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Chanyong Park

Department of Physics and Photon Science, Gwangju Institute of Science and Technology,
Gwangju 61005, Korea

® (Received 28 April 2020; accepted 2 June 2020; published 12 June 2020)

To understand the time-dependent quantum correlation in expanding universes, we study the time-
dependent entanglement entropy in the braneworld model. If we take into account a generalized string cloud
geometry caused by uniformly distributed open strings, cosmologies on the braneworld result in the standard
Friedmann-Lemaitre-Robertson-Walker cosmologies with various matter contents. On the dual field theory
side, open strings are reinterpreted as fundamental matter, while the black hole mass corresponds to the
excitation energy of massless gauge bosons. We show how the string cloud geometry is matched to various
braneworld cosmologies, for example, eternal inflation and radiation- and matter-dominated universes.

Then we investigate how the entanglement entropy evolves in those expanding universes.

DOI: 10.1103/PhysRevD.101.126006

I. INTRODUCTION

Recently, quantum entanglement has become one of the
main research areas for understanding quantum features of
various physical systems in both high energy physics and
condensed matter physics. Despite the importance of
quantum nature, it is still a difficult problem to figure
out the quantum entanglement of strongly interacting
systems. In this situation, there was fascinating conjecture
in string theory. This is called holography or the AdS/CFT
correspondence, which claims that a strongly interacting
quantum field theory has a one-to-one map to a classical
gravity theory defined in one-dimensional higher anti—de
Sitter (AdS) space [1-4]. Based on the holography con-
jecture, in this work, we will investigate the quantum
entanglement entropy and its time evolution in various
expanding universes.

In general, a two-dimensional conformal field theory
(CFT) is special in that it is invariant under infinitely many
conformal and modular transformations. These large sym-
metries allow us to determine the quantum entanglement
entropy exactly even for strongly interacting systems [5,6].
Intriguingly, it was shown that the holographic calculation
in three-dimensional AdS space, which is dual to a two-
dimensional CFT, can reproduce the same results obtained
in CFT [7,8]. This work has been further generalized to
higher-dimensional CFTs deformed by various relevant or
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marginal operators [9-16]. In these holographic calcula-
tions, the Ryu-Takayanagi (RT) formula has been widely
used [7,8]. The RT formula first assumes a dual geometry
which is invariant under time translation. Then it claims
that the entanglement entropy of a deformed CFT can be
represented as the area of the minimal surface extending to
the dual geometry. Because of time-translation invariance,
the minimal surface can be defined in a hypersurface at any
given time and results in the time-independent entangle-
ment entropy.

Now let us take into account time-dependent entangle-
ment entropy. To describe it, we first break the time-
translation invariance [17-21]. This implies that we must
consider a dual geometry whose metric is time dependent.
Because of the nontrivial time dependence, we cannot
directly apply the RT formula. It was argued that on the
time-dependent background one must use the Hubeny-
Rangamani-Takayanagi (HRT) formula instead of the RT
formula, in which the minimal surface also extends to the
time direction [22]. Sometimes the HRT formula is called
the covariant formulation. Although the HRT formula is
conceptually manifest, it is not easy to calculate the time-
dependent holographic entanglement entropy exactly
except in several simple cases [23]. Interestingly, it was
argued that, even in time-dependent geometries, the RT
formula can provide the leading contribution to the HRT
formula at a given time, at least in the UV regime [24].
Following this argument, the leading behavior of the time-
dependent entanglement entropy has been studied in the
eternally inflating universe. It has been shown that the
leading time dependence of the entanglement entropy still
satisfies the area law determined by the physical distance
[24]. However, there are still several important issues to be
resolved. The first one is to calculate the higher-order
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corrections, which may significantly modify the late-time
behavior of the entanglement entropy. The second is how
we can calculate the entanglement entropy in universes
expanding by power laws. Although an eternally inflating
cosmology is holographically realized by an AdS space
with a dS boundary, we still do not know what the exact
dual geometries expanding by power laws are. In the
standard cosmology, there are several types of cosmologi-
cal universes allowing different power-law expansions.
Thus, understanding the time evolution of the entanglement
entropy remains an important concept for understanding
the quantum nature of cosmology.

In this work, we take into account another holographic
model that can describe a variety of expanding universes
containing the expected power-law expansions. The brane-
world (or Randall-Sundrum) model claims that we are
living on the brane at which two bulk geometries are
bordered [25-29]. Originally, the first Randall-Sundrum
model was studied to explain the hierarchy issue of two
very different energy scales. Later, the second Randall-
Sundrum model was improved upon to the braneworld
model, which can explain the inflationary cosmology with
a graceful exit [30-32]. In this work, we will show that the
gravity theory involving appropriate bulk matters can
describe other expanding universes with the power-law
expansion. According to the AdS/CFT correspondence,
those bulk matters like open strings and black hole mass
can be identified with fundamental matter and radiation of
the dual field theory, respectively. When we consider a
four-dimensional expanding universe in which the funda-
mental matter or radiation is uniformly distributed, the
standard cosmology shows that the scale factor increases by
the power law, for example, 7%/ for fundamental matter
and 7!/2 for radiation, where 7 indicates the cosmological
time. When we regard the previous bulk matters in the
dual gravity theory, intriguingly, the braneworld model
leads to the same power-law behaviors in the braneworld
cosmology.

