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Abstract

Background: Genome-wide studies of DNA methylation across the epigenetic landscape provide insights into the
heterogeneity of pluripotent embryonic stem cells (ESCs). Differentiating into embryonic somatic and germ cells,
ESCs exhibit varying degrees of pluripotency, and epigenetic changes occurring in this process have emerged as
important factors explaining stem cell pluripotency.

Results: Here, using paired scBS-seq and scRNA-seq data of mice, we constructed a machine learning model that
predicts degrees of pluripotency for mouse ESCs. Since the biological activities of non-CpG markers have yet to be
clarified, we tested the predictive power of CpG and non-CpG markers, as well as a combination thereof, in the
model. Through rigorous performance evaluation with both internal and external validation, we discovered that a
model using both CpG and non-CpG markers predicted the pluripotency of ESCs with the highest prediction
performance (0.956 AUC, external test). The prediction model consisted of 16 CpG and 33 non-CpG markers. The
CpG and most of the non-CpG markers targeted depletions of methylation and were indicative of cell pluripotency,
whereas only a few non-CpG markers reflected accumulations of methylation. Additionally, we confirmed that there
exists the differing pluripotency between individual developmental stages, such as E3.5 and E6.5, as well as
between induced mouse pluripotent stem cell (iPSC) and somatic cell.

Conclusions: In this study, we investigated CpG and non-CpG methylation in relation to mouse stem cell
pluripotency and developed a model thereon that successfully predicts the pluripotency of mouse ESCs.
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Background
DNA methylation is crucial in epigenetic control and is
the best-studied epigenetic variation in mammals. DNA
methylation is important in silencing retroviral elements,
in regulating tissue-specific gene expression, in genomic
imprinting, and in X chromosome inactivation. Research
also suggests that epigenetic regulation is essential to
maintaining the pluripotency of embryonic stem cells
(ESCs) [1–5]. The process by which ESCs maintain their

pluripotency is precisely controlled by cell-specific regula-
tion, and several epigenetic factors, along with gene ex-
pression, appear to be involved therein: these molecular-
level mechanisms are perceived as varying dynamically per
cell. While there is a possibility that pluripotent ESCs can
be used in various medical fields [6–8], their use in clinical
practice requires a precise understanding and control of
the functions undergirding ESC pluripotency [9].
Medical procedures, such as hematopoietic stem cell

transplantation, have proven that stem cell research is
important for regenerative medicine [10, 11]. Generally,
stem cells are well known to have the potential to regen-
erate and repair damaged cells and tissues. A stem cell
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having higher pluripotency means a stem cell can divide
into any type of cell. Thus, understanding the level of pluri-
potency is very essential in the stem cell study. In this per-
spective, a more accurate and specific model has become
necessary to understand and predict cellular pluripotency.
For predicting the pluripotent capacity of stem cells, two
primary methods have been utilized, including PluriTest
[12], which is based only on gene expression, and Epi-
Pluri-Score [13], which is based on CpG DNA methylation.
Using next-generation sequencing technology, however, re-
searchers have also discovered DNA methylation in ESCs
in areas other than CpG sequences, called non-CpG DNA
methylation [14–17]. Non-CpG methylation sites, which
are rarely found in normal adult cells, have primarily been
observed in ESCs or brain tissues: Among adult cells, only
0.02% exhibit methylation at non-CpG sites. In stem cells,
however, 10 to 25% of all cytosine methylations are re-
ported in non-CpG regions [18, 19]. Accordingly, studies
of stem cell pluripotency may benefit from implementing
approaches that consider both CpG and non-CpG methy-
lation. In support thereof, a recent study deemed that non-
CpG methylation can be used as a biomarker for assessing
endodermal pluripotency capacity [20]. However, only lim-
ited measures of DNA methylation were used to document
non-CpG methylation by Illumina array, and the authors
focused only on differences in overall amounts of methyla-
tion. Furthermore, although non-CpG methylation is
relatively common in pluripotent stem cells, a clear under-
standing of the role of non-CpG methylation in ESCs
across the stem cell pluripotency spectrum is lacking.
Hypothesizing that non-CpG methylation may be an

