(I) 2( T 1) /(ICS; + S’Ct)dUSn = —/Wdagn. O
s

From this, one can write V(¢) = V(0) — f(; n(s)ds where 1(1) := [gu W dosn. In order
to normalize the volume, rescale the hypersurface by
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_ X (1)
- V(t)l/(”'H)

V()

)A((t) and (1) =—10g(m).

One can easily compute that

X U (K)V? 1
— — v+
at n n+1

(7.1)

Lemma 7.2. Let

—1
72
I(T) = /Ldagn
S
Sn

In dimension two, under the volume preserving rescaling, with the initial pinching condition
satisfying (1.5) given, one has

d -
El(t) — 0,

as T — 00, and the limit profile satisfies S* = CY(R*)Y? for some constant C > 0, where S*
and R* are the support function and the scalar curvature of the rescaled limit manifold M*,
respectively.

Proof. From (7.1), one obtains

ot n—+1

5 |

W2 (a8 L\ U3QK)12
752

which implies
d . \ 1 )2 1 [¥32K)!? Xl
—I(T)ZI('L’)2[_/1#T£[US,, _Tfudas,l ) i_w]
dt n+1 S n S2 S at
sn Sn
Using Holder’s inequality and the definition of n yield

172

1/2 . 1/2 12
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The fact that V (v) = = fgu == dogs = | implies

2K
v / v VPeK)'?
TdO'Sn AidO'Sn S (I’l + ]) Aido'gn ,
/ S QK12 3
N NI N

where the equality holds if and only if S=c 1&1& 172 for some constant C > 0, and therefore,
d - . [P0V
—1(v) < —22(0)*h | - ——dosn.
e (1) =< (T)n/Sar os
N

Since Dy — 0 as T — oo and, in dimension two, the pinching estimate controls K and § , one

has 22 — 0 as T — o0. Also ‘7(1) = | implies that

T
/idO'Sz <C,
S
SZ

for some positive constant C, and hence,

li di() 0
m —7Z(r)=0,
d

t—>o00 dT

so that the limit profile satisfies S*=cC I/Af(lé*)]/ 2 for some constant C > 0, where $* and R* are
the support function and the scalar curvature of M*, respectively. O

7.3. Proof of Theorem 1.3

Parametrizing the rescaled hypersurface as a graph by
X(x,0) =7z, 1)z (7.2)

where x =771(z), z € S* and 7 : M" — S" is the normalizing map, Lemma 4.6 (i) and the
convexity guarantee the uniform boundedness of the first derivative of 7 in the rescaled version of
(4.7). Then the regularity theory of uniformly parabolic equation provide the boundedness of the
higher derivatives of 7. Thus, recalling Lemma 5.2, each time slice X (-, Tx) has a C*°-convergent
subsequence to a smooth strictly convex limit hypersurface M*. In dimension two, the limit
hypersurface M* of the volume preserving anisotropic scalar curvature flow satisfies the equation
§* = Cy/(R*)"/2 for some C > 0 by Lemma 7.2.

Suppose that ;; > €(H +c)g;; initially. We follow the argument in Sect. 7 in [11]. Since there
is a point po in M* with K (pg) > 0, there is an open neighbourhood U containing po with K > 0
in U. However the unnormalized H blows up in the open neighbourhood U corresponding to U



2244 H. Kang et al. / J. Differential Equations 268 (2020) 2210-2245

and then from Theorem 6.2 and the scale invariance of f, we have f =0 in U which implies
that U is totally umbilical. Thus K is constant in M* so that M* is a round sphere $”. O
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