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Featured Application: Forecasting particulate matter of size less than 2.5 µm (PM2.5) in big cities is a
major challenge for scientific community. In addition to environmental impacts, these particulate
matter cause various diseases, such as cardiopulmonary disease, stroke, lung cancer and even
neurological disorders. Forecasting high PM2.5 events helps to raise awareness among people
to take precautionary measures, such as limit outdoor activities, use masks, etc. In the future,
advanced Machine Learning (ML) based PM2.5 forecasting will help to reduce the cost of
sampling of PM2.5, such as sampler and equipment costs, which are needed to measure the
concentration of particulate matter in air.

Abstract: Air pollution not only damages the environment but also leads to various illnesses such
as respiratory tract and cardiovascular diseases. Nowadays, estimating air pollutants concentration
is becoming very important so that people can prepare themselves for the hazardous impact of air
pollution beforehand. Various deterministic models have been used to forecast air pollution. In this
study, along with various pollutants and meteorological parameters, we also use the concentration of
the pollutants predicted by the community multiscale air quality (CMAQ) model which are strongly
related to PM2.5 concentration. After combining these parameters, we implement various machine
learning models to predict the hourly forecast of PM2.5 concentration in two big cities of South Korea
and compare their results. It has been shown that Long Short Term Memory network outperforms
other well-known gradient tree boosting models, recurrent, and convolutional neural networks.

Keywords: XGBoost; LightGBM; LSTM; bidirectional LSTM; CNNLSTM; GRU; PM2.5; CMAQ

1. Introduction

The industrial revolution and modernization have led us to a new era of science and technology.
On the one hand, it has opened new horizons for transportation, trade, mining, agriculture,
and urbanization. On the other hand, it has become a vital factor in polluting air, soil, and water. In the
last two decades, many environmental researchers have been monitoring the quality of ambient air.
Particulate matter (PM) is found to be the most dangerous kind of air pollution among various other
air pollutants. After a study done by the World Health Organization (WHO) and the International
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Agency of Research center (IARC), PM in ambient air has been categorized as ‘carcinogenic’ [1,2].
PM2.5 are the fine particulate matters with size less than 2.5 micrometer which are the major cause of
allergies, pulmonary, and cardiovascular diseases, morbidity, and mortality. Various epidemiological
tests [3] have shown a direct relationship between PM pollution with respiratory infections and
cardiovascular diseases. WHO declares ambient air pollution, especially fine particulate matter, has the
most adverse effect on human health, which is mostly emitted by industries, power plants, households,
biomass burning, and vehicles [4]. WHO has also estimated that increasing levels of PM have played
a major role in causing lung cancer, chronic obstructive pulmonary disease (COPD), ischemic heart
disease, and stroke, thus leading to premature deaths.

In this era of big data and Artificial Intelligence (AI), it is important to estimate the concentration
of fine particles in the air so that people can take precautionary measures to prevent from alarming
levels of high air pollution concentrations. Various deterministic models have been used for the
prediction of PM2.5 concentration and other air pollutants. Several studies have been done to
estimate the air pollutants concentration using numerous modeling techniques [5] including statistical,
Machine Learning (ML), and photo-chemical models [6].

The objectives of this paper are as follows: (1) Analyze the features that are highly correlated
with the PM2.5 concentration, such as meteorological parameters (temperature, wind speed,
relative humidity, surface roughness, planetary boundary layer, and precipitation) and pollutants’
concentrations (PM10, CO, NO2, SO2, and O3). (2) The pollutants’ concentration variables can be
measured by monitoring stations at specified locations and also predicted by the CMAQ model.
After combining the features predicted by CMAQ model (elemental carbon (EC), ammonium (ANH4),
nitrate (ANO3), and miscellaneous pollutants (OTHR) concentration), the results of ML models have
improved (3) Design and optimize six recently used state-of-the-art machine learning models and
compare their average performances. We choose two recent and most widely used tree-based models,
XGBoost and LightGBM, which fall under the category of machine learning; four popular Deep
Learning (DL) neural networks named Long Short-Term Memory (LSTM), Gated Recurrent Unit
(GRU), and convolutional-LSTM (CNNLSTM); and a combination of Bidirectional and Unidirectional
LSTM (BiULSTM) for the prediction of PM2.5 concentration. Among these, LSTM network outperforms
other well-known models.