important biomarker of stem cell pluripotency, we devel-
oped a novel machine learning model for predicting
mouse stem cell pluripotency based on CpG and non-
CpG DNA methylation markers, and using the model, we
sought to evaluate DNA methylation changes in relation
to degrees of pluripotency in stem cells. To construct the
machine learning model, we used gene expression and
DNA methylation data obtained through parallel RNA
and DNA sequencing of 75 mice single ESCs. To deter-
mine the degrees of pluripotency in individual ESCs, we
relied on cell-specific pseudo-time estimated using gene
expression data for single cells. Using this cell pseudo-
time as a gold standard, we found that states of cell pluri-
potency for mouse single ESCs, cells in the development
stage, and induced mouse pluripotent stem cells (iPSCs)
could be predicted according to DNA-methylation levels
at CpG and non-CpG sites (Fig. 1).

Results
Gene expression based on pseudo-time in single cells
represents pluripotency well
In order to construct a machine learning model with
which to predict the pluripotency of a single cell, first,

we needed to define the degree of pluripotency for every
ESC in the dataset. The pluripotency of a single ESC is
based on gene expression from RNA sequencing data,
and pluripotency may differ across a set of cells. To
construct a pseudo-time thereof for cell ordering, gene
expression can be used to highlight sequential relation-
ships among cells at different states of pluripotency.
Here, we defined the pluripotency order of 75 single
cells using three published cell-cell ordering methods
based on gene expression, including monocle2 [21],
SLICER [22], and TSCAN [23]. The basic assumptions
in cell ordering are that cell pluripotency follows a de-
fined pathway and that gene expression is correlated
with the progression thereof. Next, we investigated cor-
relations among the cell-cell ordering methods. The cell
orders achieved with SLICER and TSCAN were similar
to that of monocle2: Spearman’s correlation coefficients
for cell order relationships were 0.93 between monocle2
and SLICER and 0.66 between monocle2 and TSCAN.
All cell orders defined with the three methods were
highly correlated with the expression patterns of known
pluripotent marker genes, reflecting both cells in a
ground state or near the completion of differentiation, as
previously described in research on ESCs [24]. Through-
out the rest of our study, we used the monocle2 method,
as it had the highest correlation with conventional pluri-
potent genes among the three cell ordering methods
(Supplementary Figure 1). According to cell-cell order-
ing, we estimated cell pseudo-time as the distance of
gene expressions between individual cells using the
monocle2 approach. We confirmed that cells collected
at pseudo-time zero were clustered near cells grown in
2i media and that cells grown in a serum environment
had higher pseudo-times (Fig. 2a). We also confirmed
that the difference was significant between pseudo-times
in cells in 2i and serum environments (Fig. 2b). The ex-
pression of genes previously identified as pluripotent
markers was strongly correlated with cell pseudo-time.
After determining cell pseudo-time, we noted that
known stem cell markers were strongly enriched for a
total of 4935 genes. Of 51 genes known to be conven-
tional pluripotent markers, we confirmed that cell
pseudo-time and the expression of most of the marker
genes were highly correlated (based on Spearman’s cor-
relation coefficients) when using monocle2 (Fig. 2c).
The expressions of Rex1 (R = − 0.69), Nanog (R = −

0.36), Tet1 (R = − 0.52), Idh1 (R = − 0.39), and Sox2 (R =
− 0.56) tended to be negatively correlated with pseudo-
time as defined in this study. Meanwhile, the expressions
of Bex1 (R = 0.82), Cnn2 (R = 0.83), and Tpm1 (R = 0.86)
showed positive correlations with expression values ac-
cording to biological pseudo-time (Fig. 2c, Supplemen-
tary Figure 2). These correlations confirmed that the
degrees of pluripotency of stem cells were due to the
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Fig. 1 Overview of epigenetic and transcriptomic analysis of single stem cells for pluripotency prediction. In total, 75 mouse single embryonic
stem cells (GSE74535), for which gene expression and DNA methylation were sequenced simultaneously, were used to generate a linear model
that predicts cell pluripotency. The biological pseudo-time of each cell was determined using gene expression data. Using the CpG and non-CpG
DNA methylation levels of each genomic interval, we constructed a linear model that predicts cell pseudo-time. Validation was performed using
DNA methylation sequencing data from 34 independent samples of single and bulk ESCs (GSE56879)
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expression of known marker genes and that the degrees
of pluripotency of cells were well defined by pseudo-
time based on gene expression profiles of stem cells.

