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ABSTRACT This paper proposes an unsupervised approach to construct a deep learning based stereo
matching method using single-view videos (SMV). From videos, a set of corresponding points are computed
between images, and image patches that center at the computed points are extracted. Negative and positive
samples constitute a dataset to train a similarity network that is then used as a matching cost function.
In addition, we propose a local-global matching cost network that exploits the first feature maps (local
features) accompanying with last feature maps (global features) as output feature of the proposed network.
The concatenated features are connected to full-connected layers and the network outputs a similarity
measure of an image patch pair as a matching cost. Computed matching costs are aggregated using semi-
global matching and cross-based cost aggregation, followed by sub-pixel interpolation, left-right consistency
check, median and bilateral filtering.We evaluate the proposed stereomatchingmethods using popular stereo
matching datasets, including KITTI 2012 and 2015, and Middlebury. We submit the disparity maps to their
benchmark servers to evaluate the performance of SMV. We also compared the generalization of SMV and
baseline methods using the training sets of the three datasets. The benchmark results show that SMV is
the most accurate method among unsupervised approach, and it even outperforms several deep learning
based stereo matching using supervised manner. The evaluation results of generalization show that SMV is
comparative with the baseline method, MC-CNN, which is trained with supervision.

INDEX TERMS Stereo matching, unsupervised learning, video extraction.

I. INTRODUCTION
Stereo matching aims to reconstruct 3D information from
stereo images. Given the left and right images, a stereo
matching method estimates a disparity map, in which pixel
intensities indicate the depth information from cameras to
objects (that contains considered pixels). Figure 1 shows the
illustration of stereo matching.

Stereo matching has been intensively researched for sev-
eral decades because of its important applications for self-
driving cars, 3-D reconstruction, view interpolation, and
robot navigation [1], [2]. Scharstein and Szeliski [3] did an
excellent survey of stereo matching methods and divided
them into local and global methods. Local stereo match-
ing methods normally includes matching cost computation,
cost aggregation, and disparity computation steps, whereas
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FIGURE 1. Illustration of stereo matching. (a) Left image. (b) Right Image.
(c) Disparity map.

global correspondence methods typically consist of matching
cost computation and disparity optimization steps. Disparity
refinement, such as sub-pixel interpolation via parabolic fit-
ting, a left-right consistency check [4], and image filtering,
can be used to improve the quality of the disparity map.

Zbontar and LeCun [5] proposed the first deep learning-
based stereo matching cost that exploits a convolutional
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FIGURE 2. Corresponding patches are extracted from left and right images, guided by SIFT corresponding points.

neural network. The matching costs are processed by cross-
based cost aggregation (CBCA) [6] and semi-globalmatching
(SGM) [7], followed by post-processing techniques including
sub-pixel interpolation, a left-right consistency check, and
median and bilateral filtering.

Since the dawn of deep neural networks, many deep
learning-based methods are proposed for matching cost com-
putation [8]–[11], cost aggregation [12], and post-processing
[13]. Other work [14]–[19] proposed stereo matching meth-
ods that unified deep learning-based components and trained
in an end-to-end fashion. Recently, disparity confidence
methods [20]–[23] are introduced to improve the perfor-
mance of stereo matching methods.

However, current deep learning methods require domain
data for training. Supervised methods require left and right
stereo images and ground truth, although unsupervised train-
ing methods require just left and right stereo images. This
paper proposes training a matching cost network with-
out requiring domain data. Corresponding image patches
are extracted from single-view videos and subsequently
employed as the training data. Collecting stereo matching
dataset for different situations is not an easy task. Therefore,
our approach helps to construct a stereo matching method
easily.

In this paper we propose an approach to learn a matching
cost network from videos. From single-view videos, fea-
ture matching points between frames are computed and then
image patches for matching points are extracted to build a
dataset of corresponding patches. After that, the dataset is
used as a training data. In addition, we propose a local-global
matching cost network that takes advantages of local features
from the first layer.

The contributions of this paper are as follows:

• This paper proposes an approach to train a matching
cost network by using single-view videos. This approach
does not need stereo images as well as ground truth.

• A local-global matching cost network are proposed to
exploit the benefit of using the first layer that can extract
features similar to those of local binary patterns.

• Benchmark results on KITTI 2012, KITTI 2015, and
Middlebury show that SMV even outperforms several
learning-based stereomatchingmethods that use domain
data for training. In addition, experimental results for
testing generalization show that SMV performs robustly
for different data sets and comparative with MC-CNN
for different stereo pairs.

