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Opinion Dynamics With Cross-Coupling Topics:
Modeling and Analysis

Hyo-Sung Ahn , Quoc Van Tran , Minh Hoang Trinh, Mengbin Ye , Ji Liu , and Kevin L. Moore

Abstract— To model the cross couplings of multiple topics,
we develop a set of rules for opinion updates of a group of
agents. The rules are used to design or assign values to the
elements of weighting matrices. The cooperative and anticoop-
erative couplings are modeled in both the inverse-proportional
and proportional structures. The behaviors of opinion dynamics
are analyzed using a nullspace property of the state-dependent
matrix-weighted Laplacian matrices and a Lyapunov can-
didate. Various consensus properties of the state-dependent
matrix-weighted Laplacian matrices are predicted according
to the interagent network topology and interdependent topical
coupling topologies.

Index Terms— Anticooperative opinion dynamics, consen-
sus, cooperative opinion dynamics, matrix-weighted, multiple
cross-coupling topics.

I. INTRODUCTION

THE problem of opinion dynamics has attracted a
lot of attention recently due to its applications to

decision-making processes and the evolution of public opin-
ions [1]. The opinion dynamics arise between persons who
interact with each other to influence others’ opinions or
to update his or her opinion [2] or in social media [3].
The opinion dynamics has been also studied in control
territory or signal processing recently. For examples, con-
trol via leadership with state- and time-dependent interac-
tions [4], game-theoretical analysis of the Hegselmann–Krause
model [5], update for opinion density functions using
jump Markov processes [6], the Hegselmann–Krause dynam-
ics for the continuous-agent model [7], and the impact
of random actions [8] have been investigated. The opin-
ion dynamics under consensus setups has been also
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studied [9], [10]. In opinion dynamics under scalar-based
consensus laws, the antagonistic interactions in some edges
are key considerations [11]–[13]. The antagonistic interac-
tions may represent repulsive or anticooperative characteristics
between neighboring agents. In traditional consensus, all the
interactions between agents are attractive, so the dynam-
ics of the traditional consensus has a contraction property,
which eventually ensures synchronization of agents. How-
ever, if there is an antagonistic interaction, a consensus may
not be achieved, and the Laplacian matrix may have nega-
tive eigenvalues [14]. Thus, in the existing opinion dynam-
ics, the antagonistic interactions are modeled such that the
Laplacian matrix does not have any negative eigenvalues.
Specifically, in [11], signs of adjacent weights are used to
model antagonistic interactions resulting in the Laplacian
matrix with absolute diagonal elements, and Hendrickx [12]
has extended the model of [11] to the one that allows
arbitrary time-dependent interactions. In [13] and [15], they
have further considered time-varying signed graphs under the
setup of the antagonistic interactions and more generalized
time-varying interactions using the Laplacian matrix with
absolute diagonal elements, respectively. On the other hand,
opinion dynamics with state constraints was also examined
when the agents are preferred to attach to the initial opin-
ion, i.e., with stubborn agents [16]. Recently, in [17], they
have examined a joint impact of the dynamical properties of
individual agents and the interaction topology among them
on polarizability, consensusability, and neutralizability, with a
further extension to heterogeneous systems with nonidentical
dynamics.

Unlike the scalar-consensus-based updates, there also are
some works on opinion dynamics with matrix weighed
interactions. Recently, opinion dynamics with multidimen-
sional or multiple interdependent topics have been reported
in [18] and [19]. In [18], multidimensional opinion dynam-
ics based on the Friedkin and Johnsen (FJ) model and
DeGroot models were analyzed in the discrete-time domain.
The continuous-time version of [18] with stubborn agents
was presented and analyzed in [19]. Although it is not
a matrix-weighted consensus problem, in a similar setup,
the DeGroot–Friedkin model was also analyzed to conclude
that it has an exponential convergent equilibrium point [20].
Also, in [20], they considered the dynamic network topology
to evaluate the propagation property of social power. Since
the topics are interdependent and coupled with each other,
these works may be classified as matrix-weighted consensus
problems [21]. Opinion dynamics under leader agents with
matrix weighted couplings were studied in [22].
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TABLE I