2. Related Work

Time series forecast is the most important part of the ML regression problem; both shallow and
DL models have been used for this purpose. Tree-based models such as decision trees, random forests
(RF) [7], and gradient tree boosting models are well known to give good performance and have
been widely used in supervised ML methods. These can map non-linear relationships among data
unlike linear ML models such as linear regression [8] and support vector machine (SVM) [9]. The RF
model has been used to study the impact of various factors on pollutants concentrations by utilizing
meteorological parameters, pollutants concentration, and traffic flow [10]. XGBoost [11], introduced by
Chen, T. and Guestrin, C., is an ensemble of boosted decision trees that uses gradient descent for
model optimization and has been widely used in regression [12], classification [13], and time series
forecasting [14]. XGBoost was implemented to predict PM2.5 concentration in [15], where the author
analyzed the data of one station in China and compared the results with RF, SVM, Multiple Linear
Regression (MLR) [16], and Decision Tree Regression (DTR) algorithms [17]. The dependent variables
used in this research were pollutants’ concentrations such as PM10, CO, NO2, SO2, and O3; among all
the models, XGBoost showed the best results. LightGBM [18] also belongs to the gradient tree boosting
models, in which a decision tree is split in leaf-wise with the best fit, thus reducing the loss with
better accuracy. Similarly, XGBoost and LightGBM models have been used to predict the thermal
power energy development [19] and later showed less Mean Absolute Percentage Error (MAPE%) on
their dataset.
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Along with shallow ML models, DL models are also commonly used these days and have been
successfully used for pollutants forecasting [20]. In a recent study [21,22], LSTM model has been
used for the prediction of PM10 and PM2.5 concentrations by utilizing pollutants concentration and
meteorological parameters. The authors compared the results with the Community Multi-scale
Air Quality (CMAQ) model [23] and found that DL based model performs better. CNNLSTM
is also a variant of LSTM models in which CNN [24] has been used for extracting the features
and then fed to the LSTM model to get the forecast; they are being used in various time series
prediction problems [25,26]. Huang, C. J. [27] only used three meteorological parameters (wind
speed, wind direction, and precipitation) to predict the PM2.5 concentrations. Their proposed model,
which they named “APNet” (a combination of CNN and LSTM), showed good results against SVM,
DTR, RF, MLP, CNN, and LSTM. In a recent study [28], the authors proposed a novel CNNLSTM
model with attention mechanism. Along with pollutants concentration and meteorological parameters,
they also utilized the information of nearest stations to capture the spatial dependencies. GRU [29] is
also a type of RNN and a variant of LSTM with fewer gates, making the model faster. It also has been
adopted in many time series forecasting problems. In [30], GRU is utilized for estimating primary
energy consumption in China and the model results are compared with SVM and MLR, where GRU
gives good prediction accuracy. Similarly, a combination of the Bidirectional and Unidirectional LSTM
(BiULSTM) model was used for PM10 forecasting by Yun, J. [31], who tested it with SVM and MLR, with
BiULSTM providing better prediction results than the other methods used. In this study, input features
used are concentrations of pollutants (SO2, CO, NO2, and O3), the meteorological parameters, and
PM10 concentration of the nearest stations.

The input features play an important role in the prediction of any machine learning model, and,
by using background knowledge of the parameters that are vital in the formation of PM particles,
the models’ performance can be improved. In our study, we utilized meteorological parameters and
pollutants concentrations that are highly effective in the formation of PM2.5 concentration collected
from ground based monitoring sites as well as predictions of CMAQ model.

3. Methodology

In this section, we discuss how the study was conducted. To get prediction from ML models,
data collection, analysis for feature correlation, and data preprocessing were done before inputting
the data to ML model. After that, each model was constructed and optimized by setting its best
hyperparameters. Then, models were trained and predictions were generated on a test dataset. Finally,
to check the efficiency of the models, each model was evaluated using statistical evaluation parameters.
The process of this study is shown in Figure 1.

