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Time correlation inside a laser pulse
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Looking inside a laser pulse by detecting an instantaneous ionization rate (IIR) has been a useful instrument
for characterizing subcycle ionization dynamics [Phys. Rev. A 64, 013409 (2001)]. However, this instrument
relies entirely on IIR being a deterministic function of time. By introducing an IIR operator and studying its
autocorrelation function, we show that electron ionization dynamics is more complex and the ionization rate
depends on the “prehistory,” i.e., the IIRs at the two instants of time are, in fact, correlated. The pattern of this
correlation changes dramatically between the multiphoton and tunneling ionization regimes. These findings have
wide implications for strong-field atomic physics and providing new possibilities for quantum local realism tests.
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I. INTRODUCTION

A correlation between seemingly unrelated events or quan-
tities is considered as a paradox in science. In quantum
physics, examples of such correlations are abundant. The
Einstein-Podolsky-Rosen paradox [1] correlates the quantum
states of two particles which are miles away and are seemingly
not interacting. The Hanbury Brown and Twiss effect [2]
correlates (or anticorrelates) the number of photons or massive
subatomic [3] or atomic [4] particles coming to two distant
detectors. Resolving these paradoxes had a long-lasting effect
on fundamental quantum physics [5,6].

Interaction of short and intense laser pulses with matter has
been considered a deterministic process fully within the reign
of time-resolved quantum mechanics. Interaction of such laser
pulses with atoms was described by instantaneous ionization
rate (IIR), first introduced in the quasistatic regime of slowly
varying laser field [7,8] and then extended to arbitrarily fast
ionization processes [9]. The latter generalization allowed a
description of a subcycle electron dynamics which played a
key role in fundamental processes of high-order harmonic
generation and above-threshold ionization [10,11].

The IIR is also used to define the tunneling time as a lag
between the instants when the IIR and electric field of the laser
pulse are at their respective maxima [12]. For such a definition
to be meaningful the IIR should be a well-defined determinis-
tic function of time. In the meantime, a probabilistic treatment
of tunneling ionization has been introduced [13] which puts
such a definition into question. While the debate on the nature
of tunneling ionization and its timing characterization is still
open [12–18], we attempt to provide a fresh insight into this
problem by performing a time-correlation analysis.
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In this work, we employ an autocorrelation function which
relates the IIR at the two instants of time. Our present time-
correlation analysis shows that the IIR depends on the “pre-
history,” i.e., the instantaneous ionization rates at the two
instants of time are, in fact, correlated. The pattern of this
correlation varies dramatically between the multiphoton and
tunneling ionization regimes. We illustrate our findings by
considering the hydrogen atom driven by a nearly single-cycle
laser pulse with a varying electric field strength which covers
a wide range of Keldysh parameters γ . We give a qualita-
tive explanation of the profound change of the correlation
pattern between γ � 1 to γ � 1 regimes. This explanation
rests on the lowest order perturbation theory (LOPT) and
the well-known simple man model (SMM) [10,11] for these
two regimes, respectively. Our technique allows one to look
scrupulously inside the laser pulse, and our findings will be
useful for elucidating various subcycle and intracycle inter-
ference phenomena.

II. THEORY

We use the definition of the IIR given in [9,19,20] as
the time derivative of the instantaneous ionization probability
inside the laser pulse:

W (t ) = dP(t )/dt = (d/dt )
∫

|ap(t )|2 d p . (1)

Here ap(t ) is the instantaneous ionization amplitude which
is obtained by projecting the solution of the time-dependent
Schrödinger equation (TDSE) on the continuous eigenstates
|p〉 of the field-free Hamiltonian. Together with the bound
states, they span the entire Hilbert space of this system. The
particular choice of the boundary conditions for |p〉 is not
important as long as we conduct the momentum integration
in Eq. (1). In the following, we will use the set of |p〉 with the
ingoing boundary condition [21].
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For our purpose, it will be convenient to switch to the
equivalent Heisenberg operator formulation. We take the
Schrödinger projection operator Q̂ and cast it in the Heisen-
berg representation:

Q̂ =
∫

|p〉〈p|, Q̂(t ) = Û (0, t )Q̂Û (t, 0). (2)

Here Û (t, 0) is the time-evolution operator satisfying the
equation

i∂Û (t, 0)/∂t = Ĥ (t )Û (t, 0), (3)

with the initial condition Û (0, 0) = Î . In Eq. (2) Ĥ (t ) =
Ĥ0 + Ĥint (t ), Ĥ0 = p̂2/2 − 1/r, and we use the length form
Ĥint (t ) = E(t ) · r for the interaction Hamiltonian.

