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ABSTRACT: Because of their attractive mechanical properties, conducting polymers are
widely perceived as materials of choice for wearable electronics and electronic textiles.
However, most state-of-the-art conducting polymers contain harmful dopants and are only
processable from solution but not in bulk, restricting the design possibilities for applications
that require conducting micro-to-millimeter scale structures, such as textile fibers or
thermoelectric modules. In this work, we present a strategy based on melt processing that
enables the fabrication of nonhazardous, all-polymer conducting bulk structures composed of
poly(3,4-ethylenedioxythiophene) (PEDOT) polymerized within a Nafion template.
Importantly, we employ classical polymer processing techniques including melt extrusion
followed by fiber spinning or fused filament 3D printing, which cannot be implemented with
the majority of doped polymers. To demonstrate the versatility of our approach, we fabricated
melt-spun PEDOT:Nafion fibers, which are highly flexible, retain their conductivity of about 3
S cm−1 upon stretching to 100% elongation, and can be used to construct organic
electrochemical transistors (OECTs). Furthermore, we demonstrate the precise 3D printing of
complex conducting structures from OECTs to centimeter-sized PEDOT:Nafion figurines and millimeter-thick 100-leg
thermoelectric modules on textile substrates. Thus, our strategy opens up new possibilities for the design of conducting, all-
polymer bulk structures and the development of wearable electronics and electronic textiles.

KEYWORDS: melt processing, conducting elastic PEDOT:Nafion fibers, 3D printing, organic electrochemical transistors (OECTs),
electronic textiles

■ INTRODUCTION

Conducting polymers constitute a class of materials that is of
considerable interest for a large variety of applications, ranging
from thermoelectrics1,2 to electronic textiles (e-textiles),3−5

electronic skin (e-skin),6,7 and bioelectronics.8,9 In order to
realize self-supporting components such as conducting fibers5

or the legs of thermoelectric devices,10−13 supple bulk
materials with micro-to-millimeter dimensions are needed.
To facilitate the efficient fabrication of such thick bulk
structures, it would be advantageous if the conducting
polymers could be transformed using established polymer
processing methods such as melt extrusion, melt spinning, and
fused filament fabrication (FFF), a common 3D printing
method.
As a matter of fact, many conjugated polymers such as

polythiophenes, poly(phenylenevinylene)s, and polyfluorenes
are melt processable in their undoped form and can be
rendered conducting through sequential doping with small
molecule dopants.14−16 However, sequential doping requires
diffusion of the dopant molecule into the polymer, which
becomes rate limiting if thick materials are to be doped, unless
porous structures are used.17 On the other hand, there are a
few examples for conjugated polymers that are melt

processable in their doped form, one of them being polyaniline
doped with dodecylbenzenesulfonic acid (DBSA).18−20 Un-
fortunately, the strong acid dopant is corrosive and can be
expected to damage the internal steel surfaces of extruders and
FFF printers.21

Aside processability aspects, one has to take into account
that the conducting polymers must be benign and chemically
stable in air and water in order to be viable for wearable
electronics. While conjugated polymers themselves are
considered biocompatible, most of the currently studied
conducting polymer systems contain harmful acid or redox
dopants, which may be released over time because the doping
process is reversible.22,23 Similar problems can be anticipated
for melt-processable polymer nanocomposites, which may leak
nanofillers, such as carbon nanotubes, graphene, or metal
nanoparticles.24
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One way to design a chemically stable doped polymer
complex and eliminate risks related to the leakage of harmful
substances is the use of an all-polymer system, for example, a
conjugated polymer doped with a polymeric counter ion. A
prominent example for such a conjugated polymer:polyanion
complex is poly(3,4-ethylenedioxythiophene):poly(styrene
sulfonate) (PEDOT:PSS), which finds widespread use in a
myriad of applications; thanks to its high conductivity,
excellent chemical stability, biocompatibility, as well as its
straight-forward and cost-efficient synthesis.25,26 However,
PEDOT:PSS is only processable from an aqueous dispersion,
which limits its use to certain bulk processing methods, such as
the solution-casting of tapes27−29 or wet-spinning of
fibers,30−35 some of which reach conductivities of more than
103 S cm−1. Also, blends of PEDOT:PSS and insulating
polymers, which display promising electrical and mechanical
properties, are mostly processed from solution.36−38 More
recently, it has been shown that PEDOT can also be
complexed with a large variety of other polymeric counter
ions,39,40 ranging from polyanionic polysaccharides41−43 to
fluoropolymers such as Nafion,44−48 a term commonly used to
describe sulfonated tetrafluoroethylene-based copolymers.
However, all of these PEDOT complexes are intractable
without the use of a solvent and cannot be processed from the
melt, which prevents the use of PEDOT for most bulk
processing methods that are widely used in polymer
technology.
Thus, we set out to develop a novel strategy that permits the