Another remarkable point of the braneworld model is
that it is possible to calculate the time-dependent entangle-
ment entropy of various expanding universes. In the
braneworld model, the expanding universe is represented
as the radial motion of the brane in the bulk space.
Therefore, even when we consider the static bulk spaces,
the tension of the brane and the nontrivial bulk metric cause
a nontrivial radial motion of the brane. Since the bulk
metrics of the braneworld model are static, we can use the
RT formula instead of the HRT formula. Nevertheless, the
radial motion of the brane provides time-dependent boun-
dary conditions for the minimal surface, which leads to the
nontrivial time evolution of the entanglement entropy. In
the eternal inflationary era, we show that the leading time
dependence of the entanglement entropy is proportional to
the area of the entangling surface, as discussed in Ref. [24].
In addition, we calculate the higher-order corrections to the

time-dependent entanglement entropy. In the matter- and
radiation-dominated eras representing the power-law
expansion, the entanglement entropy of a small subsystem
size follows the area law, while a large subsystem leads to
the volume law rather than the area law. It was shown that
a similar volume law of entanglement entropy occurs in
the IR regime of the renormalization group flow and
represents the thermal entropy which corresponds to the
thermalization of massless gauge bosons [33-36]. As a
consequence, the entanglement entropy in the radiation-
dominated era increases by 7 for a small subsystem and by
73/ for a sufficiently large subsystem. In the matter-
dominated era, on the other hand, the entanglement entropy
increases by z*/3 for a small subsystem and by 7> for a large
subsystem.

The rest of this paper is organized as follows. In Sec. II, we
briefly discuss the braneworld model in which the brane-
world cosmology is determined by the radial motion of
the brane. To realize the Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric on the brane, in Sec. III, we discuss
the dual gravity theory including appropriate matter fields
which can represent the matter- and radiation-dominated
eras. In Sec. IV, we investigate the time-dependent entan-
glement entropy in expanding universes by applying the RT
formula. Finally, we conclude this work with some remarks
in Sec. V.

II. RADIAL MOTION OF A BRANE IN THE
BRANEWORLD MODEL

It would be interesting to understand the quantum
correlations between two regions in the expanding uni-
verse. Even in the holographic setup, it is not an easy task to
calculate the time-dependent entanglement entropy. In the
expanding universe, although it was argued that the RT
formula can provide a good leading approximation to the
HRT formula [24], one has to use the HRT formula instead
of the RT formula due to the explicit time dependence of
the metric. When applying the HRT formula, there are two
difficulties in determining the entanglement entropy of the
expanding universe. One is that it is not easy to construct a
dual geometry which allows a FLRW metric of the
boundary spacetime. The other is that, even when the dual
geometry is known, it is not easy to evaluate the entangle-
ment entropy by applying the HRT formula. In this work,
we take into account another model called the braneworld
model, which has two merits for understanding the time-
dependent entanglement entropy in the expanding universe.
The first is that the FLRW metrics for various expanding
universes can be easily realized. The second is that, despite
the fact that the resulting entanglement entropy is time
dependent, we can still use the RT formula instead of the
HRT formula. For these reasons, it is possible to calculate
the time-dependent entanglement entropy in the brane-
world model. To provide more detail, in this section, we
briefly discuss the braneworld model.
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Let us first assume that M are two five-dimensional

bulk spaces, each with its own well-defined metric, gj(j,\),

and that they are bordered through a four-dimensional
brane 0 M. Then the induced metrics on both sides of the
brane must be reduced to the same metric to get a unique
metric on the brane. This requirement was called the first
Israel junction condition [37], which fixes the tangential
components of two bulk metrics. The second junction
condition treats the derivatives of the bulk metrics in the
radial direction perpendicular to the brane. Although
the normal components of the metrics are continuous at
the border, their derivatives are generally not due to a
nonvanishing stress tensor of the brane. If we further
require the first normal derivatives of the bulk metrics to
be continuous at the border, this constraint leads to the
second Israel junction equation. When the tension of the
brane is given, a radial motion of the brane is governed by
this second junction equation. In the braneworld model
[25,27,30], the radial motion of the brane is directly
associated with the cosmology on the brane. To investigate
possible cosmologies appearing in the braneworld model,
we discuss the details of the braneworld model by using the
holographic renormalization technique.

Let us consider the following five-dimensional gravity
action:

S =Sp. + Sy + Sopms (2.1)

where S, indicate two gravity actions determining the
bulk metrics gl(j,g, and the remaining Sy, denotes the action
of the brane. More precisely, the gravity action Sy,

defined on M. is given by

1
S, =—
* 2](‘2 M,

1
-z [ TS,
K™ Jom

Bxy=g(R - 2A® + £
(2.2)

where the last term is the Gibbons-Hawking term which is
needed to obtain a well-defined Einstein equation. Here y,,

is the induced metric on the brane and EEni) denotes the
Lagrangian of the bulk matter fields. From now on, we
assume a negative cosmological constant

6

AE) = —— |
RZ

(2.3)

where R is the AdS radii for M. In general, the action S
can have different cosmological constants and matter
contents. In this work, for simplicity, we assume that
two bulk geometries have the same cosmological constant
and matter content. If one consider different cosmological
constants and matter content, one can find a variety of
different cosmologies on the brane.

If we require translational and rotational symmetries on
the brane, the corresponding bulk metric has the following
form:

ds® = gyndx™dxV

= —A(r)df* + B(r)dr* + C(r)é;dx'dx),  (2.4)
where i, j = 1, ..., 3. Before discussing the junction equa-
tion, we must note that the radial ranges of M is restricted
to a finite or semi-infinite region due to the existence of the
brane. Denoting the radial position of the brane as 7, the
range of the radial coordinate in the bulk spaces is limited
to 0 <r<rorr<r< o However, if we further require
the reflection invariance under » — 27 — r, the radial range
of the two bulk spaces reduces to0 < r < 7and 7 < r < 27.
This Z, symmetry was used to construct the first brane-
world model [25]. Although the braneworld model tech-
nique can be applied to a general case without Z,
symmetry, we hereafter focus on the case with Z, symmetry
because the later case is sufficient to present important
features that we are interested in. In any case, if the
geometry of M_ is determined in the present setup, the
geometry of M, is automatically fixed due to the Z,
symmetry.