With the use of Eq. (2), the instantaneous ionization prob-
ability entering Eq. (1) can be written as P(t ) = 〈φ0|Q̂(t )|φ0〉.
Here φ0 is the bound state of the target atom which will be the
ground state of hydrogen in the following. We will also use a
shortcut 〈Â〉 = 〈φ0|Â|φ0〉 for any operator Â and omit φ0 for
the brevity of notations. For the IIR we then obtain

W (t ) = 〈dQ̂(t )/dt〉, (4)

which is an expectation value of the Heisenberg operator
Ŵ (t ) = dQ̂(t )/dt , with Q̂(t ) being defined by Eq. (2). We
may call Ŵ (t ) the IIR operator. Equation (4) is, of course,
completely equivalent to Eq. (1), which was obtained in the
Schrödinger representation. The Heisenberg representation,
however, is very useful in that it allows us to calculate the
expectation value of the operator Ŵ (t ) which, according to
Eq. (4), gives us the IIR as a function of time within the laser
pulse duration. In addition, the Heisenberg representation
allows us to define, in a natural way, the autocorrelation
functions for different operators. We employed this feature of
the Heisenberg representation in our earlier work [22] to study
autocorrelation functions for the coordinate and momentum
operators for an atom in a laser field. This served as a quantum
generalization of the SMM. Presently, we will be interested in
the autocorrelation function for the operator Ŵ (t ):

C(t2, t1) = 〈Ŵ (t2)Ŵ (t1)〉 . (5)

This function provides us with information about the correla-
tion between the ionization events occurring at different times
inside the laser pulse. A study of this correlation is the main
goal of the present work.

We go back to the Schrödinger representation and rewrite
Eq. (5) as

C(t2, t1) = 〈Ŵ (t2)Ŵ (t1)〉 = d

dt1

d

dt2
〈Q̂(t2)Q̂(t1)〉

= d

dt1

d

dt2
〈Û (t2, 0)φ0|Q̂Û (t2, t1)Q̂|Û (t1, 0)φ0〉.

(6)

We evaluate this expression by propagating the TDSE start-
ing from �(0) = φ0 on the interval (0, t1), thereby obtaining
the state vector �(t1) at t = t1. Acting with the (Schrödinger)
operator Q̂, defined by Eq. (2), on this vector gives us the
wave function �1(t1) = Q̂�(t1). �1(t1) is further propagated
on the interval (t1, t2), yielding the wave function �1(t2), from
which we obtain �2(t2) = Q̂�1(t2). �2(t2) is projected on
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FIG. 1. Electric field and vector potential of the pulse (7) for ω =
0.057 a.u. and E0 = 0.1 a.u.

the state vector �(t2), obtained by solving the TDSE with
the initial condition �(0) = φ0 on the interval (0, t2). Finally,
computing numerically the time derivatives as required by
Eq. (6), we obtain the autocorrelation function.

To propagate the state vectors in time we use the numerical
procedure [23] for the solution of the TDSE for the hydrogen
atom driven by a laser pulse. In the present work we employ a
linearly polarized laser pulse of the following form:

E(t ) = ẑE0 sin2 {πt/T1} cos ωt , (7)
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FIG. 2. Ionization probabilities and the IIRs obtained using
Eq. (4) for different peak electric field strengths.
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FIG. 3. Real (left) and imaginary (right) parts of the covariance function (9). For better visibility and to reveal more detail we plot the
quantities, Re[C̃(t1, t2)]1/3 and Im[C̃(t1, t2)]1/3. Dashed lines indicate extrema of the vector potential.
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(a)  C0(t2,t1); ω=0.057 a.u., E0=0.025 a.u., γ=2.28
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(b)  C0(t2,t1); ω=0.057 a.u., E0=0.05 a.u., γ=1.14
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FIG. 4. Real part of the unnormalized covariance function (8) for different field strengths. For better visibility and to reveal more detail we
plot Re[C(t1, t2)]1/3.