fabrication of an all-polymer PEDOT-based bulk material,

combining classical melt processing methods with the
templated oxidative polymerization of 3,4-ethylenedioxythio-
phene (EDOT). We chose to work with a thermoplastic
fluoropolymer that carries sulfonyl fluoride groups, that is, a
Nafion precursor, which can be melt processed into any
desired shape. Upon chemical activation, the precursor bulk is
transformed into anionic Nafion, which serves as a bulk
template during the oxidative dispersion polymerization of
EDOT. The obtained PEDOT:Nafion complex is flexible and
highly stretchable and shows a bulk conductivity of about 3 S
cm−1. To illustrate the versatility of our strategy, we prepared
conducting fibers, fabricated organic electrochemical transis-
tors (OECTs) and 3D printed different complex bulk
structures, including a 100-leg thermoelectric module on a
textile substrate.

■ RESULTS AND DISCUSSION

We identified Nafion as a suitable candidate for our work
because it can serve as a bulk template for PEDOT and shows
excellent biocompatibility.49 The PEDOT:Nafion bulk materi-
als were obtained via a three-step process, consisting of (1)
melt processing of the Nafion precursor into the desired shape
and (2) an activation step yielding the anionic Nafion,
followed by (3) the synthesis of PEDOT within the Nafion
template (Figure 1a).
To prepare conducting fibers, the Nafion precursor was

melt-spun into fibers with a diameter of approximately 200 μm.
The precursor fibers were then soaked in an activation bath of
H2O/DMSO/KOH, following a well-established activation

Figure 1. (a) Chemical structures and the processing scheme for the Nafion precursor, activated Nafion, and PEDOT. (b) Evolution of the
electrical conductivity of PEDOT:Nafion fibers upon mechanical stretching until break (top) and upon cyclic deformation within the elastic regime
(bottom). (c) Output characteristics (ID vs VD), transfer curve (ID vs VG), and transconductance gm of a PEDOT:Nafion fiber OECT operating in
0.1 M NaCl electrolyte and with an AgCl pellet gate electrode.
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procedure.50−53 As confirmed by elemental analysis and
infrared spectroscopy (Figure S1 and Table S1),52 the
activation process transformed the sulfonyl fluoride groups
into sulfonic acid groups, resulting in an ionic Nafion with
increased mechanical stiffness that swells in water. After
washing it in water, the activated Nafion was immersed into an
aqueous dispersion of EDOT that penetrated and swelled the
anionic Nafion bulk. Upon addition of the oxidants, the EDOT
monomer polymerized within the Nafion template. In this way,
we were able to produce several meters of PEDOT:Nafion
fibers in a synthesis bath with a volume smaller than 10 mL
(Figure 2), a process reminiscent of traditional batch dyeing