After rewriting the bulk metric g,y as the form of the
Arnowitt-Deser-Misner decomposition,

gundxMdxN = B(r)dr* +y,,dx"dx", (2.5)

we can derive an on-shell gravity action by applying the
equation of motion. Because of the equation of motion, the
on-shell gravity action usually reduces to a boundary term
on the brane. The variation of the boundary action with
respect to the boundary metric is given by [27]

55, — / d'x = oy, (2.6)
oM
with the canonical momentum of the metric
1 68 1
W =— = - (K — 1, K@), (27)

M = W&y"” 2k2

where K, = V,n, indicates an extrinsic curvature tensor at
the boundary. In the holographic renormalization pro-
cedure, this canonical momentum corresponds to the dual
stress tensor defined in the boundary spacetime. Because of
the Z, symmetry that we imposed, the extrinsic curvatures
of two bulk spaces satisfy K ,(I) = — ,<,_>, where the minus
sign naturally appears due to the opposite direction of

two unit normal vectors in M. Defining K, = ,(,,_,), the
resulting boundary stress tensors become
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1
”/S:l‘/:) =t-— (K,uy - yle)'

oo (2.8)

Note that the above boundary stress tensors are defined
at the same position. Nevertheless, the two boundary stress
tensors derived in M) are not the same. Why does this
discrepancy occur? The reason is that the brane also has its
own nonvanishing stress tensor. Consequently, the brane’s
stress tensor must cancel the discrepancy of the two
boundary stress tensors mentioned earlier. Denoting the

brane’s stress tensor as T, we find that it must satisty

() _ ) _p

Ty — Ty = g

(2.9)

which is the second Israel junction condition. If we assume
that the brane is in a ground state with a constant energy
density and pressure, the brane’s action is simply given by

2

Song = __(2’/ d*x\/=7, (2.10)
K= Jom

where 26/x?> corresponds to a brane’s tension and M

indicates the brane’s world volume. In this case, the brane’s
stress tensor is given by

1 853 o
/‘U:—_yw:py’w' (211)
Applying the Z, symmetry discussed earlier, the Israel
junction equation finally reduces to the following simple
form:

(o2
Ky = =7

W=7 (2.12)

From the holographic viewpoint, the brane plays the role
of the boundary for two bulk spaces in which the dual field
theory resides. In this case, the position of the brane is
identified with the energy scale of the dual field theory. If
we are interested in physics at a certain fixed energy scale,
it is natural to take into account a nondynamical brane (or
boundary) lying at a finite radial distance. In the brane-
world model, however, we are interested in the cosmology
on the brane, which must be time dependent. Since the
cosmology on the brane is associated with the radial motion
of the brane, it is better to take the radial position of the
brane as a function of time, 7(¢). Under this parametriza-
tion, we rewrite the junction condition in a more explicit
form in terms of metric components. When the brane is
moving in the radial direction, a unit normal vector on the
brane is given by

VAB
Ny = —F——
M VAZBP

where r indicates the position of the brane. In terms of the
normal vector, the extrinsic curvature tensor is defined by

{r,—1,0,0,0}, (2.13)

KMN = }/Z}/}%vi)ng with YMN = GMN —nyny. The Spatial
components of the extrinsic curvature tensor result in (see
Ref. [27] for more details)

K _ _VABC 1
TTTA cva—BR' "

where the prime indicates a derivative with respect to r. As
a consequence, the junction equation reduces to

c VAB
= =2 Y22\ /A-Bi.

C d-1 A

(2.14)

(2.15)

When the bulk metric is given, the junction equation
determines the radial motion of the brane with a velocity 7.
For reinterpreting the brane’s radial motion as the
cosmology on the brane, we must introduce a cosmological
time 7 defined on the brane,
—d7* = —AdP? + Bdr?. (2.16)
After we replace C(r) with a(r)? and regard r as a function
of the cosmological time 7 instead of the bulk time #, the
induced metric on the brane finally becomes
dst = —dv* + a(7)?5;;dx dx/. (2.17)
This is the FLRW metric representing the time evolution of

the Universe. In terms of the cosmological time, the
junction condition is rewritten as

dr2_02C2 1
dr)  3*C?* B’

If the bulk metric is known, the corresponding cosmology
on the brane is uniquely determined by the junction
equation.

(2.18)

III. COSMOLOGY ON THE BRANE

In the previous section, we studied the general formula
representing the relation between the brane’s motion in the
bulk space and the time evolution in the braneworld. In this
section, we try to construct an appropriate gravity theory
which can describe the cosmology of the braneworld with
various matter contents like vacuum energy, nonrelativistic
matter, and radiation.

A. Standard cosmology in
four-dimensional flat space

Before studying the cosmology in the braneworld model,
for later comparison we briefly summarize the standard
cosmology of a four-dimensional expanding universe [38].
The cosmology of a four-dimensional expanding universe
can be described by the FLRW metric in Eq. (2.17), where
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a(z) is called the scale factor. The scale factor represents
how rapidly the universe expands. Because of the existence
of the nontrivial scale factor in the FLRW metric, it is worth
noting that a distance |dx| defined in the comoving frame is
not physical. Instead, the physical distance is given by
a(z)|dx|.

In the standard cosmology, the time dependence of the
scale factor is governed by the Friedmann equation

a\? «?
-] == 3.1
(£) =50 (5.1
and the continuity equation
0:b+3<§)(p+p), (3.2)

where p and p are the energy density and pressure of matter
contained in the Universe. Assuming that the matter is an
ideal gas satisfying p = wp, the value of the equation of
state parameter w characterizes what kind of matter is
contained in the Universe. For example, when w = —1 the
matter corresponds to the vacuum energy or cosmological
constant. If w =0, the matter is called dust, which
corresponds to nonrelativistic particles with zero pressure.
For w = 1/3, lastly, the matter reduces to radiation corre-
sponding to relativistic massless fields like gauge bosons.
Solving the continuity equation with the equation of state
parameter of an ideal gas, the energy density can be
rewritten in terms of the scale factor:
p~ a3 (3.3)
Plugging this relation into the Friedmann equation, the
scale factor, except when w = —1, is determined as a
function of the cosmological time:

a(t) ~ D)

(3.4)
This result shows that the scale factor in the radiation-
dominated era (w = 1/3) increases by a ~7'/? as time
elapses, while it increases by a~ 73 in the matter-
dominated era (w =0). For w = —1, the scale factor
increases exponentially with time, a ~ e’*, and represents
eternal inflation.