with the peak field strength E0, carrier frequency ω, and total
duration T1 = 2T , where T = 2π/ω is the optical cycle corre-
sponding to the frequency ω. In the following we will consider
pulses with base frequency ω = 0.057 a.u. (corresponding to
a wavelength of 800 nm) and different peak field strengths E0.
Figure 1 shows the shape of the pulse given by Eq. (7).

III. RESULTS AND DISCUSSION

Results obtained from the TDSE solution for the instanta-
neous ionization probability and the IIR are shown in Fig. 2.
Due to a high nonlinearity of the ionization process in the
multiquantum ionization regime, the IIR varies considerably
over the field strength range under consideration. This results
in a strong variation of the magnitude of the autocorrelation
function (5). To make a meaningful comparison of the role of
correlation for different field strengths, we will consider the
covariance function [24], which is closely related to the au-
tocorrelation function (5). First, we define an autocorrelation
function C0(t2, t1):

C0(t2, t1) = 〈[Ŵ (t2) − W (t2)][Ŵ (t1) − W (t1)]〉 . (8)

Here W (t ) is the expectation value of the time-dependent
IIR operator Ŵ (t ) = dQ̂(t )/dt in Eq. (4). C0(t2, t1) provides
a measure of the correlations between deviations from the
expectation values of the IIR operator at different moments
of time. Normalized C0(t2, t1) gives the covariance function:

C̃(t2, t1) = C0(t2, t1)√
C0(t1, t1)C0(t2, t2)

. (9)

This function is a more convenient indicator of the presence
or lack of correlation at different instants of time. In particular
[24], the zero value of the covariance function implies absence
of any correlation, while |C̃(t2, t1)| ≈ 1 implies a strong cor-
relation between the events at t1 and t2. Results of the ab initio
TDSE calculations of the real and imaginary parts of C̃(t1, t2)
for different field strengths are shown in Fig. 3.

The interval of the field strengths selected in Fig. 3 covers
both the multiphoton and tunneling ionization regimes. Ex-
pectedly, we see a dramatic difference between the correlation
patterns in these two regimes. A strong correlation along the
main diagonal line seen in both regimes is essentially trivial,
reflecting only the fact that events occurring at the same

instant of time are strongly correlated. More interesting are the
areas with t1 �= t2. In the multiphoton regime [Figs. 3(a)–3(d)
with γ = 2.28 and 5.7] one can observe a strong correlation
and anticorrelation densely filling the whole area of the plot.
Lines of the constant elevation of the covariance function in
this regime are, to a good approximation, straight lines t1 −
t2 = const. Thus C̃(t2, t1) depends mainly on the difference in
its arguments t1 − t2.

These features can be understood within the LOPT, which
is valid in the multiphoton regime [25]. By introducing an
expansion of the time-dependent wave function over the
eigenvectors φk of the field-free atomic Hamiltonian with
energies εk , �(t ) = 	

∫
k ck (t )φke−iεkt , we can express the

autocorrelation function of the projection operator (2) as

〈Q̂(t2)Q̂(t1)〉 =
∫∫

εk2 >0,εk1 >0
c∗

k2
(t2)ck1 (t1)

× 〈
φk2

∣∣Û (t2, t1)
∣∣φk1

〉
ei(εk2 t2−εk1 t1 ) dk1dk2 .(10)

Within the LOPT, we can use the field-free evolution operator
in Eq. (10), which leads to

〈Q̂(t2)Q̂(t1)〉 =
∫

εk>0
c∗

k (t2)ck (t1) dk. (11)

The time dependence of the expansion coefficients is deter-
mined by a factor ck (t ) ∝ exp[i(εk − ε0 − Nω)t] [25]. Here
N is the least number of photons the atom needs to absorb in
order to be ionized.1 The product of these factors in Eq. (11)
will give us the correlation pattern depending on the time
difference t2 − t1 for the autocorrelation function (11) and
consequently, by virtue of Eqs. (8) and (9), the same pattern
for the covariance function.