used in the textile industry. The resulting fibers were dark blue
and flexible and displayed a bulk conductivity of σPEDOT:Nafion =
3 ± 1 S cm−1. It is noteworthy that the measured conductivity
is comparable to the conductivity of melt extruded
PANI:DBSA19 as well as most PEDOT:biopolymer com-
plexes40 and is higher than the conductivity of pristine
PEDOT:PSS processed without cosolvents.54 Furthermore,
PEDOT:Nafion displayed a Seebeck coefficient of αPEDOT:Nafion
= 12 ± 2 μV K−1, indicating that the PEDOT within the
complex is highly doped. In order to check the stability over
time, we remeasured three different sample batches one year
after preparation and found that their conductivity was
unchanged (Figure S2). Elemental analysis revealed that the
purified bulk material contained approximately one EDOT
repeating unit per repeating unit of Nafion and that only small
amounts of ions (<1 wt %) are present within the complex
(Table S1). This translates to a concentration of 12 wt %
PEDOT within the PEDOT:Nafion bulk, as compared to as
much as 30 wt % in commercial bench-mark PEDOT:PSS.
To elucidate the nanostructure of PEDOT:Nafion, we

analyzed the complex by X-ray scattering. The structure of
Nafion is often described as a polytetrafluoroethylene (PTFE)-
like bulk, which is traversed by a hydrophilic network of
nanochannels or nanoclusters, formed by the sulfonate side
groups. It has been reported that this nanostructure gives rise
to a peak at around q ≈ 2.0 nm−1 (d ≈ 3.1 nm) in small angle
X-ray scattering (SAXS),55−57 which we also observe for our
Nafion material after the melt processing and the activation
step (Figure S3). In contrast, after the PEDOT synthesis,
SAXS diffractograms of the resulting bulk PEDOT:Nafion did
not display any distinct peak in this q range (Figure S3). Thus,
we argue that the PEDOT penetrates the hydrophilic
nanochannels and disrupts the initial nanostructure of the
Nafion bulk. Wide angle X-ray scattering (WAXS) diffracto-
grams of PEDOT:Nafion displayed a broad scattering peak
between q ≈ 12 to 13 nm−1 (d ≈ 0.5 nm), which we attribute
to the amorphous PTFE-like bulk (Figure S3). The absence of
scattering features at around q ≈ 18 nm−1 (d ≈ 0.35 nm) is a
sign of a low degree of π-stacking of the PEDOT chains.

We went on to characterize the mechanical properties of the
complex and found that PEDOT:Nafion fibers are highly
stretchable and display a Young’s modulus E ≈ 620 ± 100
MPa and an elongation at break of more than 100%. Further,
the fibers are highly fatigue resistant and can be subjected to at
least 100 strain-release cycles with 10% maximum strain
without compromising their electrical conductivity (Figure
1b). A direct comparison with pristine-activated Nafion fibers,
which are equally elastic (Figure S4), suggests that Nafion is
the continuous, loadbearing phase that is impregnated by
PEDOT-rich domains. Upon stretching, we observed a
reversible increase of the conductivity, opposite to the behavior
commonly observed for composite materials made from
conducting fillers in an insulating matrix. We argue that
upon stretching, PEDOT-rich domains are elongated, which
leads to an improved percolation and a reversible increase in
the conductivity of the material, similar to the behavior
observed for PEDOT:PSS/polyurethane blends by Seyedin et
al.38