CpG and non-CpG methylation decreases with cell
pluripotency
Moving forward, we investigated the global characteris-
tics of DNA methylation in individual single cells across
different states of pluripotency. More specifically, we ex-
amined DNA methylation across the region 1500 bp up-
stream from the transcription start site, the region 1500
kb downstream from the transcription end site, and the
gene body region. To describe distributions of DNA
methylation in greater detail, we assessed DNA methyla-
tion at CpG and non-CpG sites and investigated the

methylation of CpG and non-CpG sites near the tran-
scription start sites (TSSs) for all genes. For all single
cells, methylation levels near TSSs, which represent pro-
moter regions for first exons, were lower than methyla-
tion levels at other genomic regions (Fig. 3a,b). This is in
keeping with a previous study that reported that about
65% of genes have CpG islands in their promoter regions
and that most of these CpG islands remain un-
methylated [25]. Moving away from first exons, both
CpG and non-CpG methylation levels gradually in-
creased in the first intron region. Interestingly, the non-
CpG methylation levels of exons and 3’UTRs were less
than those of introns. Comparing DNA methylation and
cell pluripotency, we discovered that CpG DNA methy-
lation across the entire genome gradually increased as

Fig. 2 Pseudo-time of single ESCs based on gene expression. a Two-dimension plot of 75 single cells based on gene expression data, applying
monocle2. Color bar represents cell pseudo-time based on gene expression data. b A violin plot of pseudo-times of cells according to cell culture
environment. Red dots represent pseudo-time for cells grown in 2i media; blue dots represent cells cultured in serum. p represents a result of
ranksum test between cells in 2i and serum environments by Wilcoxon rank-sum test. c A heat map of gene expression ordered using the
monocle2 cell ordering method. Pluripotent/differentiation marker genes are sorted according to Spearman correlation coefficients between cell
pseudo-time and gene expression levels. Samples are sorted by cell pseudo-time detected by the monocle2 method. Numbers in the right
columns indicate Spearman’s correlation coefficients; top red-yellow color bar represents the cell pseudo-time; and the bottom blue/red color bar
indicates the environment for cell growth
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Fig. 3 (See legend on next page.)
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cell pseudo-time increased (Fig. 3a,b). Similar to CpG
DNA methylation, non-CpG regions tended towards
slight increases (Fig. 3c,d). These results indicated nega-
tive correlations between degrees of pluripotency for
ESCs and both overall CpG DNA methylation and over-
all non-CpG DNA methylation. Similar results in
regards to methylation status and pluripotency were ob-
tained for cells grown in different culture media. Evalu-
ating methylation at CpG and non-CpG sites, we
confirmed that cells cultured in 2i were more pluripo-
tent and had significantly lower methylation levels (P
value < 0.05, t-test) than cells cultured in serum. Indeed,
the CpG and non-CpG methylation levels in cells (from
GSE74535 and GSE56879) cultured in 2i were lower
than those in cells grown in serum (see also Supplemen-
tary Figure 3a-b). Accordingly, we deemed that the total
amounts of methylation in individual ESCs increase at
both CpG and non-CpG regions with greater cell
pseudo-time values. To compare increases in CpG and
non-CpG methylation, we divided 75 samples into five
groups according to their cell pseudo-times: using
pseudo-time order, we divided the cells into equal num-
bers from group I to group V. Interestingly, overall CpG
methylation levels remained stable from the third group
with almost no increase thereafter (Fig. 3b). As for non-
CpG methylation, however, while overall increases were
noted, we noted that methylation levels were dispersed
more evenly across pseudo-times (Fig. 3d). Accordingly,
we deemed that changes in CpG methylation are more
stable than those in non-CpG methylation and that
methylation trends in non-CpG markers are similar to
those in CpG markers, although with greater variability
in pseudo-times.