Figure 1. Experimentation Process.
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Section 3.1 contains the description and preprocessing of the data. Section 3.2 describes the
architecture of LSTM network. The experimental process of setting the models is described in Section
3.3. The evaluation metrics and their formulas are discussed in Section 3.4.

3.1. Data and Preprocessing

The dataset contains meteorological parameters, measured values of pollutants’ concentration
from ground base stations, and predictive values of four pollutants predicted by the CMAQ model in
South Korea from 1 January 2016 to 31 December 2016 recorded on hourly basis. Six ground-based
pollutants observation are collected: PM2.5, PM10, sulfur dioxide, ozone, nitrogen dioxide, and carbon
monoxide concentrations measured in µg/m3. They are available at Air-Korea website [32].
Six meteorological parameters (temperature, wind speed, relative humidity, surface roughness,
planetary boundary layer, and precipitation) were taken from Korean public data website [33].
PM2.5 has a strong correlation with the pollutants such as elemental carbon, nitrate, and ammonium,
as described in various studies [34,35], and ground-based sites do not measure these dependent
pollutants, but CMAQ model has the ability to predict these features. CMAQ data have been predicted
and provided by Air Lab at Gwangju Institute of Science and Technology [36] for the same time
duration. The CMAQ model predictive features labels are: CMAQ_EC, CMAQ_ANO3, CMAQ_ANH4,
and CMAQ_OTHR, measured in µg/m3. To check the models’ performance, we selected data from
four sites of Seoul and four locations of Gwangju (a city located south of Seoul). The average evaluation
results from all the stations for each model with and without using CMAQ data are given in Section 4,
which show that by including CMAQ features, we can get better prediction results.

It is necessary to analyze the relationship between PM2.5 and other features. For this purpose,
a heat map is provided in Figure 2. The variables having the higher correlation with PM2.5

concentrations are shown in dark red color while variables with less correlation are shown in
light pink shade. The correlation of PM2.5 with the pollutants from higher to lower is: PM10 >
ammonium = nitrate ions > carbon monoxide > other-pollutants > nitrogen dioxide > elemental carbon
> sulfur dioxide. Ozone and other meteorological parameters are negatively correlated with PM2.5

concentration. The order of negatively correlated features with PM2.5 from highest to lowest are:
relative humidity > surface roughness > precipitation > wind speed > ozone > planetary boundary
level > temperature. To find data distribution of each feature, we used the histogram shown in Figure 3.
There are 8727 records of data for each station, from which 7680 records were selected for training
and 1023 used for testing the models (9:1 ratio for train and test dataset). The missing values were
imputed by linear interpolation; data records from 1 January 2016 to 15 November 2016 were used for
training and from 16 November to 31 December for testing the models. The inputs of the models are
hourly observations of 16 selected features discussed above over the last 24 h and the output or label
variable is the PM2.5 concentrations that is the forecast for the next 1 h. The time duration for train
and test datasets are separate from each other and do not overlap. For each prediction model, all the
training was done on train dataset while validation and evaluation were made on test dataset. We used
two gradient tree boosting machine learning models, namely extreme gradient boosting (XGBoost)
and Light Gradient Boosting Machine (LightGBM), and reshaped the data to be appropriate for time
series forecasting. Four very famous and ubiquitous deep learning models–Long Short-Term Memory
(LSTM), a combination of Bidirectional and Unidirectional LSTM (BiULSTM), Gated Recurrent Unit
(GRU), and Convolution LSTM (CNNLSTM)—were used. The results were compared after calculating
their respective Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Correlation Coefficient
(R), and Index of Agreement (IA), which are given in Section 3.4.

Before implementing deep learning models, it is recommended to normalize the data.
After training the models, we un-normalized or re-scaled the data into their original form to get
the prediction results. Thus, all input features were scaled between 0 and 1. The formula for scaling
the data is given in Equation (1):
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xnormal,i =
xi − xmin,j

xmax,j − xmin,j
(1)

We also included the observation values during high fine dust periods that usually occurs in
spring and winter seasons [37] in our training model so we could observe how well our models can
predict high dust concentration values.