Because of their remarkable stretchability, PEDOT:Nafion
fibers are of high interest for elastic interconnects in e-textiles
and for the fabrication of wearable biosensors,6 such as sensors
based on OECTs. In addition, anionic Nafion swells readily in
water and is known for its excellent cation transport
properties.44−46 Swelling tests on PEDOT:Nafion confirmed
that the conducting bulk material retained a high degree of
swellability and can take up over 10 wt % of water (Figure S5).
Thus, we went on to study the performance of PEDOT:Nafion
as a mixed ion-hole conductor in OECTs operating in the
depletion mode. Devices made of a PEDOT:Nafion fiber (⌀ =
200 μm, channel length ≈ 1.5 mm) displayed an ON/OFF
ratio on the order of 102 and a maximum transconductance gm
of 8.6 mS at zero gate voltage (VD = −0.6 V) (Figure 1c).
Hence, the measured transconductance is comparable to the gm
of microfabricated thin-film devices with channels made from
PEDOT:PSS9 or other PEDOT-based materials.9,58 For
PEDOT:PSS-based devices, it was observed that gm increases
with the channel thickness, as a result of the strong swelling
and the constant volumetric capacitance (C* = 39 F cm−3) of
PEDOT:PSS.59−61 Following the trend reported by Rivnay et
al.,61 PEDOT:PSS channels with dimensions comparable to
our device can be expected to display a gm of about 30−40 mS,
which is four times higher than the transconductance measured
for our device. For further elucidation, we determined the
volumetric capacitance of PEDOT:Nafion by analysis of the
gate current transient and by impedance spectroscopy and
found a C* in the range of 9−15 F cm−3 (Figure S6). Thus, the
lower gm of our device can be related to a lower volumetric
capacitance of PEDOT:Nafion as compared to PEDOT:PSS,
which is also in agreement with the lower PEDOT
concentration in PEDOT:Nafion. The response time of the
PEDOT:Nafion OECTs was in the range of several seconds (τ
≈ 18 s), and cyclability of the devices confirmed that the
electrical properties are stable upon immersion in water for at
least 3 h (Figure S7).
In order to fabricate more diverse and complex bulk

structures, we explored the transferability of our strategy to
FFF 3D printing. For successful 3D printing, the thermoplastic
polymer must display (1) good adhesion to the printing
substrate and (2) sufficiently high stiffness to ensure correct
feeding of the filament into the printer head. The Nafion
precursor, however, does not adhere well to common print
surfaces and is relatively soft (E ≈ 7.5 MPa). To overcome

Figure 2. Photograph of melt-spun PEDOT:Nafion fibers, wrapped
around a 5 mm wide syringe cover.
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these challenges, we developed a printable polymer blend of
the Nafion precursor and an acrylonitrile−butadiene−styrene
(ABS) plastic (Figure 3a). ABS, one of the benchmark
materials for FFF 3D printing, displays a high stiffness at room
temperature (E ≈ 1−3 GPa) and a processing temperature of
240 °C. Scanning electron microscopy (SEM) images of the
precursor/ABS blends depict a phase-separated system,
corresponding to a precursor matrix interspersed with
micrometer-sized ABS domains (Figure S8). Thus, the stiff
ABS domains act as filler particles, which increase the stiffness
of the blend. By screening different compositions of precursor/
ABS blends, we found that the stiffness of the blend increased
significantly for ABS concentrations of more than 20 wt %
(Figure 3b). Upon addition of 30 wt % ABS, we obtained a
precursor/ABS blend with a Young’s modulus of 20 MPa. This
content is high enough to allow for correct feeding of the
filament into the printer head and for adherence to ABS, high
impact polystyrene (HIPS), and textile substrates (Figure 3b).
Thus, we chose to work with a precursor/30 wt % ABS blend,
which represents a good compromise between high stiffness
and excessive content of the insulating ABS filler material.
We extruded the precursor/ABS blend (30 wt % ABS) into

filaments and printed various structures, which were then
immersed into the activation bath (see scheme in Figure 3a).
Because the activation is controlled by the diffusion of the
activation solution into the precursor/ABS bulk, the thickness
of the activated layer could be controlled by varying the
temperature and the reaction time (Figure 3c). We found that
with increasing temperature, the activation reaction proceeded
faster into the bulk, which we tentatively assign to improved
swelling and diffusion of the alkaline solution into the material,
as well as increased reaction kinetics. It should be noted that
the thickness of the activated, anionic Nafion defines the
thickness of the resulting conducting PEDOT:Nafion layer.
Hence, a short activation of 30 min at room temperature, for

instance, resulted in a PEDOT layer of 20−30 μm. If the
activation was allowed to proceed for several hours at 70 °C,
millimeter-thick samples were fully impregnated with PEDOT.
Thus, very thick PEDOT:Nafion samples can be obtained by
soaking the Nafion precursor in the activation solution for a
prolonged time. In this work, we fabricated both micrometer
thin conducting PEDOT:Nafion layers (dmin ≈ 10 μm) as well
as millimeter thick conducting bulk structures (dmax ≈ 7 mm),
which opens up many new possibilities for the design of 3D
printed structures.
In order to facilitate the diffusion of the EDOT monomer