II. RELATED WORK
Traditional matching cost functions consist of the sampling-
insensitive (SI) [24], absolute difference (AD), and squared
difference (SD). These traditional functions suppose corre-
sponding pixels between stereo images have the same inten-
sity values. Therefore, they perform poorly when the stereo
images are radiometrically distorted.

Inmany cases, intensity changes between stereo images are
monotonically nonlinear wherein the orders of the intensity
values are preserved. Matching cost functions that exploit
ordinal values rather can tolerate this kind of intensity trans-
formation. These matching cost functions include the rank
and census transforms [25], the support local binary pattern
(SLBP) [26], the fuzzy encoding pattern [27], and the soft
rank transform [28].

Han et al. proposed a gradient-based matching cost func-
tion [29]. Scharstein et al. [30] introduced a gradient-based
measure that can operate under the differences in the camera
gain and bias. Wei et al. [31] proposed an intensity- and
gradient-based matching method using hierarchical Gaussian
basis functions. Zhou and Boulanger [32] introduced a Gaus-
sian weighted sum of absolute difference based on the relative
gradients. P. Pinggera et al. [33] proposed dense gradient
features for cross-modal stereo.

Mutual information can tolerate any global intensity
changes and has been exploited as a matching cost function
in stereo matching. Kim et al. [34] proposed a pixel-wise
matching cost for stereo matching based on mutual informa-
tion. Hirschmuller [7] introduced a stereo matching method
based on semi-global matching and mutual information. Heo
et al. [35] introduced a stereo matching method where the
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FIGURE 3. Pipeline for distorting image patches extracted from videos.

matching cost function combines mutual information with
SIFT descriptor [36] in log-chromaticity color space.

Heo et al. [37] proposed adaptive normalized cross-
correlation (ANCC) which is an improved version of nor-
malized cross-correlation (NCC) and invariant to radiometric
distortion. RANCC [38] is an improvement of the ANCC for
the context that the effect of texture and noises on image
regions. Dinh et al. [39] proposed a matching cost measure
to address the non-linearity intensity transformation of pixels
between the image patches.

A recent approach to compute matching cost is to use
convolutional neural network to predict matching value for
a patch pair. Reference [5] introduced a convolutional neural
network that is trained for measuring the similarity of a patch
pair. Reference [8] proposed a deep embedding model to pre-
dict matching cost which explicitly maps intensity values into
an embedding feature space to estimate pixel dissimilarities.
References [5] and [8] need stereo images and ground truth
for training.

Reference [9] proposed a fast matching cost network that
uses a product layer for a siamese architecture. Reference
[10] proposed a unsupervised approach to estimate matching
cost by exploiting left-right consistency check to guide the
training process. Reference [11] proposed a weakly super-
vised techniques for training patch similarity which uses
properties of the optical sensor and a rough scene knowledge.
Li and Yuan [62] introduced a stereo matching method that
is an unsupervised learning method and aware of occlusion
problem. Joung et al. [63] proposed a stereomatchingmethod
that is trained in an unsupervised manner using confidential
correspondence consistency. Tonioni et al. [61], [64] intro-
duced stereo matching methods for domain adaptation using
stereo images without ground truth.

The output of the matching cost computation step is a
matching cost image spaceC for whichCd (p) is the matching
cost value of a pixel p in the reference image, e.g., the left
image of a stereo pair, and at a disparity hypothesis d . From
C , a disparity value for p can be obtained by using a winner-
takes-all strategy, as follows:

DE (p) = argmin
d

(Cd (p)) , (1)

where DE is an estimated disparity map. Applying a winner-
takes-all strategy is the simplest way to obtain a dense dispar-
ity map.

III. SMV
A. DATASET CONSTRUCTION FROM VIDEOS
In this subsection, we present an approach to construct a
dataset from videos which is then used to train a matching
cost network. Given a video, we extract two frames. To reduce
the scene correlation between frames, the two selected frames
should not be continuous in the video. We use the SIFT to
compute corresponding points between the frames, as shown
in Fig. 2(a). For each pair of the corresponding points,
we extract image patches whose center pixels are the corre-
sponding points, as shown in Fig. 2(b).