SYMBOLS AND THEIR MEANINGS

In this article, we would like to present a new model
for opinion dynamics on cross-coupling topics under a
state-dependent matrix weighted consensus setup. We first
provide a model for characterizing the coupling effects of
multiple interdependent topics. We consider both the propor-
tional and inverse-proportional structure effects on diagonal
and off-diagonal terms. The cooperative dynamics and nonco-
operative dynamics are modeled using the signs of diffusive
couplings of each topic. Then, we provide some analysis on
the convergence or consensus of the topics. Two results will be
presented according to the property of the weighting matrices.
The first result is developed when the coupling matrices are
positive semidefinite. When the coupling matrices are positive
semidefinite, exact conditions for complete opinion consensus
and cluster consensus are provided. Then, as the second
result, when the coupling matrices are indefinite, we provide
a sufficient condition for a complete opinion consensus.

Consequently, the main contributions of this article can be
summarized as follows. First, a model for opinion dynamics
is established. The connectivities are characterized by inter-
action topology between the agents and coupling topology
among the topics. Thus, the overall system has a two-layer
network topologies. Second, the analysis for complete opin-
ion consensus and partial opinion consensus is presented
for both the cases when the coupling matrices are posi-
tive semidefinite and indefinite. As far as the authors are
concerned, this is the first article that presents a detailed
model for inverse-proportional and proportional structures’
opinion dynamics along with the convergence analysis. This
article is organized as follows. Section II provides a detailed
process for building models for opinion dynamics (see also the
Appendix for the underlying motivations of the new models).
Section III presents the analysis for convergence of cooper-
ative (and noncooperative) opinion dynamics. Section IV is
dedicated to simulation results, and Section V concludes this
article with some discussions. Through this article, we use
the symbols given in Table I to denote some mathematical
meanings.

II. MODELING

There are d different topics that may be of inter-
ests to the members of a society. Let the opinion vec-
tor associated with the member i be written as xi =
(xi,1, xi,2, . . . , xi,d )

T ∈ Rd . We can write the i th agent’s
opinion about the pth topic as xi,p . Each member (or can be
called agent) has its initial opinion on the topics as xi,k(t0) =
(xi,1(t0), xi,2(t0), . . . , xi,d (t0))T . The neighborhoods of agents,
i.e., Ni , of agent i are determined by the interaction graph
G = (V, E), where V is the set of agents and E is the set of
edges. Under the undirected graph setup, the opinion dynamics
of agent i can be modeled as⎛

⎜⎜⎜⎝
ẋi,1
ẋi,2
...

ẋi,d

⎞
⎟⎟⎟⎠ =

n∑
j∈Ni

⎡
⎢⎢⎢⎢⎣

ai, j
1,1 . . . ai, j

1,d

ai, j
2,1 . . . ai, j

2,d
...

. . .
...

ai, j
d,1 . . . ai, j

d,d

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

x j,1 − xi,1
x j,2 − xi,2

...
x j,d − xi,d

⎞
⎟⎟⎟⎠

� ẋi =
n∑

j∈Ni

Ai, j (x j − xi ) (1)

where Ai, j ∈ Rd×d is the matrix weighting for the edge
(i, j) ∈ E and i ∈ V , and |E | = m and |V| = n. The practical
meaning of (1) is that each agent of a society may have its own
opinion about the topics, and the opinions are intercoupled
with the opinions of the neighboring agents. Thus, the matrix
Ai, j characterizes the intertopic association, i.e., agent i may
associate topic q with topic p, so opinion exchange on topic q
may enhance opinion update in topic p and drive changes in
opinion exchange on topic p. If a topic in agent i has at least
one connection to another topic or the same topic of another
agent j , then two agents i and j are called connected. The
terminology connection or connected is used for defining the
connection in the level of agents. When there are connections
between the topics, it is called coupled or coupling between
topics. Thus, the terminology coupled or coupling is used in
the level of topics. Therefore, based on the terminological
definitions, if there is at least one coupling between the topics
of agents i and j , then two agents i and j can be considered
as connected. However, even though two agents are connected,
it does not mean that a topic in an agent is connected to another
topic of the other agent. The formal definitions are given as
follows.