Figure 2. The correlation between PM2.5 and other variables.

Figure 3. Data distribution for each feature.
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3.2. LSTM Network

An LSTM [22] network uses cell state, input, output, and forget gates to store long-term
dependencies to overcome vanishing gradient problem in typical RNNs and was introduced in
1997 by Hochreiter, S. and Schmidhuber, J. The LSTM processes the data sequentially passing the
information as it propagates forward. The operations within LSTM allows it to forget or keep the
information. The architecture of LSTM model is shown in Figure 4.

Figure 4. The architecture of LSTM Network.

The cell state which is shown as a horizontal line runs through the entire network and has the
ability to add or remove the information with the help of gates. The process of the cell state is to carry
the information through the sequence processing and theory information from earlier time steps can
be carried all the way through the last time step thus reducing the effect of short term memory. As the
process goes on, the information is added or removed from the cell states to gate states. Gates decide
which information is allowed on the cell state. The first gate that is the forget gate is responsible for
learning what information is necessary to keep or forget as they contain sigmoid function. The sigmoid
function generates numbers between zero and one, describing how much of each component should
be let through. The tanh function generates a new vector, which is added to the state. The cell state is
updated based upon the outputs generated from the gates.

The sigmoid function is given as

sigmoid(x) =
1

1 + e−x (2)

Equations (3)–(8) represent the flow of information at each gate and cell state of LSTM network:

ft = σ(W f · [ht−1, xt] + b f ) (3)

it = σ(Wi · [ht−1, xt] + bi) (4)

C̃t = tanh(WC · [ht−1, xt] + bC) (5)

Ct = ft ∗ Ct−1 + it ∗ C̃t (6)

ot = σ(Wo · [ht−1, xt] + bo) (7)

Ht = ot ∗ tanh(Ct) (8)

f t, it, and ot represent the outputs generated by forget gate, input gate, and the output gate,
respectively. Wf, Wi, WC, and Wo are the input weights, respectively. bf, bi, bC, and bo are bias terms
and Ht is the output of LSTM network.
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3.3. Experimental Set-Up

All models were implemented using Python language version 3.6.7, trained and tested on a
computer with an Intel Core i7-8700 CPU processor and the speed of 3.20 GHz using 8192 MB RAM
with the graphics card GeForce GTX 1080Ti and the operating system is Linux Ubuntu 18.04.4 LTS.
The parameters setting for models is discussed in Sections 3.3.1 and 3.3.2.

3.3.1. XGBoost and LightGBM

To perform extreme gradient tree boosting algorithm, we used standard XGBRegressor from
Python package called xgboost version 0.90 and LGBRegressor from lightgbm Python package
version 2.1.1 for the implementation of LightGBM model. To get better results from tree-based
models, we needed to find best parameters for each model by using customized search approach.
The best parameters for XGBoost model are: n_estimators = 70, max_depth = 2, min_child_weight = 1,
learning_rate = 0.2, gamma = 0, colsample_bytree = 1, alpha = 10, and objective = reg:squarederror,
with all other parameters set to default. For LightGBM, the parameter setting is: learning_rate = 0.1,
max_depth = −1, metric = {‘l1’, ‘l2’}, num_leaves = 255, colsample_bytree = 1.0, objective = regression,
subsample = 0.6, and seed = 10. Training the model for the best number of iterations while using early
stopping patience until 5 epochs to prevent the model from overfitting gives best results at 28 epochs.

3.3.2. Deep Learning Models

To implement recurrent neural networks (RNNs), a high level neural network API called Keras
with Tensorflow back end was used. We tried different parameter settings to design each DL model
by changing various parameters, such as number of neurons, number of layers, optimizing function,
and learning rate, to obtain the best DL model which not only performs well on the train data but
also gives good prediction results on the unseen test data. We used 2–4 layers for constructing each
RNN model and ran the model by selecting the number of neuron in each layer ranging as 50, 70, 100,
or 150 and found that, by using two layers and keeping the number of neurons in each layer as 70,
our RNN models give the best performance by minimizing the problem of overfitting and reducing
model complexity. To compare RNNs, we used the same number of epochs, batch size, dropout,
and loss function. Hyperparameter settings for GRU, LSTM, and BiULSTM were kept the same for
comparison. During model construction process, we used dropout [38], which is a common way
to prevent overfitting in neural networks. The number of neurons or units in RNN, dropout rate,
and other parameters in each layer from top to bottoms are given as:

• No. of cells in each layer: [70, 70]
• dropout rate of 20% has been used in the second layer of these three models.
• Activation Function: ReLU
• Dense layer unit:1

For CNNLSTM model, the parameter settings for each layer from top to bottom are as follows:

• No. of filters in CONV1D layer: 32, Kernel size: 3, stride:1
• Maxpooling layer: Pool size:3
• LSTM layer cells: 32, dropout rate: 30%
• Activation Function: ReLU
• Dense layer unit:1

Each DL model was trained using mini batch size of 32; early stopping [39] technique was
also utilized to prevent the model from overfitting. Call backs were used to save best weights for
each model. To optimize the models, we used Rmsprop [40], which is an unpublished optimization
algorithm introduced by Hinton, G. and designed for neural networks.
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Customized search method was adopted to find the best learning rate for DL models, and 0.0001
were observed to be appropriate, while ’mean absolute error’ was used as the loss function to monitor
the loss during training process.

3.4. Performance Evaluation for Models

To evaluate the performance of our models, we compared the observed and predicted
concentrations of PM2.5 by using four statistical evaluation metrics: (MAE), (RMSE), (R), and (IA).
They are given in Equations (9)–(12). In these equations, yi is the actual PM2.5 concentration, ŷi
represents the predicted PM2.5 concentration, ȳi is the average of observed values, and n is the
predicted length of the test set.

MAE =
1
n

n

∑
i=1
|yi − ŷi| (9)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (10)

R =
∑n

i=1(ŷiyi)−∑n
i=1 yi∑n

i=1 ŷi√
∑n

i=1 y2
i − (∑n

i=1 yi)2
√

n ∑n
i=1 ŷ2

i − (∑n
i=1 ŷi)2

(11)

IA = 1− ∑n
i=1(|yi − ŷi|)2

∑n
i=1(|ŷi − ȳi|+ |yi − ȳi|)2 (12)

4. Results and Discussions

The first part of this section compares the models’ mean performance with and without including
the CMAQ parameters. The second part covers the performance of each model at all sites after
including CMAQ features.

4.1. Models’ Average Performance with and without CMAQ Data

Tables A1–A4 (see Appendix A) include the details of each model performance at every station
before adding CMAQ features.

Tables 1–4 show the average MAE, RMSE, R, and IA values of all stations before and after
including CMAQ features. Fp, Fm, and Fc represent pollutants, meteorological parameters, and CMAQ
features, respectively. From the results in Tables 1–4, it is clear that, by including CMAQ features that
are highly correlated with the PM2.5 concentration, each model’s MAE and RMSE values are decreased
while their R and IA values are improved, thus improving the models performance.

Table 1. Models’ average MAE values (µg/m3) with/without CMAQ features.

Features XGB LGBM GRU CNNLSTM BiULSTM LSTM

Fp + Fm 4.3892 4.8413 3.9742 4.1015 3.6455 3.6294
Fp + Fm + Fc 4.3386 4.7792 3.9533 3.9857 3.6246 3.5847

Table 2. Models’ average RMSE values (µg/m3) with/without CMAQ features.

Features XGB LGBM GRU CNNLSTM BiULSTM LSTM

Fp + Fm 5.9832 6.5991 5.3735 5.4788 4.9608 4.8852
Fp + Fm + Fc 5.9037 6.5343 5.3546 5.3643 4.9168 4.8292
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Table 3. Models’ average R values with/without CMAQ features.

Features XGB LGBM GRU CNNLSTM BiULSTM LSTM

Fp + Fm 0.8307 0.8273 0.8587 0.8620 0.8887 0.8947
Fp + Fm + Fc 0.8350 0.8304 0.8640 0.8668 0.8927 0.8989

Table 4. Models’ average IA values with/without CMAQ features.