CpG and non-CpG methylation markers accurately predict
ESC pluripotency
To construct a model for predicting cell pluripotency in
ESCs, we identified methylation markers for both CpG
and non-CpG genomic intervals using the elastic net ap-
proach. We constructed three elastic net-based linear re-
gression models (CpG, non-CpG, and combined models)
using DNA methylation levels as features and cell
pseudo-time as the gold standard. The numbers of DNA
methylation markers were 16 and 33 for the CpG and

non-CpG models, respectively. The combined model
was based on the methylation of all cytosine residues re-
gardless of cytosine type, comprising 49 marker intervals
(16 CpG markers, 33 non-CpG markers). Interestingly,
all CpG markers were positively associated with degrees
of cell pseudo-time (Fig. 4a, Supplementary Table 1).
While both positive and negative correlations were ob-
served for non-CpG markers, most of them exhibited
positive correlations with cell pseudo-time, similar to
CpG markers (Fig. 4b, Supplementary Table 1). Next, to
validate the performance of our model, leave-one-out
cross-validation was initially conducted with 75 samples
in the training set. We confirmed good performance for
all models, including the combined model, in the in-
ternal test (Fig. 5a-c). Overall, the combined model
showed the best performance in predicting cell pseudo-
time and cell culture environment: Pearson’s correlation
coefficient of 0.919, root-mean-square error of 6.386,
and slope of 0.882 (Fig. 5c). For verification in an inde-
pendent dataset, we used 34 instances of single-cell (32
instances) and bulk-cell BS-seq (two instances) data for
cells cultured in serum and 2i media. Since gene expres-
sion values in the independent set were not provided, we
sought to determine how these two cell groups could be
distinguished in our model. A receiver operating charac-
teristic curve was drawn based on estimated cell pseudo-
time values derived from the model for the two groups
(Fig. 5d-f). The area under the curve (AUC) of the com-
bined model was 0.956 (Fig. 5f), and its accuracy was
91.2% (Supplementary Figure 4). Although we confirmed
the classification performance of the 2i and serum
groups due to the absence of gene expression, we clearly
saw a difference in the predicted pseudo-times of each
group (Supplementary Figure 5). In addition, the classifi-
cation performance of the combined model showed
similar or better performance than the CpG and non-
CpG models (Supplementary Figure 4). These results in-
dicated that cell pluripotency could be predicted based
on CpG and non-CpG DNA methylation markers. Ap-
plying the combined model with the elastic net method
and estimated cell pseudo-time, we noted that estimated
cell pseudo-times were low in single cells grown in 2i
(Supplementary Figure 5). Accordingly, the results of
our predicted model based on CpG and non-CpG

(See figure on previous page.)
Fig. 3 Overall DNA methylation levels according to cell pseudo-time. a Levels of overall CpG methylation and CpG methylation relative to gene
structure. b For each group, the relation between overall CpG methylation and stem cell pseudo-time is provided. c Levels of overall non-CpG
methylation and non-CpG methylation relative to gene structure. d For each group, the relation between overall non-CpG methylation and stem
cell pseudo-time is provided. For (a,c), genic regions were split into 120 non-overlapping windows to determine methylation levels. Each region
was divided into 12 small windows for methylation analysis. Percent values represent the pseudo-times of the cells: groups I to V represent the
degrees of cell pluripotency, with group I having the shortest pseudo-time (pluripotency-high) and group V the longest (pluripotency-low). For
(b,d), the m and cv values represent mean methylation levels and coefficients of variation, respectively
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methylation markers showed that more single cells cul-
tured in 2i were in a ground state than cells grown in
serum.