According to [45], challenges in stereo matching includes
textureless regions, occlusion, illumination variations, snow,
sun, rain, etc. Therefore, the extracted patches are processed
to assimilate the challenges. Each patch is undergone a
pipeline of common image transformation, such rotation,
translation, elastic distortion, noise adding, and brightness
and contrast changes, as shown in Fig. 3.

Brightness and contrast adjustment changes the brightness
and contrast by setting the image patch P to

P← P · contrast + brightness. (2)

where addition and multiplication are element-wise opera-
tions. Rotation rotates the patch by rotation degrees, whereas
translation translate the patch in the vertical direction by
translation. Scaling scales the patch by scaling, and shearing
shears the patch in the horizontal direction by shearing.

Elastic distortion [40] is commonly used to generate
images that are feasible and label preserving in classification.
Elastic distortion distorts an image patch by the intensity
of transformation EDalpha and the smoothness for transfor-
mation EDsigma. Noise block addition adds a block of ran-
dom values to an image patch. The position of the block is
selected randomly. Foreshortening is inspired from different
view-point of stereo cameras. In foreshortening, first we crop
left or right side of an image patch by cropping and plr , and
following that the cropped patch is resized to the same size as
the original patch. Fig. 4 shows the illustration of the elastic
distortion and left and right foreshortening for an input patch.

In order to prepare a training data of positive and neg-
ative example, each image patch extracted from an image
is undergone through the transformation pipeline two times
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FIGURE 4. The architecture of the proposed multi-patch matching cost network.

FIGURE 5. Model testing for evaluation of the proposed stereo matching method. Refinement steps include sub-pixel enhancement,
left-right consistency check, followed by median and bilateral filtering.

with different random setting of parameters. The two trans-
formed patches forms a synthesized pair of corresponding
image patches (positive example). The negative example is
created by extracted a new image patch that is far from the
considered image patch at a distance, data_distance.

B. LOCAL-GLOBAL MATCHING COST NETWORK
We propose a local-global matching cost network that
exploits the first convolution layer, as shown in Fig. 4. The
first convolution layer extracts low-level features of an image
patch which are edge-like features. Each convolution kernel
in the first convolution layer often extracts different features.
The features in the last layers are considered as global fea-
tures that extract high-level features of the image patch.

In stereo matching, hand-crafted feature extraction, such
as census, rank, slbp, have been successfully operated for
stereo images in different conditions. Each of these feature
extractors are designed to obtain different features that highly
discriminative.

The feature maps of the first convolution layer are some-
what similar to the output of the hand-crafted feature extrac-
tors, and even can extract more number of features because
the number of feature maps are set, such as 32 or 64, and
computed automatically.

As a result, our idea is to combine the local feature (feature
maps of the first convolutional layer) and global features
(output of the last layer) to increase the discriminative power.
The architecture of our proposed network is as follow:

Fig. 4 shows the architecture of the proposed multi-patch
matching cost network. The architecture of sub-networks
consist of a number of convolution layers followed by rec-
tified linear unit layer (RELU). The resulting four vectors are
concatenated and forwardly propagated through a series of
fully connected layer followed by RELU. The final output
of network is fed to a non linear activation function sigmoid
to produce a similarity score between the input patches. The
binary cross-entropy loss is used for training. Let x denote
the output of the network for one training example and y
denote the class of that training example; y = 1 if the example
belongs to the positive class and y = 0 if the example belongs
to the negative class. The binary cross-entropy loss L for that
example is defined as

L = xlog(y)+ (1− x)log(1− y). (3)

The hyperparameters of the proposed network are the
number of fully-connected layers (num_fc_layers), and the
number of units in each fully-connected layer (num_fc_units),
the number of feature maps in each layer (num_fmaps),

VOLUME 8, 2020 73807



P. N. Hong, C. W. Ahn: Unsupervised Learning for Stereo Matching Using Single-View Videos

FIGURE 6. Qualitative results using KITTI 2012 benchmark server.

the number of convolutional layers (num_clayers), the size
of the convolution kernels (ckernel_size), the size of the input
patch (input_patch_size).
The hyperparameters of aggregation and post-processing

methods include cbca_distance, cbca_num_iters_1,
cbca_num_iters_2, which denote for similarity threshold for
pixel intensities, number of iteration of cross-based cost
aggregation before SGM, and number of iteration of cross-
based cost aggregation after SGM, respectively. sgm_P1,
sgm_P2, sgm_Q1, and sgm_Q2 stands for the first smooth-
ness parameter of SGM, the second smoothness parameter
of SGM, a factor 1 used for changing sgm_P1/sgm_P2,
and a factor 2 used for changing sgm_P1/sgm_P2, respec-
tively. sgm_V and sgm_D denote for reduction of sgm_P1
by a factor of sgm_D when considering vertical direction
and pixel intensity threshold for changing sgm_P1/sgm_P2.
Finally, blur_sigma and blur_threshold stand for standard
deviation for a post-processing filter and threshold for a post-
processing filter.