into the Nafion bulk, we chose to remove the ABS from the
Nafion/ABS blend because it becomes redundant after
printing. Upon leaching in a solution of FeCl3 in dimethyl
sulfoxide (DMSO), we obtained a highly porous Nafion bulk
(Figure 3d). At the same time, the leaching step introduced
Fe3+ into the anionic Nafion. Because Fe3+ acts as the oxidant
in the EDOT polymerization, no additional FeCl3 had to be
added to initiate the polymerization reaction. The presence of
Fe3+ within the Nafion helped to confine the polymerization
locally, so that PEDOT was predominantly formed within the
Nafion bulk and less in the water phase of the synthesis bath.
The obtained porous PEDOT:Nafion bulk displayed a
conductivity of 1−5 S cm−1 and a Seebeck coefficient of 10
± 2 μV K−1, which is comparable to the electrical properties of
PEDOT:Nafion processed without ABS.
We went on to test the electrochemical response of the

printed material within OECT devices (Figure S9). In order to
keep the channel dimensions similar to our fiber OECTs, we
measured printed lines (width 1 mm) with a 30 μm thick,
porous PEDOT:Nafion layer and a channel length of 1.5 mm.
The 3D printed devices displayed an ON/OFF ratio of about
102 (VD = −0.6 V, VG = 0.6 V) and a maximum
transconductance of 6.0 mS at VG = 0.1 V (VD = −0.6 V) at
a time response in the range of 1 min (τ ≈ 55 s). Thus, also the

Figure 3. (a) Processing scheme for the FFF 3D printing of the precursor/ABS blend to obtain PEDOT:Nafion bulk structures. (b) Young’s
modulus of the Nafion precursor upon blending with ABS and the peeling test of ABS printed on HIPS (gray), Nafion/ABS blends on HIPS before
activation (orange) and after activation (green), as well as Nafion/ABS on ABS before activation (yellow) and with a thin PEDOT:Nafion layer
(blue). (c) Optical micrographs of cross sections of Nafion/ABS blends with PEDOT:Nafion layers of different thicknesses. (d) Cross section of a
3D-printed line of Nafion/ABS with a 30 μm thick layer of porous PEDOT:Nafion, imaged by SEM.
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electrochemical response of PEDOT:Nafion was not drastically
affected by the differences in processing.
In a final set of experiments, we aimed at illustrating that our

3D printing process can be used for the fabrication of complex
architectures. To highlight the excellent printability of the
material, we fabricated a conducting duckling, which we call a
(con)duckling (Figure 4a), and a carbon nanotube-like
structure (Figure 4b), which comprised details in the
millimeter-range and could be printed with high precision.
As a proof of concept, illustrating the potential for functional
devices, we also 3D printed a set of thermoelectric modules.
For organic materials, the optimal leg length is typically found
in the millimeter range,12,62,63 a size that is difficult to realize
with in-plane or 2D printed and folded modules but is perfectly
suitable for FFF 3D printing. We chose to fabricate an out-of-
plane thermoelectric module with a leg length of 1.6 mm. The
module was printed onto a textile substrate (a prewashed
polyester fleece) and comprised 100 leg pairs (Figure 4c). In
the first step, PEDOT:Nafion legs, which served as the p-type
material, were prepared on top of the textile. In the second
step, we printed interconnecting, pseudo n-type legs onto the
PEDOT:Nafion structures using a commercial ABS/Carbon
black composite which displays a Seebeck coefficient close to 0
(αABS/CB = 1 ± 1 μV K−1, σABS/CB = 0.003 S cm−1). In order to
improve the thermoelectric performance of the module, the
print was immersed into a base bath,64 which resulted in a
slight dedoping of the PEDOT:Nafion and an increase of its
Seebeck coefficient αPEDOT:Nafion from 10 to 15 ± 2 μV K−1