B. Bulk geometry for the braneworld model

In the previous section, we briefly discussed the possible
cosmological solutions relying on the matter distributed
in the Universe. In the braneworld model, how can we
realize these cosmologies while including various kinds of
matter? In this section, we try to construct a specific five-
dimensional gravity theory, which may allow us to rederive

the known results of the standard cosmology in the
braneworld model.

Let us first consider a five-dimensional gravity theory
without a bulk matter field. Then, because of the negative
cosmological constant, the most general geometric solution
is given by an AdS black hole (or black brane) metric

r? oo R?
dS2 :R—(—f<r)dt2 —|—5,-jdx’dxf) +Wdr2, (35)
with a blackening factor
m
fir)=1-5. (36)

where m indicates a black hole mass. According to the
AdS/CFT correspondence, a gravity theory having an
asymptotic AdS geometry is dual to a conformal SU(N)
gauge theory at a UV fixed point. Specifically, an AdS
black hole solution corresponds to a thermal system of such
a gauge theory due to the well-defined temperature. It has
been shown that the boundary stress tensor of the AdS
black hole, after an appropriate holographic renormaliza-
tion procedure, is proportional to N>m, where N is the rank
of the gauge group. In this case, the N> dependence
indicates that the matter content of the dual field theory
follows an adjoint representation under the gauge group
transformation. Therefore, we can identify the black hole
mass with the excitation energy of the massless gauge
bosons. To clarify this identification further, we mention
another remarkable point. For a (d + 1)-dimensional AdS
black hole, it was known that the energy density and
pressure derived from the boundary stress tensor satisfy the
relation p = p/(d — 1). For d = 4, this relation shows that
the matter of the dual boundary field theory is a relativistic
massless field with the equation of state parameter
w = 1/3. This is more evidence of the previous identi-
fication between the black hole mass and the excitation
energy of the gauge bosons in the dual field theory.

Now let us think of bulk matter fields representing
fundamental matters of the dual field theory. From the field
theory point of view, a fundamental matter is a field trans-
formed by a fundamental representation of the gauge group.
In string theory, it is well known that one end of an open
string follows a fundamental representation due to the Chan-
Paton factor. Therefore, the fundamental matter on the brane
can be realized by many open strings with one end attached to
the brane. To provide more detail, we consider open strings
on an AdS spacetime. Since the open strings are one-
dimensional objects, the gravity action containing uniformly
distributed N open strings is written as [39,40]

1
——

=52 & x\/=g(R —2A)

N
—%Z / PEN =hhPO MO pxN gy, (3.7)
i=1
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where %T is a tension of open strings and /4 is an induced
metric on the string. Here the factor % is introduced for later
convenience. From this action, the Einstein equation
including the gravitational backreaction of open strings
reads

1
Run — ERQMN + Aguy = Ty, (3.8)
with
3EV-h
TN = 2SRy Mg, (3.9)
2 /=g

where £ = N7 /V is the energy density of open strings
with an appropriately regularized three-dimensional vol-
ume V perpendicular to £*. To represent open strings with
one end attached to the brane, we take into account open
strings extended to the radial direction. Then such a string
configuration can be well expressed in the static gauge with
& =t and &' = r. The solution of this gravity theory is
known as the string cloud geometry and was studied
in [39-45].

Intriguingly, the gravity theory with uniformly distrib-
uted open strings allows a simple analytic solution satisfy-
ing weak and dominant energy conditions [39,40]. The
metric of the string cloud geometry is given by

r? o R?
ds*> = e (=f(r)de* + 8;;dx'dx’) + %dﬂ, (3.10)
with the nontrivial metric factor
f(Z)Zl—F, (3.11)

which resembles a black hole solution due to the existence
of a horizon. To make a black hole geometry, well-localized
matter is usually required at the center of the black hole. If
we consider uniformly distributed particles or open strings
in the flat spacetime, we cannot expect the existence of a
black holelike geometry. However, this is not true in the
AdS case. AdS space has a nontrivial warping factor which
makes a three-dimensional spatial volume perpendicular to
the radial direction approach zero at the center of the AdS
space. This fact implies that, even when open strings are
uniformly distributed, its energy density becomes high at
the center due to the warping factor of the AdS space. This
is why the black holelike geometry appears in the AdS
space with uniformly distributed open strings.
Comparing the string cloud geometry with the five-
dimensional AdS black hole solution in Eq. (3.6), we easily
see that the blackening factors of the two black hole
solutions show different power behaviors. For the black
hole solution, the matter must be well localized in the radial

direction. However, the string cloud geometry was con-
structed by one-dimensional objects extending into the
radial direction. Because of the different dimensions of the
two objects in the radial direction, the blackening factor of
the string cloud geometry has a different power than that of
the black hole. The existence of the horizon in the string
cloud geometry allows us to define temperature. The
horizon is located at

r, = EV3, (3.12)
and it leads to temperature
33
=—. 3.13
A= 472R? ( )

Although temperature is well defined, temperature is not an
essential concept in the string cloud geometry. The reason
is that, unlike in the black hole case, the temperature of the
string cloud geometry is not a free parameter because it is
perfectly fixed by the energy density of open strings.
Again, we would like to emphasize that the string cloud
geometry is the dual of the gauge theory containing the
fundamental matter due to the Chan-Paton factor of the
open strings.