When moving into the tunneling ionization regime
[Figs. 3(e)–3(h) with γ = 1.14 and 0.57] one encounters
another type of correlation which manifests as the short
segments of lines t1 + t2 = const, perpendicular to the main
diagonal. This type of correlation gains its strength deeper

1Indeed, this factor, together with the corresponding energy denom-
inator, leads to the Fermi golden rule in the limit t → ∞.
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FIG. 5. Modulus (left) and argument (right) of the covariance function (9). For better visibility and to reveal more detail we plot the
quantity |C̃(t1, t2)|1/3

.

into the tunneling ionization regime. For γ = 0.57, it be-
comes dominant, superseding almost entirely the correlation
pattern present in the multiphoton regime. As one can observe
from Fig. 1, the perpendicular lines appear near the extrema
of the vector potential of the pulse [white dashed lines in
Figs. 3(e)–3(h) show the positions of two extrema of the
vector potential of the pulse (7) at t = 0.75T and t = 1.25T ].
The origin of these lines can be explained as follows us-
ing the simplified description of the ionization process pro-
vided by SMM. Let t0 be an extremum of the vector po-
tential of the pulse. Then, for a small τ , the vector po-

tential values at t1 = t0 − τ and t2 = t0 + τ are equal. Now
we recall that in the SMM, which describes qualitatively
the main features of tunneling ionization [10,26–29], the
asymptotic electron velocities recorded at the detector are
determined by the vector potential at the instant of ioniza-
tion. These velocities are therefore equal for the ionization
events occurring at t = t1 and t = t2, provided electrons
are emitted with zero initial velocities. The electron waves
emitted at these instants shall thus interfere. As is well
known, the interference process can be interpreted as the
presence of correlation [24]. Since at t0 the electric field
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FIG. 6. Same as in Fig. 3 for the driving pulse wavelength λ = 1600 nm.

passes through zero, the electrons are emitted on the oppo-
site sides of the nucleus and can interfere constructively or
destructively, depending on the phase the waves acquire dur-
ing the subsequent motion. Destructive interference explains
the anticorrelation stripe t1 + t2 = 2t0 in the plots for the real
part of the correlation function running through the point
(t0, t0) in Figs. 3(e) and 3(g) at t0 = 1.25T . To account for the
parallel nearby stripes of positive correlation, which can also
be seen in Figs. 3(e) and 3(g), we can postulate (following
the work [16]) that electrons emerge into the continuum with
some initial velocity spread. One can see that such velocity
spread in initial velocities and coordinates, leading to the
different phases acquired by the electron waves during the

propagation, may lead to the observed interference patterns.
This type of correlation pattern depends mainly on the sum
t1 + t2 ≈ 2t0. It also weakens away from the main diagonal as
τ increases.

Figure 3 shows results for the normalized autocorrelation
function C̃(t2, t1) defined in Eq. (9). That was done mainly for
the sake of convenience of comparison so that autocorrelation
functions for different ionization regimes varied in the same
range. Had we used the unnormalized autocorrelation function
C0(t2, t1) defined in Eq. (8), we would arrive at the same
conclusions about the presence of two mechanisms respon-
sible for appearance of correlations in the multiphoton and
tunneling regimes. To illustrate this point, we show in Fig. 4
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(a) ω=0.057 a.u., E0=0.1 a.u., Circular polarization
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(b) ω=0.057 a.u., E0=0.1 a.u., Circular polarization
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FIG. 7. Same as in Fig. 3 for circular polarized laser field at λ = 800 nm.

the real part of the unnormalized autocorrelation function
C0(t2, t1) defined in Eq. (8) for different peak field strengths.
These plots are to be compared with the plots shown in
Figs. 3(c) and 3(e). We see that apart from the relatively
trivial modifications [the unnormalized C0(t2, t1) is, of course,
driven to zero when its arguments approach the endpoints of
the interval (0, 2T ), where field vanishes] and the change of
the overall scale, data shown in Fig. 4 lead us to the same
conclusions. In the multiphoton regime shown in Fig. 4(a) we
see, just as in Fig. 3(c), a pattern of correlations with lines
of constant elevation being, to a good approximation, straight
lines t1 − t2 = const. When we approach the tunneling regime
of ionization [Fig. 4(b)], we see a different pattern emerging
which manifests itself, just in Fig. 3(e), as the short segments
of lines t1 + t2 = const perpendicular to the main diagonal.