without a notable decrease of its conductivity. As expected, the
thermoelectric properties of the ABS/carbon black composite
were not affected by the base treatment.
To measure the thermoelectric performance, the module

was then sandwiched between a hot-plate (textile side) and a
heat sink, and the temperature difference ΔThot−cold between
them was monitored by two thermocouples. The output
voltage increased linearly from 9 mV for ΔThot−cold = 10 °C to
39 mV for ΔThot−cold = 53 °C (Figure 4d). Thus, in the case of
small temperature gradients, the obtained output voltage was
close to the expected value of Vout/ΔT = N(αPEDOT:Nafion −
αABS/CB) = 1400 μV K−1, where N is the number of leg pairs.
Only at larger temperature gradients, the obtained voltage
output started to deviate considerably from the estimated
value. We explain this discrepancy with a non-negligible
thermal contact resistance between the module and the heat
source and sink, which reduces the temperature difference
ΔTleg that the thermoelectric legs experience (cf. Figure 4e; the
measured and calculated power output match if ΔTleg ≈
0.5·ΔThot−cold is assumed). As a result of the low conductivity
of the ABS/carbon black composite, the module displayed a
considerable internal resistance Ri of about 400 kΩ, which can
be regarded as the main limiting factor for the power output of
the device. We would like to point out that our module
fabrication process is reproducible as evidenced by the very
similar performance of a second, identical thermoelectric
module (Figure 4d), affirming the robustness of our 3D
printing method.

■ CONCLUSIONS
In conclusion, we have demonstrated an innovative strategy
that enables the fabrication of flexible and conducting polymer
structures via bulk processing using the polymer complex
PEDOT:Nafion. Melt-spun PEDOT:Nafion fibers displayed
conductivities of about 3 S cm−1, retained their conductivity

Figure 4. (a) FFF 3D printed, 1.6 cm tall Nafion/ABS duckling
before (left) and after PEDOT synthesis (right). (b) Carbon
nanotube-like structure before (left) and after PEDOT synthesis
(right); the Swedish 10-krona coin has a diameter of 20.5 mm. (c)
100-leg thermoelectric module (inset = single leg pair); (d) output
voltage of two different (blue and black) 3D printed modules as a
function of ΔThot−cold (the dotted line represents the theoretical
output for Vout/ΔT = 1400 μV K−1). (e) Experimentally measured
power output for the module shown in (c) at ΔThot−cold = 33 K (black
circles) and ΔThot−cold = 53 K (black crosses) and calculated power
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upon stretching to more than 100% elongation, and were
successfully integrated as a mixed ion−hole conductor in
OECT devices. Furthermore, we developed a thermoplastic
blend, which we used to 3D print conducting structures and
figurines with millimeter-sized features. To highlight the
potential for functional devices, we 3D printed an out-of-
plane thermoelectric module with a leg length in the millimeter
range, comprising 100 leg pairs with PEDOT:Nafion p-type
legs connected via legs based on an ABS/Carbon black blend.
The excellent mechanical properties together with the
nontoxicity of the material and the ease of processing make
bulk processed PEDOT:Nafion a promising candidate for
wearable electronics, e-textiles, and biosensors.

■ EXPERIMENTAL SECTION
Materials. DMSO, KOH (>87%), (NH4)2S2O8, FeCl3, and the ion

exchange resin MP62 were purchased from Sigma-Aldrich and used as
received. EDOT was purchased from TCI Europe and used without
any further purification. The Nafion precursor 1100 was purchased
from IonPower, Germany. Lewatit S108H ion exchange resin was
kindly provided by Lanxess, Germany.
Melt Processing. Melt spinning of the Nafion precursor was