In this paper, we have set 11 × 11 image patches as input
to the network. The first convolutional layer is used to extract

feature maps from the input patches that are then considered
as local image features. The five convolutional layers are with
3 × 3 kernel and 112 feature maps. A 224-length vector is
formed by concatenating the two 112-length feature vectors.
After that, the 224-length vector is passed through three
fully-connected layers with 384 units each. The final fully-
connected layer projects the output to a single number that is
the similarity score. A matching cost is just a negative value
of the similarity score.

C. COST AGGREGATION AND POST-PROCESSING
METHODS
The outcome of the local-global matching cost network is
a matching cost space that is then aggregated and post-
processed to produce the final disparity map. We follow the
pipeline introduced in [41] (used later by MC-CNN [46])
as shown in Fig. 5. The pipeline suggests to use CBCA
and SGM to aggregate the matching costs. Then, sub-pixel
interpolation, left-right consistency check to detect invalid
pixels, followed by median and bilateral filtering. Similar to
MC-CNN, we use CBCA before and after SGM.
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FIGURE 7. Qualitative results using KITTI 2015 benchmark server.

TABLE 1. Parameter setting for the local-global matching cost network
and refinement methods.

IV. EXPERIMENTAL RESULTS
We evaluated the proposed stereo matching method using
KITTI 2012, 2015, and Middlebury datasets. We uploaded

the results for the three datasets to their online benchmark
servers.

To evaluate the generalization performance of the test-
ing stereo matching methods, we used different datasets for
training and testing steps and compared with MC-CNN, AD,
and Census. All the testing methods use the same pipeline
of cost aggregation and post-processing methods. We fol-
lowed the parameter setting in [46] for MC-CNN, AD, and
Census.

For the proposed matching cost network, we used grid
search method to select parameter setting using the mixed
dataset, constructed from KITTI and Middlebury training
datasets. For each parameter, we first estimated a feasible
range and a value step for the grid search method. After that,
we chose the parameter setting that had the best performance
on themix dataset. Table 1 shows the parameter setting for the
proposed stereo matching method, and the parameters were
fixed for all of our experiments.

We used Cityscapes video datasets [42] for training the
proposed matching cost network. Specifically, we used
three single-view sequences (stuttgart_00, stuttgart_01,
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TABLE 2. KITTI 2012 benchmark results in error rate (%) for SMV. Out-Noc is the percentage of erroneous pixels in non-occluded regions, and Out-All is
the percentage of erroneous pixels in total. Avg-Noc is the ratio between the average disparity and end-point error in non-occluded regions, and Avg-All
is the ratio between the average disparity and end-point error in total.

stuttgart_02) which include about 2900 images totally with
2048 × 1024 resolution. Let i be the frame index of a
video. We use a image pair of Ii and Ii+2 for compute corre-
sponding points using the SIFT. Totally, about 12.5 millions
of point pairs are detected and hence about 25 millions of
sample patches (including positive and negative samples) are
extracted.

We exploited stochastic gradient descent to optimize
the cross-entropy loss of the proposed network training.
The network was trained for 22 epochs with the learn-
ing rate initially set to 0.003 and decreased by a fac-
tor of 10 on the 18th. The training dataset was shuffled
prior to learning for each epoch, and the batch size was
set to 128.

Disparity maps were evaluated using the average pro-
portion of erroneous pixels in all zones, except occlusions.
We used the KITTI error thresholds (th = 3) pixel and
Middlebury error thresholds (th = 1). The error rate (%) was
calculated as

Ed =
100
|Inocc|

∑
p∈Inocc

{
0, if |DE (p)− DG(p)| ≤ th
1, otherwise,

(4)

where Inocc is the set of all non-occluded pixels, |Inocc|
is the number of pixels in Inocc, and DG(p) and DE (p)
are the ground truth and estimated disparity at p,
respectively.