Definition 1: Two agents i and j are considered connected
if Ai, j is not identically zero, i.e., Ai, j �= 0. The topology for
overall network connectivities is represented by the interaction
graph G = (V, E), where the edge set E characterizes the con-
nectivities between agents. If there is a spanning tree in the net-
work G, it is called connected. For a topic p ∈ T , the graph is
called p-coupled if the elements of the set {ai, j

p,p, ∀(i, j) ∈ E},
are connected for topic p. The topology for topic p is defined
by the graph Gp = (Vp, Ep), where p ∈ T , and Vp =
{x1,p, x2,p, . . . , xn,p} and Ep = {(i, j) : ai, j

p,p �= 0}. If it is
p-coupled for all topics p ∈ T , it is called all-topic coupled.

Definition 2: For the edge (i, j) on the graph G, let the
topology for the couplings among topics be denoted as Gi, j =
(Vi, j , Ei, j ), which is called coupling graph for the edge (i, j),
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Fig. 1. Connected versus coupled: topics p and q, and q and r are coupled
in the coupling graph Gi, j , so agents i and j are connected. Although agents
i and j are connected, for example, topics p and r are not coupled.

where Vi, j includes all the topics contained in agents i and j ,
and Ei, j includes all the couplings. If Gi1, j1 = Gi2, j2 for all
edges (i1, j1) �= (i2, j2), then all the coupling topologies of the
society are equivalent. If all the coupling topologies between
the agents are equivalent, it is called homogeneous-coupling
network. Otherwise, it is called heterogeneous-coupling net-
work.

Based on the above-mentioned definitions, we can see that
every Gp could be disconnected even though G is connected.
If the union of all Gp is connected, then G is also connected.
Also, since each agent has the same set of topics, it is true
that Vi, j = T for all (i, j) ∈ E .

Assumption 1: The coupling between the neighboring
agents is symmetric, i.e., if there exists a coupling (p, q)
in Ei, j , there also exists a coupling (q, p) in Ei, j .

Example 1: Fig. 1 shows the concepts of “connected” and
“coupled” in neighboring agents. The coupling graph Gi, j can
be determined as Gi, j = (Vi, j , Ei, j ), where Vi, j = {p, q, r}
and Ei, j = {(p, q), (q, r), (q, p), (r, q)}.

Each agent updates its coefficients in the matrix Ai, j in the
direction of cooperation or in the direction of antagonism. For
a cooperative update, we now formulate some heuristic rules
for how the edge weights are determined with the specific
functional forms detailed in the sequel (for a motivating
example, see the Appendix).

1) Diagonal Terms: If ai, j
k,k is positive, then as ai, j

k,k
increases, the tendency of agreement between x j,k and
xi,k increases. Otherwise, if ai, j

k,k is negative, and as

|ai, j
k,k | increases (i.e., becomes a bigger negative value),

the tendency of antiagreement between x j,k and xi,k

becomes significant.
2) Off-Diagonal Terms: Let us consider the effect of ai, j

2,1.
We can consider the following four cases.

a) Case 1: (x j,2 − xi,2) ≥ 0 and (x j,1 − xi,1) ≥ 0.
b) Case 2: (x j,2 − xi,2) ≥ 0 and (x j,1 − xi,1) < 0.
c) Case 3: (x j,2 − xi,2) < 0 and (x j,1 − xi,1) ≥ 0.
d) Case 4: (x j,2 − xi,2) < 0 and (x j,1 − xi,1) < 0.