Prediction of pluripotency of iPSCs and ESCs according to
developmental stage
To confirm that the cell pluripotency of other types of
cells could be predicted by using our models, especially
iPSCs, we used a public dataset and identified pseudo-
times of different cell types. To do so, we collected BS-
seq data and measured the methylation levels in the

same manner as that in our previous experiments: the
two public datasets had GEO numbers GSE64115 (in-
duced pluripotent stem cells [iPSCs] and somatic cells)
and GSE84235 (developmental stage of ESCs). To verify
the performance of the pluripotency prediction model,
we investigated pseudo-times for iPSCs and somatic cells
according to developmental stage. Unfortunately, no
dataset covered all of the methylation markers extracted
from the training set; therefore, we proceeded to select
common markers and to apply a model built only from
these markers. The numbers in third column in Table 1
indicate the number of used markers. The results of our

Fig. 4 CpG and non-CpG markers for predicting stem cell pluripotency. a A heat map of methylation levels for 16 CpG markers. Samples are
sorted by cell pseudo-times detected by the monocle2 method. b A heat map of methylation levels for 33 non-CpG markers. Samples are sorted
by cell pseudo-time detected by the monocle2 method. The CpG and non-CpG markers are sorted according to Spearman correlation
coefficients between cell pseudo-time and methylation levels for each marker. Numbers in the right column represent Spearman’s
correlation coefficients
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Fig. 5 Prediction of cell pseudo-time via CpG and non-CpG methylation levels. (a-c). Correlation scatter plot of comparisons between cell
pseudo-time and predicted cell time. In (a) and (b), each model used features that included a single cytosine type, CpG or non-CpG, respectively.
In c, the model used a combination of markers for CpG and non-CpG sites. The fitted red lines represent a least-squares line for each scatter plot.
R represents Pearson’s correlation coefficients, and m indicates the slopes of fitted linear lines. RMSE represents the root mean squared error
between cell pseudo-time and predicted pseudo-time. (d-f) Receiver operating characteristic curves for classification of cells grown in 2i media or
serum for the CpG, non-CpG, and combined models, respectively

Table 1 Prediction of cell pluripotency of ESCs and iPSCs. Prediction of pseudo-times of iPSCs, somatic cells, and stem cells
according to development stage using the proposed pluripotency prediction model

Dataset Samples Number of markers used Pseudo-time

GSE64115 WT MEF 10 24.30

GSE64115 WT iPSC 10 15.61

GSE84235 E6.5 (Proximal Epiblast) 48 15.35

GSE84235 E6.5 (Proximal Epiblast) 48 15.60

GSE84235 E6.5 (Extraembryonic Ectoderm) 48 13.88

GSE84235 E6.5 (Extraembryonic Ectoderm) 48 14.49

GSE84235 E3.5 (Inner Cell Mass) 48 5.36

GSE84235 E3.5 (Inner Cell Mass) 48 5.4

GSE84235 E3.5 (Trophectoderm) 48 5.24

GSE84235 E3.5 (Trophectoderm) 48 5.68
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pluripotency prediction model revealed that the samples
of the early cell development stage (E3.5) had lower cell
pseudo-times than E6.5 samples (Table 1). Furthermore,
we confirmed that the pseudo-time values of iPSCs were
indeed less than those of somatic cells. This showed that
our prediction markers of cell pluripotency could help
with identifying cellular development stage and with de-
termining the pluripotency of iPSCs.

Discussion
In this study, we noted several important characteristics
of DNA methylation patterns in ESCs. First, the degrees
of overall DNA methylation of ESCs changed dynamic-
ally (Fig. 3a-d). The number of cells with high cellular
pluripotency showed low overall methylation levels for
most CpG markers. This reflects the reported relation-
ship between cell pluripotency and methylation de-
scribed in previous studies [19, 26]. Meanwhile, non-
CpG markers showed only small decreases in methyla-
tion with greater cell pluripotency. Second, our model
based on CpG and non-CpG methylation performed
well in predicting cell pluripotency. The cell pluripo-
tency prediction model using different types of DNA
methylation was constructed using the elastic net ap-
proach. The performance of the CpG and non-CpG
combined model achieved a Pearson’s correlation coeffi-
cient of 0.919 when compared with cell pseudo-time
based on transcriptomic pluripotency. Using an external
dataset, we applied our models as classifiers to distin-
guish between 2i and serum environments. The com-
bined model exhibited an AUC value of 0.956; the CpG
and non-CpG models had AUC values of 0.952 and
0.802, respectively. The reason why both CpG and non-
CpG markers could be used in a prediction model was
that methylation levels for both were correlated with cell
pluripotency, and these results suggested that non-CpG
methylation could be a good marker for estimating cel-
lular pluripotency. In addition, we investigated whether
the prediction model could determine the degree of
pluripotency in developing cells, as well as the degree of
pluripotency in iPSCs and somatic cells. Our prediction
model indicated a pattern of decreasing pluripotency as
the cell develops and that predicted pseudo-times for
iPSCs and somatic cells clearly differed. Thus, we
deemed that our prediction model of the pluripotency of
cells could be of use in stem cell research and pluripo-
tency measurements of iPSCs (Table 1). As a limitation
to our study, gene expression and DNA methylation in-
formation was obtained from single mouse ESCs, and
we examined whole-genome regions despite low cover-
age and despite lacking detailed methylation informa-
tion. We suspect that isolating more considerable multi-
omics data including transcriptome and methylome data
for single cells and including other mammalians will