performed in an Xplore MC5 micro compounder together with an
Xplore Micro Fiber Line. The Nafion precursor was compounded for
5 min at 240 °C and then extruded through a 0.5 mm nozzle. The
extrudate was collected on the Xplore Micro Fiber Line, and spun into
a fiber with a winding speed of 25 m min−1 and a winding torque of
50 Nm and giving fibers with a thickness of 0.2 mm. Blending of the
Nafion precursor with 0, 15, 20, and 30 wt % of ABS was performed
in an Xplore MC5 micro compounder for 5 min at 260 °C and then
extruded through a 1.0 mm nozzle resulting in 1.75 ± 0.1 mm
filaments for FFF 3D printing.
Synthesis. To activate the Nafion precursor, the material was

immersed into an alkaline bath of H2O/DMSO/KOH (50:35:15 wt
%) under slight stirring at a temperature between 30 and 70 °C for 15
min to 4 h, depending on the thickness of the activated layer that was
aimed for. The activated Nafion was then washed with water and
immersed into a water bath for at least 4 h. To leach the ABS plastic
from the Nafion/ABS blend, the material was immersed into a
solution of FeCl3 in DMSO (18 g L−1) at 70 °C for 0.5 to 4 h,
depending on the thickness of the bulk structure and the thickness of
the activated layer. For the synthesis of PEDOT onto Nafion, the
EDOT monomer was dispersed in water (17.5 mM) by tip sonication
(2 s pulses, 100 W, 20 kHz, 5 min) until no droplets were visible to
the eye and a slightly whitish dispersion was obtained. The Nafion
bulk was immersed into the aqueous EDOT dispersion and upon
addition of the oxidants (NH4)2S2O8 and FeCl3 (molar ratio EDOT/
(NH4)2S2O8/FeCl3 = 1:1:0.3), the dispersion was left for polymer-
ization at room temperature and under ambient conditions for 50 h.
For the synthesis of PEDOT onto Nafion/ABS, the leached, ABS
poor structure was immersed into an aqueous dispersion of EDOT in
water (1.875 mL L−1), prepared by tip sonication. (NH4)2S2O8 was
added as an oxidant (molar ratio EDOT/(NH4)2S2O8 = 1:1), and the
polymerization proceeded at room temperature and under ambient
conditions for 50 h. For purification, the PEDOT:Nafion bulk was
immersed overnight into a water bath containing an excess of the
acidic cation exchange resin Lewatit MonoPlus S108H and the anion
exchange resin Lewatit MP 62.
FFF 3D Printing. FFF of the extruded Nafion/ABS filament was

performed with a Massportal Pharaoh XD20, with a nozzle

temperature of 260 °C, a printing surface with a temperature of
110 °C, and a printing speed of 1000 mm min−1. As a textile substrate
for the thermoelectric module, we used a polyester fleece, which was
prewashed in H2O/DMSO/KOH (50:35:15 wt %) to avoid shrinkage
during the activation step.

Mechanical Testing. Tensile testing of PEDOT:Nafion fibers was
performed using a DMA Q800 (TA Instruments) with a ramped force
of 0.5 N min−1. The dynamic characterization was performed by
subjecting a fiber to 100 cycles of 6 s displacement to 10% strain
followed by 30 s release. The electrical resistance was measured in situ
using a Keysight U1253B multimeter collecting 1 data point s−1.
Samples of the Nafion/ABS blends for tensile testing were prepared in
a hot press (AB Nike Hydralik) at 240 °C in two steps, 5 ton for 2
min and 10 tons for 3 min, with 0.1 mm spacers. The resulting films
were cut into strips with a width of 4 mm and a thickness varying
from 0.07 to 0.13 mm. The Young’s modulus of Nafion/ABS blends
was determined from tensile tests at a force rate of 1 N min−1 using a
DMA Q800 (TA Instruments). To test the adhesion between Nafion/
ABS blends, ABS and HIPS, rectangular test strips (30 mm × 5 mm ×
0.2 mm) were 3D printed onto printed substrates (thickness 0.2 mm).
At one end, the strips were separated from the substrate by a thin
paper. The loose ends of the strips and the substrate were mounted
into a DMA TA Q800, and peeling tests were performed with a
constant displacement rate of 1 mm min−1.