Features XGB LGBM GRU CNNLSTM BiULSTM LSTM

Fp + Fm 0.9014 0.8959 0.8829 0.9030 0.9268 0.9339
Fp + Fm + Fc 0.9041 0.8992 0.8905 0.9084 0.9334 0.9368

4.2. Performance of Models after Adding CMAQ Data at All Locations

Figures 5–10 show the actual and forecast results for each model. Figure 11 shows the results of
all models and the numerical analysis are subsequently provided in Tables 5–8. In Figure 5, it can be
noticed that, at Stations 2 and 4, XGBoost is not predicting the peak values at some points. In Figure 6,
LightGBM has difficulty in predicting the actual values, especially at Stations 1, 2, 4 and 7 where
it is showing a wide difference between actual and predicted values. Results of GRU are shown in
Figure 7, which shows it is unable to predict the real values at Stations 1, 2, and 4. CNNLSTM in
Figure 8 is providing good predictions only at Stations 3 and 8, while, at Station 4, its predictions
results are deviating from original values. BiULSTM prediction and actual values are drawn in Figure 9.
On average, it is showing better results than any other model; however, at Station 4, it is unable to
detect the peak values. LSTM prediction results are shown in Figure 10; it gives better results than all
models except at Stations 2 and 7, where the BiULSTM model error values are lower. Overall, LSTM is
performing well by giving fewer error values and a higher IA.

The MAE, RMSE, R, and IA values for all models after adding CMAQ data are given in Tables 5–8.
Table 5 provides the MAE values for each model. From the experiments, the BiULSTM model
for Stations 1, 2, and 7 gives the lowest MAE values; for all other stations, LSTM evaluation
results are the best. The average MAE values for all station in the case of LSTM are also the
lowest, i.e., 3.5847 µg/m3, followed by BiULSTM (3.6246 µg/m3), GRU (3.9533 µg/m3), CNNLSTM
(3.9857 µg/m3), XGBoost (4.3386 µg/m3), and LightGBM (4.7792 µg/m3), in decreasing order. In terms
of RMSE provided in Table 6, LSTM gives the lowest scores at every station except for Station 2,
where BiULSTM model gives the lowest error value. The average RMSE ranking for models from
lowest to highest is: LSTM (4.8292 µg/m3), BiULSTM (4.9168 µg/m3), GRU (5.3546 µg/m3), CNNLSTM
(5.3643 µg/m3), XGBoost (5.9037 µg/m3), and LightGBM (6.5343 µg/m3). Values of R are given in
Table 7. BiULSTM network shows the highest score at Station 6; however, R values for LSTM for all
other stations are highest as compared to other models. The average R scores from highest to lowest
are: LSTM (0.8989) > BiULSTM (0.8927) > CNNLSTM (0.8668) > GRU (0.8640) > XGBoost (0.8350) >
LightGBM (0.8304). In terms of IA listed in Table 8, BiULSTM network gives the highest value only at
Station 2 (0.9065). IA values for LSTM network are the highest at all other stations. The average IA
score from highest to lowest are: LSTM (0.9368) > BiULSTM (0.9334) > CNNLSTM (0.9084) > XGBoost
(0.9041) > LightGBM (0.8992) > GRU (0.8905).

From the results of our experiments, the MAE and RMSE values of LSTM network are the lowest
while correlation coefficient R and IA are the highest, which shows that this model performs well
on this dataset. BiULSTM network is the next best after LSTM, considering all metrics of evaluation.
There are still the following limitations:

1. The observation period for this study is only one year. If more data were provided, the network
would have better capability to understand the spatial and temporal dependencies.
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2. Our networks were trained on past 24 h data to get next 1 h PM2.5 concentration prediction. As the
sequence of future hours increases, the efficiency of the network to predict usually drops. In the
future, we will try to generate 24–72 h predictions and check the models’ performance.

Figure 5. The predicted results of XGB.

Figure 6. The predicted results of LightGBM.
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Figure 7. The predicted results of GRU.

Figure 8. The predicted results of CNNLSTM.

Figure 9. The predicted results of BiULSTM.
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Figure 10. The predicted results of LSTM.

Figure 11. The predicted results of all models.

Table 5. Models results for MAE (µg/m3).