help with obtaining a more accurate representation of
the role of DNA-specific methylation in ESC or iPSC
pluripotency.

Conclusions
To develop a prediction model of cell pluripotency, we
investigated relationships between DNA methylation
and pluripotency in single mouse ESCs and assessed the
contributions of CpG and non-CpG-specific methylation
to pluripotency. In doing so, we observed that DNA
methylation differed with cell pluripotency and that epi-
genetic markers could be used to predict states thereof.
We suggest that our prediction model of pluripotency
based on both CpG and non-CpG DNA methylation
markers successfully indicates the pluripotency of mouse
ESCs.

Methods
Preprocessing and cell pseudo-time
scRNA-seq and scBS-seq parallel profiling data from
mouse ESCs were obtained from a previous study with
the Gene Expression Omnibus (GEO) accession ID
GSE74535 [27]. Additional independent scBS-seq data
were obtained with the GEO accession ID GSE56879
[28]. The GSE74535 dataset consisted of RNA and BS-
seq data for 75 single cells (14 cells in a 2i environment,
61 cells in a serum environment); the GSE56879 dataset
comprised only BS-seq data for 32 single and two bulk
cells (13 cells in a 2i environment, 21 cells in a serum
environment) from mice. As in the previous study [27],
we also excluded samples in the GSE74535 dataset with
a bisulfite-conversion efficiency of < 95% as estimated by
non-CpG methylation. We conducted realignment pro-
cessing from raw FASTQ files through a consistent
process. All single cell datasets used in this study are avail-
able via the NCBI database under the Sequence Read
Archive accession numbers SRP065548, SRP058091, and
SRP041257. To detect expression at the gene level, align-
ment was performed using STAR software [29] with de-
fault parameters. Transcripts Per Million (TPM) values
were also derived using the RSEM software package [30].
Before gene expression analysis, RNA-seq data were pre-
processed. During this process, each gene with a TPM
value greater than 1 in more than half of the samples was
used. Finally, 4935 gene expression values from 75 samples
were used in this study. For DNA methylation data, the
first six base pairs were clipped off the 5′ end of raw se-
quence reads to remove the 6 N random priming portion
in order to remove both poor-quality calls and adapters
using Trim Galore! (www.bioinformatics.babraham.ac.uk/
projects/trim_galore). The remaining sequences were then
aligned to the mouse genome (build GRCm38) with Bis-
mark [31] in the single-end mode (parameters: --non-dir-
ectional). Duplicate sequences were excluded, and
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methylation calls were extracted. The cell ordering pro-
cesses were conducted using three methods, monocle2
[21], SLICER [22], and TSCAN [23], applying their default
parameter values. Cell pseudo-time was estimated by the
monocle2 approach using all 4935 gene expression values
of log2(TPM+ 1).