We can further consider a generalization of the string
cloud geometry. If we put an additional zero-dimensional
matter into the center of the string cloud geometry, the
string cloud geometry can allow a generalized geometric
solution,

r o 2
ds® = 2 (=f(r)df* 4 5;;dx'dx’) + 250 dr?, (3.14)
with the following blackening factor:
E m
=1-=-—, 3.15
f(z) i (3.15)

which is still a solution of the Einstein equation in Eq. (3.8)
and corresponds to the combination of the ordinary AdS
black hole and the string cloud geometry. Hereafter, we
shall call this a generalized string cloud geometry for
convenience. It is worth emphasizing that £ and m in the
generalized string cloud geometry are related to the energy
density of the fundamental matter and gauge bosons,
respectively. Since we are interested in the cosmologies
of the matter-dominated and radiation-dominated eras, the
generalized string cloud geometry [Eq. (3.14)] is a good
candidate to represent holographically such cosmologies in
the braneworld model.

In the generalized string cloud geometry in Eq. (3.14),
the radial motion of the brane is determined by [Eq. (2.18)]
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dr\? o 1 pl ml

and the induced metric on the brane becomes

r(0)?

RZ

dst = —d7* + 8;jdxidxi . (3.17)
As shown in these relations, the radial position of the brane
r is directly related to the scale factor of the braneworld,
a(z) = r(z)/R. To know what kind of cosmology appears
in the braneworld, we consider several specific parameter
regions which reproduce the same results for the standard
cosmology.

(1) Time-independent universe. For an AdS space with
€ = m = 0, the motion of the brane is determined
only by the tension of the brane and the curvature
radius of the AdS space. If the tension of the brane
has a critical value given by

==, 3.18
0= (3.18)

the brane does not move in the radial direction and
the scale factor of the braneworld becomes time
independent.

(2) Eternal inflationary era. If the brane in the AdS space
has a tension that differs from the critical value o,
its radial motion is governed by

dri o> 1

Then the radial position of the brane in terms of the
cosmological time is determined as

r(t) = riefl, (3.20)

with a Hubble constant

H=Y" "% (3.21)

where r; is the position of the brane at = = 0, which
must be determined by an appropriate initial con-
dition. The braneworld model for ¢ # o, is equiv-
alent to the standard cosmology with w = —1. Since
the scale factor in Eq. (3.20) shows an eternal
acceleration, from now on, we shall call it an eternal

126006-7
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open strings and the radial motion of the brane is
determined by

ar_VE 1

— =R A (3.22)

Since the radial position of the brane is the same as
the scale factor of the brane cosmology, solving the
above differential equation leads to a scale factor

proportional to 7%/3,

3\ 2/3 £1/3
V(T) = <2> WTZ/S + rl-, (323)

where r; again indicates the initial position of the
brane at 7 = 0. In the late-time era or when r; = 0,
the behavior of the scale factor is exactly the same
form as the standard cosmology with the matter
having w = 0, as expected.

Radiation-dominated era. Finally, let us focus on the
radiation-dominated era. In this case, the radiation
indicates a variety of massless gauge bosons whose
equation of state parameter is given by w = 1/3. The
radiation dominance, as mentioned earlier, can be
represented as the AdS black hole on the dual
gravity side. As a result, the generalized string cloud
geometry with 0 =0, and £ =0 is dual to the
radiation-dominated era of the brane cosmology.
In this case, the radial motion of the brane is
governed by

ar_ymi 024
dr R r

This differential equation leads to a scale factor

proportional to 7'/2, which is the expected form of

the scale factor in the radiation-dominated era. More

precisely, the resulting scale factor reads

\/§m1/4
r(t) = ——=—7"2 +r,. (3.25)
VR

In the late-time era, this is the same as the result of
the previous standard model.

IV. ENTANGLEMENT ENTROPY
IN THE EXPANDING UNIVERSE

In the previous section, we discussed the possible
inflation. cosmological solutions in the braneworld and showed that
(3) Matter-dominated era. Recalling that open strings in ~ the braneworld model can holographically realize the
the bulk correspond to fundamental matter on the  standard cosmology well. In this section, we investigate
brane, the cosmology caused by the fundamental  the holographic entanglement entropy in the expanding
matter on the brane can be characterized by taking  universe. Recently, it was shown that if the field theory and
o = o, and m = 0. In this case, only the nontrivial  its dual geometry have a time-translation symmetry, their
contribution comes from the energy density of the  entanglement entropy can be easily calculated in the dual
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gravity theory by applying the RT formula [7,9]. However,
if we are interested in entanglement entropy in the
expanding universe where the time-translational symmetry
is completely broken, we must utilize the HRT formula [22]
instead of the RT formula. Despite this fact, in the brane-
world model it is still possible to use the RT formula to
investigate the time dependence of the entanglement
entropy in the expanding universe. The reason is that,
even when the bulk geometry is given by a time-indepen-
dent form, the radial motion of the brane governed by the
junction equation causes an expansion of the braneworld.
In this case, we can also expect the nontrivial time
dependence of the entanglement entropy due to the time-
dependent background spacetime on the brane [23].
Therefore, it would be interesting to study how the
entanglement entropy evolves with time in a variety of
expanding universes.

A. Entanglement entropy in
a four-dimensional flat space

To obtain more knowledge about the time evolution of
the entanglement entropy in the expanding universe, let us
first consider a static brane with 6 = 6, and £ = m = 0. In
this case, the bulk geometry is simply given by an AdS
space and the brane does not move in the radial direction.
Moreover, the induced metric on the brane is just a time-
independent flat Minkowski metric. Although this induced
metric does not describe the expanding universe, the
holographic evaluation of the entanglement entropy in this
setup is helpful to understand the entanglement entropy in
various expanding universes.