It might also be useful to look at the polar form
representation of the normalized covariance function (9)
C̃(t2, t1) = |C̃(t1, t2)|eiθ (t2,t1 ). The modulus |C̃(t1, t2)| and ar-
gument θ (t2, t1) are shown in Fig. 5. For the multiphoton
regime in Figs. 5(a) and 5(b) the lines of the constant argument
of C̃(t2, t1) are approximately straight lines parallel to the
main diagonal, which agrees with the picture we obtained
above using the LOPT. Indeed, we may expect in this case [us-
ing the same reasoning we relied on to obtain Eq. (11)] that the
behavior of C̃(t2, t1) in the complex plane is largely mimicked

by the exponential function eiα(t1,t2 )(t1−t2 ) with some real and
slowly varying function α(t1, t2). To a good approximation,
the lines of the constant argument of C̃(t2, t1) in the (t1, t2)
plane are therefore the lines t1 − t2 = const. When we move
deeper into the tunneling regime shown in Figs. 5(c)–5(f), we
again see gradual emergence of another type of correlation
pattern pertaining to the tunneling regime of ionization, which
we explained above invoking the SMM. In the polar form
representation of C̃(t2, t1), this type of correlation reveals
itself through the appearance of the islands of large absolute
magnitude of C̃(t2, t1) in the (t1, t2) plane. In agreement with
the mechanism of appearance of correlations acting in the
tunneling regime which we proposed above, these islands are
stretched along the lines t1 + t2 = const, perpendicular to the
main diagonal, and appear near the extrema of the vector
potential of the pulse.

IV. UNIVERSALITY OF CORRELATIONS

An important question to address is how universal is the
appearance of the correlations we described above? To be
truly universal the main features of the observed correlation
patterns should not depend on the particular pulse parameters
we are using. Below we will try to answer this question of the

(a) ω=0.057 a.u., E0=0.05 a.u., γ=1.14, sin4 pulse

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

t1/T

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

t 2
/T

-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1

(b) ω=0.057 a.u., E0=0.05 a.u., γ=1.14, sin4 pulse
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FIG. 8. Same as in Fig. 3 for the pulse (13).
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universality of the correlations mechanism by analyzing the
results obtained for different pulse parameters.

A. Dependence on frequency

We first preset results of the additional computations with
the driving pulse at λ = 1600 nm (photon frequency of
ω = 0.0285 a.u.) using the same wave form (7) and total
pulse duration of two optical cycles. For this wavelength of
the driving pulse we selected field strengths varying from
E0 = 0.01 to 0.07 atomic units. With the reduced photon
energy the Keldysh parameter varied from γ = 2.85 to 0.407,
thus covering both the multiphoton and tunneling ionization
regimes. Our results are shown in Fig. 6. One may observe
the same pattern of time correlation changing from the parallel
stripes t1 − t2 = const in the multiphoton to the perpendicular
lines t1 + t2 = const in the tunneling regime. Hence, the main
conclusion of the present article is sustained in this physically
more transparent but computationally much more challenging
regime.

B. Polarization dependence

To corroborate in more detail the universality of the corre-
lation mechanism in the most interesting tunneling regime, we
have conducted an additional set of calculations with circular
pulse propagating along the z direction and described by the
following wave forms:

Ex(t ) = E0√
2

sin2 {πt/T1} cos ωt,

Ey(t ) = E0√
2

sin2 {πt/T1} sin ωt, (12)

with the peak field strength E0 = 0.1 a.u., total duration T1 =
2T , where T = 2π/ω is the optical cycle corresponding to
the wavelength of 800 nm. The results presented in Fig. 7
show no sign of the correlations dependent on t1 + t2 (the
stripes perpendicular to the main diagonal). The reason for
disappearance of this correlation is well understood within
the original mechanism that we proposed in our paper. In-
deed, the requirement A(t1) = A(t2) on which our mechanism
of the appearance of correlations in the tunneling regime
hinges can be satisfied by the vector potential in the linear
polarization case near the extrema of A(t ). However, for the
circular polarization, it cannot be satisfied for both compo-
nents of the vector potential simultaneously. Therefore, the
calculation for the circular polarization presents yet another
confirmation of the mechanism we have proposed in our
paper.