Identification of methylation levels
Methylation values for individual genomic loci were
measured using a sliding window approach to increase
the degree of genomic coverage and to overcome sparse
BS-seq data. We measured DNA methylation levels by
distinguishing cytosine from CpG sites and non-CpG
sites. When the window size was w and the step size was
s, for each genomic interval l, the methylation level of
each interval l was identified as the mean methylation
level of each binary single-base-pair cytosine methylation
rate at an interval of l. The methylation level of each
cytosine was defined as the ratio of methylated read
counts and the sum of unmethylated and methylated
read counts. If any sample was not found to have at least
four covered cytosine bases in each genomic interval,
those genomic intervals were discarded. Finally, for CpG
DNA methylation, we constructed a CpG methylation
matrix of 420 genomic intervals for the 109 mouse sam-
ples from the GSE74535 and GSE56879 datasets, with a
window size of 3000 bp and a step size of 1500 bp (Sup-
plementary Figure 6). For non-CpG methylation, we
constructed a non-CpG methylation matrix of 3554 gen-
omic intervals for the 109 mouse samples for both of
CHH and CHG methylation data (in which H = A, T or
C) from the GSE74535 and GSE56879 datasets.

Linear regression modeling and statistical analysis
Prior to performing regression analysis, we performed a fil-
tering task to select markers related to cell pluripotency in
a large number of genomic intervals using the f-test. In this
process, we used the mean methylation level of each gen-
omic locus as an experimental variable and the pseudo-
time of each single cell as a response variable. We then cal-
culated F-statistic as the ratio regression sum of squares
and mean square error through the univariate linear rela-
tionship between methylation level and pseudo-time. After
the f-test, genomic intervals with P values less than 0.05
were selected. Filtering each bin group through the f-test
with pseudo-time, intervals were reduced to 379 and 195
among CpG and non-CpG intervals, respectively. We then
utilized the lasso [32] and elastic net [33] methods to select
significant genomic intervals, and constructed predictive
models for CpG, non-CpG, and a combination thereof. We
first performed the bootstrap procedure 1000 times for
lasso regression. After selecting CpG and non-CpG inter-
vals, we defined more than half of the selected genomic in-
tervals as the final epigenetic markers in 500 runs. Next,

we applied the elastic net method, which is widely used to
process high-dimensional variables with a small number of
samples, for selecting prediction markers. In formulas (1)
and (2) below, y represents the cell pseudo-time vector; βi
represents the coefficient of the i th genomic interval; and
xi represents the degree of methylation of the i th genomic
interval. The elastic net approach uses the L1 and L2
normalization techniques, which are core concepts in lasso
[32] and ridge [34] regression methods. Below, α is the
penalty weight. When α is 0, it is identical to ridge regres-
sion, and when it is increased to 1, it more closely resem-
bles lasso regression.

β̂ ¼ arg min
β0;β

1
2N

XN

i¼1

ðyi−β0−xTi βÞ2 þ λPαðβÞ
 !

; ð1Þ

Pα βð Þ ¼
Xp

j¼1

1−αð Þ
2

� �
β2j þ α β j

���
���: ð2Þ

All statistical tests and analyses were conducted using
MATALB2018b and R3.5.2. For pseudo-time compari-
son, we conducted Wilcoxon rank sum test [35].

Parameter selection for the elastic net approach
Among 420 CpG and 3554 non-CpG methylation gen-
omic intervals defined using the raw bisulfite sequencing
data, we selected only 49 genomic intervals through use
of f-test and lasso regression. Next, the intervals of the
prediction model were selected by the elastic net
method. For linear regression models, we selected α and
λ regularization parameters by a cross validation ap-
proach. We found α and λ values according to mini-
mized root-mean square errors. As stated above, when α
is zero, it is identical to ridge regression, and when α is
1, it is identical to lasso. When λ increases, the coeffi-
cients are shrunk more. For optimal λ values, 10-fold
cross validation was performed using GSE74535 to select
final parameters, and external validation was performed
with GSE56879 data. When we treated the alpha values
in similar ways, there were no differences when we ad-
justed the alpha; therefore, we treated alpha values as 1.
This means the model used lasso regression and was
simpler than ridge regression. Finally, all of prediction
models were conducted with an optimal α of 1 and λ
values (Supplementary Fig. 7).

Induced pluripotent stem cells and ESCs according to
developmental stage
For validation of model performance, two public datasets
were used (GEO numbers GSE64115 and GSE84235).
Again, methylation levels were investigated using the
sliding window approach. To verify the additional per-
formance of the model, we evaluated pseudo-times for
iPSCs and somatic cells by using detected common
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methylation markers, and we also evaluated pseudo-
times according to developmental stage based on public
methylation data.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
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