Station XGB LGBM GRU CNNLSTM BiULSTM LSTM

S1 3.3872 5.0846 3.4858 3.2584 2.6409 2.6484
S2 4.2806 5.4585 4.2922 4.1063 4.0045 4.0995
S3 3.7949 3.7964 2.9551 3.1759 3.0464 2.8623
S4 4.7489 5.0793 6.1284 5.0941 4.4651 4.2987
S5 4.3686 4.4039 3.6297 3.9163 3.6814 3.5057
S6 4.7882 5.1493 3.5640 4.1717 3.4768 3.3964
S7 4.9267 4.8347 4.0547 4.3727 4.2379 4.5891
S8 4.4136 4.4271 3.5166 3.7900 3.4439 3.2771

Mean 4.3386 4.7792 3.9533 3.9857 3.6246 3.5847
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Table 6. Models results for RMSE (µg/m3).

Station XGB LGBM GRU CNNLSTM BiULSTM LSTM

S1 4.6443 6.8807 5.0399 4.4284 3.9199 3.6984
S2 5.7573 7.7821 9.1054 5.4990 5.2247 5.6022
S3 5.2859 5.1491 4.4978 4.3430 4.0414 3.9562
S4 6.4752 6.8254 9.2188 7.1382 6.1509 5.8684
S5 5.9329 6.0015 4.8898 5.2103 4.8453 4.6836
S6 6.6210 7.0275 5.6119 5.6495 4.9314 4.7032
S7 6.4090 6.4751 5.7920 5.5931 6.0191 5.6939
S8 6.1043 6.1334 5.6282 5.0527 4.4913 4.4278

Mean 5.9037 6.5343 5.3546 5.3643 4.9168 4.8292

Table 7. Models results for R.

Station XGB LGBM GRU CNNLSTM BiULSTM LSTM

S1 0.8475 0.8330 0.9008 0.8729 0.9062 0.9155
S2 0.8027 0.8218 0.664 0.8415 0.8527 0.8557
S3 0.8369 0.8457 0.899 0.8908 0.9066 0.9094
S4 0.7402 0.7091 0.5379 0.7191 0.8119 0.827
S5 0.8599 0.8575 0.9099 0.8987 0.9123 0.9151
S6 0.8755 0.8608 0.9262 0.9106 0.9388 0.9328
S7 0.8484 0.8464 0.8957 0.8891 0.8892 0.9036
S8 0.8692 0.8689 0.9102 0.9120 0.9303 0.9324

Mean 0.8350 0.8304 0.8640 0.8668 0.8927 0.8989

Table 8. Models results for IA.

Station XGB LGBM GRU CNNLSTM BiULSTM LSTM

S1 0.9116 0.8994 0.885 0.9114 0.9381 0.9465
S2 0.8803 0.8934 0.5761 0.8892 0.9065 0.9006
S3 0.9074 0.9097 0.9281 0.9357 0.9441 0.9472
S4 0.8495 0.8193 0.4937 0.7678 0.8697 0.8863
S5 0.9171 0.9161 0.9433 0.9363 0.949 0.9516
S6 0.9299 0.9186 0.9447 0.9477 0.9616 0.9662
S7 0.9122 0.9124 0.9205 0.9313 0.9232 0.9335
S8 0.9245 0.9249 0.9294 0.9477 0.9617 0.9624

Mean 0.9041 0.8992 0.8905 0.9084 0.9334 0.9368

5. Conclusions and Future Work

In this study, ground base measurements of pollutants, meteorological, and predictive data from
CMAQ models are concatenated after analyzing the dependent features that affect the concentration of
PM2.5. We estimate the hourly values of PM2.5 concentration by applying various well-known machine
learning models. In our network training process, we input these features to ML models in order to
get next 1 h prediction, while the past 24 h data are provided. Due to spatial and temporal constraints,
each station gives different prediction results, therefore, average evaluation values are calculated for
all sites. The results show that a well-optimized LSTM network performs better than any other models
used in the study. Although ML models and specifically RNNs have the ability to map temporal
features, it is very important to analyze the data first, which is then followed by optimizing the model.
The advantages of pollutants forecasting using ML models include:

1. The time, effort, and cost to collect and measure the data from ground based stations or from any
other sensors are reduced.