For convenience, we introduce a new coordinate
z=R?/r. Then a five-dimensional AdS metric in the
Poincaré patch can be written as

R2
ds*> = =z (dz? — df? + du® + u*dQ3),

(4.1)

where €, indicates a solid angle of a two-dimensional unit
sphere. In the braneworld model, the range of the radial
coordinate is restricted to 7 < z < oo, where 7 indicates the
position of the brane. In this case, the brane plays a role of a
finite UV cutoff from the viewpoint of the holographic
renormalization. Thus, this setup is exactly the same as
the cutoff AdS space studied recently in the 77 deforma-
tion [46-49]. Applying the RT formula to the cutoff AdS
geometry, the entanglement entropy is associated with the
area of a minimal surface extended to the cutoff AdS space.
To calculate the holographic entanglement entropy, we
divide the three-dimensional space into two parts, 0 < u </
and / <u < oo, with a two-dimensional sphere with a
radius /. In this case, the two-dimensional sphere dividing
the system into two parts is usually called an entangling
surface. Then the entanglement entropy between the inside
and outside of the entangling surface is governed by

SE:

RO i 2./1 2
QA du” Z;” , (4.2)

4G
where the prime indicates a derivative with respect to x.

This action leads to the equation of motion, which
determines the configuration of the minimal surface,

0=1+7%+z7". (4.3)
The general solution of this equation is given by
2(x) = \Jer = (2 + ), (4.4)

where ¢ and ¢, are two integral constants.

To determine the exact configuration of the minimal
surface, we need to fix two undetermined integral constants
by imposing two appropriate boundary conditions. To do
so, first, it is worth noting that the smoothness of the
minimal surface leads to 77 =0 at u =0 due to the
rotational symmetry. If we denote the value of z(0) as
20> Zo corresponds to a turning point or tip of the minimal
surface. In this case, the turning point gives rise to an upper
bound for the range of z extended by the minimal surface.
Another important thing we should notice is that the
properties of the turning point fix one of the undetermined
integral constants at ¢, = 0. When we calculate the area of
the minimal surface, second, the end of the minimal surface
must be identified with the entangling surface defined at the
boundary. This implies that we must impose another
boundary condition, Z = z(/). This additional boundary
condition fixes the remaining integral constant at

=P +7. (4.5)

Using these integral constants fixed by two natural boun-

dary conditions, the coordinates of the minimal surface

satisfy the following circular trajectory:

2+ =0P+7, (4.6)

where the ranges of z and x are restricted to 7 < z < z; and

0 < u <[, respectively. As a result, the solution satisfying
all natural boundary conditions is given by

z(u) = VP +7—ut

Using the obtained solution, the resulting entanglement
entropy on the brane at 7 becomes

(4.7)

R PQ, 1.5 P
= —,1;—;— . 4.8
FrneeyEr2? 1(2 2 l2+22) (4.8)

In the z — 0 limit, the leading term of the entanglement
entropy reduces to
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R I’Q,
ET3G 2 +y (4.9)
where the ellipsis indicates higher-order corrections. This is
the well-known holographic entanglement entropy of a
four-dimensional CFT [6,7,9]. In this case, the position of
the brane 7 plays a role of an appropriate UV cutoff and
I’Q, corresponds to the area of the entangling surface.

B. Entanglement entropy in
an eternally inflating universe

Now let us consider the entanglement entropy in the
eternal inflationary cosmology. In the braneworld model,
the eternal inflation on the brane appears when we consider
an AdS bulk geometry (£ = m = 0) with a noncritical
brane tension ¢ # o.. Even in this case, since the bulk
geometry has nothing to do with the brane tension, the dual
geometry is still given by an AdS space. The difference
from the previous case is that the brane moves in the radial
direction with the velocity in Eq. (3.19). Therefore, the
holographic calculation of the entanglement entropy is
almost the same as in the previous static case. However,
there exists one big difference caused by the radial motion
of the brane. When we take into account the circular
trajectory of the minimal surface, the boundary condition
imposed on the brane must be slightly modified because the
brane is moving. Requiring the end of the minimal surface
to attach to the moving brane, the consistent solution must
be given by a function of 7 and u,

2(t,u) = /1> +7(2)* — u®. (4.10)
It is worth noting that the time dependence of the holo-
graphic entanglement entropy in the braneworld model
appears to be due to the time-dependent boundary con-
dition at z(z). Performing the integration in Eq. (4.2)
with the obtained time-dependent solution, the resulting
entanglement entropy again yields Eq. (4.8) with the time-
dependent brane position z(z), instead of a constant Z,
because Eq. (4.2) contains only the integration over u
which is independent of 7.

In spite of the fact that the same form of entanglement
entropy obtained in the static brane appears again even in
the moving brane, the physical implications of the entan-
glement entropy in the braneworld model dramatically
changes due to the nontrivial time dependence. The
subsystem size denoted by [ is the size measured in the
comoving frame. Owing to the nontrivial scale factor on
the moving brane, the size measured in the comoving frame
is not a physical one. Instead, the physical size of the
subsystem L is given by

(4.11)

where 7 is not the conformal time but the cosmological
time. Even when the subsystem has a time-independent
finite size / in the comoving frame, the physical size L in
the expanding universe changes because the background
spacetime expands with time. In general, since the scale
factor ~1/Z(z) relies on the matter distributed in the
expanding universe, the resulting entanglement entropy
and its time dependence also crucially depend on the matter
on the brane.

Regarding the moving brane whose radial position is
given by a function of z, the resulting entanglement entropy
is given by

R? PQ, 1 5 P
Sg = 2 0 22F1 —,IQ—Qﬁ .
12G 7(2)2\/2 + 2(2) 27 2 F+z(n)
(4.12)

From the viewpoint of an observer living on the brane, the
position of the brane must be reinterpreted as the scale
factor relying on the cosmological time

L E_R L,
z(r)—?(r) s (4.13)

Then the entanglement entropy in the eternal inflationary
era finally results in

glind) _ r3 1’Q,e*tr
£ 12GR \/1 + (R*/r}1%)eM"

15 I
2 1(2 2 1+(R4/r%lz)e‘2H’> (4.14)

Remembering that the physical distance increases with
time by L ~ [e/ in the inflationary era, the above result
shows that the entanglement entropy is proportional to the
area of the entangling surface measured by the physical
distance, A = 7L*%Q,. In the early time of the inflation era
(Ht < 1), the small time perturbation leads to

glinf) _ IroQ/Pri+R* RQ, Io <\/R4 + Pri + lr0>
E 8GR 16G g /R* + l2r(2) —1Iry

HPrQ
To°5t (4.15)

—————— 1 0(7),
4GR\/R* + I*r§ =)

which shows that the entanglement entropy in early time
increases with time linearly. However, the entanglement
entropy grows exponentially in the late time of the infla-
tionary era (Ht > 1):
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(inf)  PrgQpe”

E " 8GR
HR3Q,t
- 8G

R492(1 + 2 log(ZRz/er))
16GR

+ O(e™2H7).