C. Pulse shape dependence

We also checked the validity of the correlation mechanism
we propose using different driving pulse shape and durations.
We first present results obtained for the correlation function if
instead of Eq. (7) the driving pulse is defined in terms of the
vector potential:

E(t ) = −∂A(t )

∂t
, A(t ) = −ẑ

E0

ω
sin4 {πt/T1} sin ωt . (13)

Results are shown in Figs. 8 and 9. Figure 9 zooms on the
correlation pattern near an extremum of the vector potential
for two different pulse shapes: the pulse given by Eq. (7)
and the pulse defined by Eq. (13). The extrema of the vector
potential for both pulse shapes differ. Figure 9 shows that the
correlation patterns shift accordingly, thereby confirming the

(a)                     Pulse Eq.(13)

-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0

 1  1.05  1.1  1.15  1.2  1.25  1.3  1.35  1.4

V
ec

to
r p

ot
en

tia
l (

a.
u.

)

(b)                     Pulse Eq.(7)
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(c) ω=0.057 a.u., E0=0.05 a.u., Pulse Eq.(13)
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(d) ω=0.057 a.u., E0=0.05 a.u., Pulse Eq.(7)
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FIG. 9. Vector potential and the real part of the covariance function are displayed for the pulse (13) (left column) and the pulse defined by
the electric field with the sin2 envelope as in Eq. (7) (right column).
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FIG. 10. Vector potential and the real part of the covariance
function for the pulse (7) with total duration of four optical cycles.
For better visibility and to reveal more detail, we plot the quantity
Re[C̃(t1, t2)]1/3.

universality of the mechanism of correlations we advocate in
the paper.

Finally, Fig. 10 shows results obtained for the pulse given
by Eq. (7) for the total pulse duration of four optical cycles
corresponding to the base wavelength of λ = 800 nm. This
figure shows correlation patterns quite similar to those shown
in Fig. 3. We can therefore state with confidence that the
correlation patterns we discuss are not merely features due
to the particular pulse parameters we are employing but rather
have universal character.

V. CONCLUSION

In conclusion, we performed the time-correlation analysis
of strong-field ionization of atomic hydrogen driven by a
nearly single-oscillation laser pulse. Our analysis covers the
multiphoton regime γ � 1 and the onset of the tunneling
ionization regimes γ � 1. Both regimes manifest themselves
by different time-correlation patterns. In the multiphoton
regime, the strongest correlation occurs along the lines t2 −
t1 = const. In the tunneling regime the correlation pattern
is mainly determined by the sum t1 + t2 near the vector
potential extrema. Both type of correlations are readily ex-
plained by simple qualitative analysis based on the LOPT and
SMM in the multiphoton and tunneling ionization regimes,
respectively.

We hope that our pioneering investigation will prompt
further theoretical studies of the variety of subcycle and
intracycle interference phenomena. Given that the correlation
function is, in principle, an experimentally measurable quan-
tity [30], this approach may also offer the possibility of a new
paradigm in the experimental studies of these phenomena. An
experimental setup for such a study might be organized in
a way similar to the one used in [31], where a short weak
signal pulse (FWHM of 280 as) arriving with a variable delay
with respect to the fundamental pulse was used to perturb the
ionization process. Imposing such a perturbation disrupts the
mechanism of correlations we described and should lead to
measurable consequences. We ourselves are considering the
process of strong-field ionization driven by circularly polar-
ized pulses to correlate the number of absorbed photons at
different instants within a single pulse or a sequence of several
pulses. This analysis, which could open new possibilities for
quantum local realism tests, will be presented elsewhere.
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