2. In the case of any defect or failure of measuring equipment or sensors, there would be missing
data that can be generated by ML models in limited resources and time using past data.
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3. As other pollutants such as NO2, ozone, and PM10 are also correlated with the concentration of
PM2.5, ML models can predict their values as well.

In a nutshell, ML models can be applied in the development of forecasting systems, especially in
weather and pollutants concentration predictions. In the future, we will try to overcome the limitations
discussed in Section 4 to get better forecasting results.
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Appendix A. ML Models Results without CMAQ Features at Each Station

Table A1. Models results for MAE (µg/m3).

Station XGB LGBM GRU CNNLSTM BiULSTM LSTM

S1 3.5075 5.1181 3.5552 3.0690 2.8794 2.7227
S2 4.4512 5.5831 4.3075 3.9067 3.7797 4.1039
S3 3.8301 3.9306 2.9401 3.1936 3.0620 2.8833
S4 4.8643 5.1423 6.2153 5.6867 4.4786 4.3463
S5 4.3136 4.5965 3.7298 4.1776 3.6853 3.5373
S6 4.7885 5.1277 3.4689 4.4370 3.5026 3.7202
S7 4.8895 4.7912 4.0385 4.5583 4.3802 4.4826
S8 4.4692 4.4405 3.5383 3.7830 3.3958 3.2385

Mean 4.3892 4.8413 3.9742 4.1015 3.6455 3.6294

Table A2. Models results for RMSE (µg/m3).

Station XGB LGBM GRU CNNLSTM BiULSTM LSTM

S1 4.7931 7.0001 4.7342 4.1117 4.0190 3.7764
S2 6.000 7.9019 5.8645 5.2749 5.2515 5.6464
S3 5.2909 5.2943 4.0917 4.3874 4.1877 4.0209
S4 6.6399 6.7859 8.5938 7.9804 6.1148 5.9277
S5 5.9015 6.2443 4.8973 5.4912 4.9557 4.729
S6 6.6514 7.0232 4.8105 5.8224 4.9492 4.9591
S7 6.4122 6.3969 5.3319 5.7208 5.6031 5.5942
S8 6.1765 6.1460 4.6637 5.0417 4.6054 4.4277

Mean 5.9832 6.5991 5.3735 5.4788 4.9608 4.8852
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Table A3. Models results for R.

Station XGB LGBM GRU CNNLSTM BiULSTM LSTM

S1 0.8374 0.8239 0.9065 0.8838 0.8883 0.9093
S2 0.793 0.8189 0.8493 0.8411 0.8524 0.8432
S3 0.8387 0.8374 0.9019 0.8855 0.8994 0.9067
S4 0.7251 0.7117 0.5401 0.6873 0.8018 0.8135
S5 0.8608 0.844 0.9081 0.8911 0.9074 0.9132
S6 0.876 0.8649 0.9365 0.9072 0.9329 0.9386
S7 0.8474 0.8491 0.8994 0.889 0.8986 0.9017
S8 0.8673 0.86854 0.9280 0.9112 0.9284 0.9317

Mean 0.8307 0.8273 0.8587 0.8620 0.8887 0.8947

Table A4. Models results for IOA.

Station XGB LGBM GRU CNNLSTM BiULSTM LSTM

S1 0.9050 0.8901 0.9058 0.9271 0.9314 0.9442
S2 0.8745 0.8922 0.8829 0.8984 0.9069 0.89095
S3 0.9074 0.9012 0.9444 0.9368 0.9384 0.9452
S4 0.8384 0.8151 0.5298 0.7122 0.8659 0.8789
S5 0.9191 0.907 0.9434 0.9297 0.9442 0.9507
S6 0.9306 0.9218 0.964 0.9427 0.9611 0.9634
S7 0.9127 0.9155 0.9377 0.9285 0.9379 0.9355
S8 0.9236 0.9250 0.9551 0.9487 0.9284 0.9624

Mean 0.9014 0.8959 0.8829 0.9030 0.9268 0.9339
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