(4.16)

Here the leading term is exactly proportional to the physical
area of the entangling surface, so the area law of the
entanglement entropy is satisfied even in the expanding
universe. In addition, the late-time behavior, Sgnf) ~ 2T
in the braneworld inflation is consistent with the result

expected in a different holographic model [24].

C. Entanglement entropy in the radiation-
and matter-dominated eras

Now let us take into account the entanglement entropy in
the radiation- and matter-dominated eras. In the generalized
string cloud geometry in Eq. (3.14), we have already shown
that the radiation- and matter-dominated eras can occur as
the cosmological solution of the braneworld. In this back-
ground, the entanglement entropy in the z-coordinate
system is given by

R3Q 7
_ 2/ Vf” , (4.17)
where
1 —EP -t with E=L and m=2
fl)=1=&E2 —mz* wit =pe and =g
(4.18)

From now on, we set R = 1 for convenience. Because of
the nontrivial factor f in the entanglement entropy formula,
it is not easy to find an analytic solution satisfying the
equation of motion. Thus, we consider specific parameter
regions in which we can get some information about the
time evolution of the entanglement entropy of the expand-
ing universe. To do so, let us remember an important
feature of the minimal surface in the AdS black hole
geometries. The minimal surface has to be smooth in the
entire bulk geometry. This fact indicates that there exists a
turning point where 7/ = 0. This turning point appears at
u = 0 due to the rotational symmetry. Denoting the turning
point as zy = z(0) gives rise to an upper bound of z. In the
braneworld model, on the other hand, the position of the
brane Z provides a lower bound of z. These two bounds
|

S VP +7 cQ,
E—= " 1522

restrict the range of z extended by the minimal surface to
7 £ z £ zg. If the subsystem size / in the comoving frame
becomes smaller, z, approaches Z. On the other hand, when
[ increases, z; also increases.

Now we consider a very small subsystem size with
7 < &3 and 7 < @~ /4. In this parameter region, the
minimal surface extends only near the brane and the general
string cloud geometry deviates slightly from an AdS space.
Therefore, it is possible to investigate the time evolution of
the entanglement entropy perturbatively.

1. Radiation-dominated era

When the brane has the critical tension ¢ = o, and the
background geometry is given by the AdS black hole with
&€ =0, the cosmology on the brane in the late-time era
corresponds to the radiation-dominated era, as mentioned
earlier.

Now let us investigate how the entanglement entropy in
the radiation dominate era relies on the cosmological time.
For convenience, we set iz = 1/z}. In the small subsystem
size limit zy < z;,, then, the configuration of the minimal
surface configuration can be determined by solving the
equation of motion perturbatively. To do so, we assume the
perturbative form of z(u) as

z(u) = zo(u) + mz (u) + (’)(%) (4.19)

In this case, z describes the minimal surface lying in the
pure AdS and is given by Eq. (4.10). To determine z;
exactly, we must impose two boundary conditions. Since
we assume that the end of the minimal surface is located at
Z, z; vanishes at u =1 because gz, already satisfies
7o(I) = z. The other boundary condition we must impose
is Z/(0) = 0 due to the smoothness of the minimal surface at
u = 0. The solution z;(u) satisfying these two boundary
conditions is given by

(12—u2)(214+5-4+6z2-2— 3Pu? —47%u* + u?)
) == P+z2—u? '

(4.20)

After substituting these solution into the entanglement
entropy formula in Eq. (4.17), performing the integration
leads to

52

Z
- +—21o <—>
1272 24 ¢ AWVP +Z +1)

| im0, 221 (1
60

—222) 4 I4(622 — 42) + P2(57% — 822 + 21*) + 21

4.21
N R 20
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Rewriting the scale factor in the z coordinate, the brane position becomes a function of the time:

_ pki
I=——. 4.22
zp + \/EZi\/E ( )

In the early-time era (z;1/7 < z,V/R), the entanglement entropy has the following perturbative form:

S /P + 27 +c_£221 { z? ]+015£22 i
fo12g 24 CDIEFZ D) 60 /P12
n cQy 2DP(mz} +10) + 25172 = 51272\/ P + 72 = 52}/ 1> + 72 + 51z} i+ 0. (4.23)
60v/2z, zi(2 + 22)%? '

I
This result shows that the entanglement entropy initially ~ Varying the entanglement entropy formula in Eq. (4.17),
increases by /2. In the late-time era (r — o0), 7 approaches  the equations governing z,(u) and z, (1) are given by
0 and the entanglement entropy leads to
2z0 3z 2z, 3

" Y J—
CZZQZ cl’Q, cQ, O=z+-"+ 20 + u +zo’
Sp = T+ \/—_ IOgT / 2 72
62; 3v22,2; Y 6z0 6z5 +2\ , 3(z5 +1)
O=z{+|—+ 7 — 2]
1 [ 1072 Zn 20 u Z5
+—-cQy 2°m + —-+ 10log| —= | +5
120 Z 2V21 25325 |, 3 5/,
| +—l,t +§Z0(ZO - 2) (426)
ol—=). 4.24
+o() (4.29)

The solution of the first differential equation is again given
by Eq. (4.10). After substituting the solution of z into the
second differential equation, we can also find an exact and
analytic solution of z;, but it has a very complicated form.