A. QUANTITATIVE RESULTS USING STEREO MATCHING
BENCHMARKS
The KITTI 2012 and 2015 datasets [43], [44] include out-
door stereo images with sparse ground truth (approximately
50% of the pixels). The KITTI 2012 dataset has 194 stereo
pairs for training and 195 stereo pairs for testing, and the
KITTI 2015 dataset provides 200 stereo images for training.
Middlebury provides indoor stereo images with dense ground
truth.

Since the KITTI andMiddlebury servers constrain the lim-
ited numbers of submissions, we used the servers to evaluate

the results for the complete version of the proposed stereo
matching method. Tables 2, 3, and 4 show the results of
SMV in the KITTI 2012, 2015, and Middlebury benchmarks,
respectively. The proposed stereo matching method signifi-
cantly outperformed SGM and ELAS methods that are con-
sidered as baseline methods for traditional stereo matching
approach. In addition, for all the three benchmark results, The
proposed stereo matching method performed better several
deep learning-based stereo matching methods, even though
The proposed stereo matching method is constructed without
using a single stereo pair. Figs. 6 and 7 show some disparity
maps of SMV downloaded from KITTI server for the KITTI
2012 and 2015 datasets, respectively.

B. GENERALIZATION
In this subsection, we compared the performance of SMV,
MC-CNN, AD, and Census methods for data generalization.
In other words,MC-CNN, AD, and Census use a training data
to train and/or tune parameters of a method, and then are eval-
uated using different data. For AD and census, the parameters
of the post-processing techniques were set the same as in the
MC-CNN paper. Let MC-CNN_K15, MC-CNN_K15, and
MC-CNN_MB denote MC-CNN with accurate architecture
and being trained using the KITTI 2015, KITTI 2015, and
Middlebury training sets, respectively. In addition, to evaluate
the effective of the multi-patch matching cost network in
SMV, we designed a version of SMV that the number of input
patch is set to 1, denoted SMV(-). Except the cropped size of
9 × 9, proposed method(-) parameters were set the same as
those of SMV.

Figs. 8 and 9 show the quantitative results of the test-
ing stereo matching methods for the first 100 stereo pairs
for KITTI 2012 and 2015 training sets, respectively. SMV
performed better AD and census significantly, and had a
comparative performance with the MC-CNN variants that
require training data. Because of using multi-patch network,
SMV performed much more robustly than SMV(-).
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TABLE 3. KITTI 2015 benchmark results in error rate (%) for SMV. D1-bg is the percentage of outliers averaged only over background areas. D1-fg is the
percentage of outliers averaged only over foreground areas, and D1-all is the percentage of outliers averaged over all ground truth pixels.

TABLE 4. Middlebury benchmark results in error rate (%) for SMV. Austr, AustrP, Bicyc2, Class, ClassE, Compu, Crusa, CrusaP, Djemb, DjembL, Hoops,
Livgrm, Nkuba, Plants, Stairs are testing stereo pairs. The symbol † denotes that a stere matching method requires domain data for training, whereas ‡

denotes that the method requires left and right image data for training. § denotes that the domain data is not compulsory for constructing the method.

FIGURE 8. Error rates of the testing stereo matching methods for the first 100 stereo pairs of the KITTI 2012 training set.

In addition, we computed the average performance for the
testing stereo matching methods over the KITTI 2012 and
2015 training data, respectively. Fig. 10 shows the average

error rates of the testing stereo matching methods. AD and
census had the largest error rates, whereas SMV and the MC-
CNN variants had similar performance. SMV(-) that does
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FIGURE 9. Error rates of the testing stereo matching methods for the first 100 stereo pairs of the KITTI 2015 training sets.

FIGURE 10. Average error rates of the testing stereo matching methods over the KITTI 2012 and 2015 training data set. (a) KITTI 2012 training data
set. (b) KITTI 2015 training data set.

not use the multi-patch network performed poorly, with error
rates approximately double those of SMV. In all the cases,
even though SMV did not use training data, its error rate is
nearly as good asMC-CNN variants, with slightly larger error
rates.

C. USING LOCAL BINARY PATTERNS
In this subsection, we evaluate the performance of com-
bining the handcrafted features and the feature maps of
convolutional networks. Specifically, instead of combining
feature maps from the first and last convolutional layers,
we computed census, rank, and SLBP transforms for input
images and then concatenate them with the last convolutional
feature maps. We denoted this method as SMV_LBP. Fig-
ure 10 shows an illustration of census and rank transforms
for an image.