Electrical Characterization. To determine the conductivity of
the material, we measured the resistance of PEDOT:Nafion filaments
with different thicknesses and of printed lines/sheets with different
dimensions. PEDOT:Nafion filaments and printed lines were
contacted with Ag paste (Agar Scientific) in two-point configuration
(channel length from 2 to 15 mm), and current−voltage character-
istics were recorded with a Keithley 2400 source/measure unit
(SMU). To calculate the electrical conductivity, the dimensions of the
PEDOT:Nafion composite were determined using an optical
microscope. Because the conductivity of the material did not vary
as a function of the channel length or dimension of the sample, but
only as a function of the synthesis conditions, we assume that the
material’s conductivity within the complex 3D structures is
comparable to the conductivity of the material printed in a straight
line or sheets.

OECTs were prepared by coating parts of PEDOT:Nafion fibers
and printed PEDOT:Nafion lines with silver paste to create
electrodes. The electrodes were then encapsulated using a melt-glue
gun with polyurethane glue (Dana Lim A/S). The devices were
dipped in a 0.1 M NaCl electrolyte together with an Ag/AgCl gate
electrode, and the IV characteristics were measured using two
Keithley 2400 SMUs and customized LabVIEW and Matlab software.
The Seebeck coefficient of PEDOT:Nafion filaments was measured at
300 K using a SB1000 instrument from MMR Technologies equipped
with a K2000 temperature controller at a thermal load of 1−2 K and a
constantan wire as an internal reference. For thermoelectric
characterization, the printed module was sandwiched between a
variable hot plate and a thin metal plate with an ice pack on top. The
hot and cold temperatures were registered using two surface mounted
K-type thermocouples (Omega engineering). For proper electrical
contact, two copper wires were connected to the module nodes using
silver paste. The output voltage was measured using a Keithley 2400
source meter which also functioned as a variable load by sourcing
current. The setup was controlled, and data was recorded via a
customized LabVIEW software.

Impedance Spectroscopy. Impedance spectroscopy was per-
formed in a 0.1 M NaCl electrolyte using a CHI 650d (CH
Instruments) chemical work station. A frequency range from 10−2 to
105 Hz was scanned. The OECT samples with shortened source and
drain electrodes were used as the working electrode, a Pt wire
(diameter 1 mm) as the counter electrode, and an Ag/AgCl pellet as
the reference electrode.

Scanning Electron Microscopy. SEM was performed using a
JEOL JSM-7800F Prime instrument with an acceleration voltage of 3
kV.

Figure 4. continued

output P = (Vout/ΔT·ΔTleg)
2·Rvl/(Ri

2 + 2RiRvl + Rvl
2), where Rvl is the

variable load resistance and Ri is the internal resistance and assuming
that the legs experience a temperature difference ΔTleg = 14 K (yellow
circles) and ΔTleg = 25 K (yellow stars).
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X-ray Scattering. SAXS diffractograms were obtained using a
Mat:Nordic (SAXSLAB) equipped with a Rigaku 003+ high brilliance
micro focus Cu-radiation source (wavelength = 1.5406 Å) and a
Pilatus 300K detector placed at a distance of 1050 mm from the
sample. WAXS images were obtained at the D-line at the Cornell
High Energy Synchrotron Source (CHESS) at Cornell University.
The measurements were performed with a synchrotron radiation of a
wavelength of 1.155 Å. A Pilatus 200 K detector with pixel size of 172
μm × 172 μm was used to collect scattered X-ray from the sample at a
sample to detector distance of 177.2 mm.
Elemental Analysis. Elemental analysis was performed using

inductively coupled plasma−mass spectroscopy on dried samples (60
°C, > 4 h) at Mikrolab Kolbe, Germany.
Attenuated Total Reflection−Fourier Transform Infrared

Spectroscopy. Infrared absorption measurements were performed
on bulk samples (dimensions ca. 2 mm × 5 mm × 1 mm) using a
Frontier FTIR Spectrometer from PerkinElmer equipped with a
GladiATR attachment from Pike Technologies.
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