Hereafter, we shall focus on two specific limits corre-
sponding to the early- and late-time era of the matter-
As with the previous radiation-dominated era, we can  dominated universe. Rewriting the brane position in

also investigate how the entanglement entropy depends on  Eq. (3.23) in terms of the z coordinate, the radial position
the time in the matter-dominated era. To take into account  ig determined to be

the matter-dominated era, we focus on the string cloud
geometry with 6 = ¢, and m = 0. In a small subsystem 7= _
size limit z3€ < 1, the minimal surface configuration can 1+ (3/2)%37,E' P21
be described using the following perturbative form:

In the late time of the radiation-dominated era, the
entanglement entropy increases by .

2. Matter-dominated era

Zi

(4.27)

Assuming that the initial position of the brane z; is much

- = smaller than &'/3, the entanglement entropy is perturba-
2(u) = zo(u) + E21(u) + O(E7). (4.25) tively expanded to the following form in the early-time era:
|

QT cEPQ, cPQ, 72,
12 220" 24 TTe022 T 1222 T 48P
B csz2 3 cQy (4E17 4+ 201* + 10,2 — 5z;*)

ST 2401272

N \3/ 2[4 x 3¥3(EP + 5)1*z; + 5 x 3¥3(z.2 = 21727
240172

SE:

23 4 O(t*3). (4.28)

This result shows that the entanglement entropy of the matter-dominated universe increases by 7%/3 in the early-time era.
Repeating the similar calculation for the late-time era, the entanglement entropy has the following expanded form:
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QP cQ, Z  cQy Trc,
p— —1 - e
Se= 10 T 198551 T 056

N3 Q012 . Q 125'1/3
_ <_> ol z3.4/3 4 5032 —t
2 8 253 x 313z,

&R

2/3

cQ, cQ, B cQ,log (18E1)
i | e’ -
18 8T g T2 36
TacLEP 5
-2/3
“se OGP, (4.29)

The resulting form indicates that the entanglement entropy
increases by %3 in the late-time era of the matter-
dominated universe. Comparing it with that of the
radiation-dominated universe, the entanglement entropy
increases more rapidly in the matter-dominated universe.

V. DISCUSSION

In this work, we investigated the time-dependent entan-
glement entropy in various expanding universes of the
braneworld model. To describe eternal inflation, two
different holographic models are possible. The first is to
consider an AdS space whose boundary is given by a dS
space. In this case, since the bulk metric depends explicitly
on time, we must use the HRT formula instead of the RT
formula. Although the HRT formula is well defined
conceptually, it is not easy to calculate the holographic
entanglement entropy because it is described by non-
trivially coupled differential equations. If we are interested
only in the leading qualitative behavior of the time
evolution of the entanglement entropy, it was shown that
the leading behavior of the HRT formula can be described
by the RT formula. To understand the quantum entangle-
ment of our Universe, we need to know how to calculate the
entanglement entropy of the other expanding universes by a
power law. The holographic model mentioned above is not
applicable to describe such universes with a power-law
expansion. For this reason, in this work, we investigated
another holographic model called the braneworld model,
which can easily realize the universes expanded by the
power law. In the braneworld model, the expansion on the
braneworld is determined by the radial motion of the brane
in the dual geometry. Moreover, since the bulk geometries
are given by static ones, the RT formula—not the HRT
formula—is still applicable. For eternal inflation, we
showed that the time-dependent entanglement entropy of
the braneworld gives rise to the same leading behavior as
that obtained in the AdS space with the dS boundary.

To realize the radiation- and matter-dominated eras of the
cosmology, we took into account the generalized string
cloud geometry. The generalized string cloud geometry
contains uniformly distributed strings and other matter
localized at the center of the background AdS space.

We showed that the dual gravity theory including strings
and localized matter can be identified with the braneworld
containing the fundamental and adjoint matters. More
precisely, the uniformly distributed strings correspond to
fundamental matter because the end of an open string
transforms as the fundamental representation under the
gauge group. On the other hand, the matter field localized at
the center of the AdS space leads to a Schwarzschild-type
AdS black hole which is associated with the excitation
energy of boundary gauge bosons following the adjoint
representation. In the braneworld model, we showed that
the bulk matter corresponding to the boundary fundamental
and adjoint matter can realize the matter- and radiation-
dominated eras of the braneworld cosmology. Intriguingly,
we also showed that the braneworld model involving the
fundamental and adjoint matters can reproduce the cos-
mological behaviors with the expected power-law expan-
sion in the matter- and radiation-dominated eras.

Based on these aspects of the braneworld model, we
further investigated the time-dependent entanglement
entropy in various expanding universes. To describe the
time-dependence of entanglement entropy, we introduced
the cosmological time instead of the conformal time. Then the
entanglement entropy of the expanding universe increases
with time. For the eternally inflating four-dimensional uni-
verse the entanglement entropy increases by Sg ~ 7 in the
early-time era, whereas it increases by Sg ~ 7 in the late-
time era, as predicted in Ref. [24]. This late-time behavior is
related to the fact that the leading entanglement entropy is
proportional to the area of the entangling surface proposed by
the RT formula. In the four-dimensional case, the area of
the entangling surface is proportional to L%, where L is the
physical distance. Since the physical distance is related to the
cosmological time by L ~ ef*, the late-time behavior in
the entanglement entropy in the eternally inflating universe is
simply the area law of the entanglement entropy.

In the radiation- and matter-dominated eras, the time-
dependent entanglement entropy shows similar features. In
the late-time era of the radiation- and matter-dominated
universes, the entanglement entropy also follows an area
law similar to the eternal inflation case. In the radiation-
and matter-dominated eras, the physical distance in terms
of the cosmological time increases by L ~ z'/2 and ~7%/3,
respectively. As a result, the area law implies that the
entanglement entropy increases by Sg ~ 7 in the radiation-
dominated universe and by Sp~7*3 in the matter-
dominated universe.
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