We used window size (3 × 3) for both census and rank
transforms. We normalized the transformed images before
concatenating with feature maps, computed from the last con-

volutional layer. Figure 11 shows the quantitative results of
SMV_LBP using the KITTI 2012 and 2015 training datasets.
SMV_LBP had marginally better performance than SMV(-)
and performed worse than SMV. The reason is that census
and rank transforms are just two matrix instances of a (3
× 3) convolution matrix and their weight values are fixed.
In contrast, SMV extracted 112 feature maps using 112 con-
volution matrices, in which weights were selected optimally
for a training dataset.

D. SMV EVALUATION
We evaluated the stereo matching methods using their raw
matching costs on the KITTI 2012 and 2015 datasets. In addi-
tion, we trained SMV in a supervised manner using KITTI
2012, KITTI 2015, and Middebury training datasets, denoted
as SMV_K12, SMV_K15, and SMV_MB, respectively. For
a fair comparison, we used the same data augmentation as in
MC-CNN.
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FIGURE 11. Census, Rank, and SLBP transforms for the Baby 1 image from Middlebury dataset. (a) Input image. (b) Census
transform. (c) Rank transform. (d) SLBP transform.

TABLE 5. Error rates for the raw matching costs of the testing stereo matching methods using KITTI 2012 and 2015 training datasets.

TABLE 6. Error rates for SMV with different values for input_patch_size using KITTI 2015 training dataset.

FIGURE 12. Average error rates of SMV_LBP over the KITTI 2012 and
2015 training data set. (a) KITTI 2012 training data set. (b) KITTI
2015 training data set.

Table 6 shows the error rates for KITTI 2012 (K12) and
KITTI 2015 (K15) training datasets. AD and Census had
the worst performance, and AD even outperformed Census.
These performance of AD and Census in our experiments
are similar to those in [46]. The supervised versions of SMV
outperformed MC-CNN for all corresponding datasets. That
validates the effectiveness of the use of the local and global
CNN features in SMV.

E. SENSITIVITY ANALYSIS
In this subsection, we present the way to select parameter
values and analyze the effect of different parameter config-
urations to SMV. As shown in Table 1, the SMV network
has six parameters, including input_patch_size, num_clayers,
num_fmaps, ckernel_size, num_fc_layers, and num_fc_units.

For the kernel size ckernel_size, using two 3 × 3 kernels
have the same receptive field with a 5× 5 kernel. Therefore,

these days, a 3 × 3 kernel size is commonly used for CNN.
SMV and MC-CNN share the three common parameters,
which are num_fmaps, num_fc_layers, and num_fc_units.
In our work, we have selected the values for the three param-
eters, as recommended by the MC-CNN work. There are two
reasons for this. The first reason is that the three parameters
were carefully selected by using the grid search in the MC-
CNN work. The second reason is that using the same values
could show the effectiveness of exploiting the local-global
features in SMV.

Here, we evaluated to the effect of using different val-
ues for input_patch_size in SMV. The possible values for
input_patch_size could be any positive number that is smaller
than thewidth and height of an image. However,We evaluated
SMV with commonly used ranges, including (7×7), (9×9),
(11 × 11), (13 × 13), (15 × 15), (17 × 17), (19 × 19),
(21×21), (23×23), and (25×25), as shown in Table 6, where
SMV_wo_pp is SMV without post-processing. Larger values
for input_patch_size are robust to outliers, but sensitive to
object boundaries and slanted regions (such as road surfaces)
[39]. As a result, SMV_wo_pp performed better with larger
values for input_patch_size. Therefore, input_patch_size
selection is a tradeoff the the problems.With our experiments,
using (11× 11) kernel for input_patch_size had the smallest
error rates for SMV.

V. CONCLUSIONS
This paper proposed an approach for stereo matching method
that uses single-view videos in an unsupervised manner.
In addition, we proposed a matching cost network that
exploits explicitly local and global features. The proposed
stereo matching method was evaluated using commonly used
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datasets in stereo matching, including KITTI 2012, KITTI
2015, and Middlebury. Experimental results the benchmarks
showed that the proposed method had the best perfor-
mance among unsupervised methods and outperformed sev-
eral supervised methods. It also performed well cross differ-
ent datasets.

In future work, we plan to investigate deeply image simi-
larity functions in traditional approaches as well as learning
based ones. Applications of similarity functions in computer
vision andways to construct them in case of datasets available
in different domains.
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