When (x j,2 − xi,2) ≥ 0, agent i needs to increase the
value of xi,2 to reach a consensus to x j,2. Otherwise,
if (x j,2 − xi,2) < 0, agent i needs to decrease the value
of xi,2 to reach a consensus to x j,2. Thus, for the cases 1
and 2, to enhance the agreement tendency, it needs to
increase the value of xi,2 by way of multiplying ai, j

2,1
and (x j,1 − xi,1). Thus, when (x j,1 − xi,1) ≥ 0, we can

select ai, j
2,1 > 0, but when (x j,1 − xi,1) < 0, we can

select ai, j
2,1 < 0. On the other hand, in the case of (x j,2−

xi,2) < 0, we can select ai, j
2,1 < 0 when (x j,1 −xi,1) ≥ 0,

or we can select ai, j
2,1 > 0 when (x j,1 − xi,1) < 0. For

the anticonsensus update, ai, j
2,1 should be selected with

opposite signs.

The effects of diagonal terms can be modeled as follows.
Definition 3 (Direct Coupling Effects in Diagonal Terms):

1) Proportional Structures: A close opinion between the
two agents acts as for increasing the consensus tendency
between them, i.e., a decreasing disagreement in opin-
ions increases the pressure to reach a consensus.

2) Inverse-Proportional Structures: A quite different opin-
ion between the two agents acts as for increasing the
consensus tendency between them, i.e., an increasing
disagreement in opinions increases the pressure to reach
a consensus.

The off-diagonal terms need to be designed carefully taking
account of the coupling effects on different topics.

Definition 4 (Cross-Coupling Effects in Off-Diagonal
Terms):

1) Proportional Structures: A close opinion in one topic
acts as for increasing the consensus tendency of other
topics.

2) Inverse-Proportional Structures: A quite different opin-
ion in one topic acts as for increasing the consensus
tendency of other topics.

Definition 5 (Completely and Partial Opinion Consensus,
and Clusters): If a consensus is achieved for all topics,
i.e., x1,p =, . . . ,= xn,p for all p ∈ T , it is called a complete
opinion consensus. In this case, there exists only one cluster.
Otherwise, if a part of topics is agreed, it is called partial
opinion consensus. When only a partial opinion consensus is
achieved, there could exist clusters Ck, k = 1, . . . , q such
that Ci ∩ C j = ∅ for different i and j , and

⋃q
k=1 Ck =

{x1, x2, . . . , xn}, and in each cluster, xi = x j when xi and
x j are elements of the same cluster, i.e., xi , x j ∈ Ck .

Definition 6 (Complete Clustered Consensus): If the opin-
ions of agents are completely divided without ensuring any
partial opinion consensus between them, it is called completely
clustered consensus.

In the case of a partial opinion consensus as per Definition 5,
the clusters are not completely divided clusters, i.e., in two
different clusters, some topics may reach a consensus.

Example 2: In Fig. 2, there are five agents with three topics.
The agents reach a consensus on topic p = 3. However,
on other topics p = 1, 2, they do not reach a consensus.
For topic 1, there are two clusters (i.e., agents 1–3 in one
cluster and agents 4 and 5 in another cluster), and for topic 2,
there are also two clusters (i.e., agents 1 in one cluster and
agents 2–5 in another cluster). Thus, overall, the network
has a consensus in a part of topics, but they do not reach
a consensus on the other topics. Thus, no complete opinion
consensus is achieved, and no complete clustered consensus
is achieved. Consequently, there are three clusters: C1 = {x1},
C2 = {x2, x3}, and C3 = {x4, x5}.
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Fig. 2. Partial opinion consensus and clusters. Topic 3 reaches a consensus,
while topics 1 and 2 do not reach a consensus.

The consensus and coupling effects given in Definitions 3
and 4 can be mathematically modeled as follows.

1) Inverse-Proportional Structures: When the values of
opinions of two agents are quite different, the coupling effects
are more significant, which may be against from a natural
phenomenon (e.g., gravitational force). That is, when two
opinions are close, there could be more attraction force.
In inverse-proportional structures, there will be more coupling
effects when the values of opinions are quite different.

1) Direct coupling in diagonal terms

ai, j
p,p = ki, j

p,p (2)

where ki, j
p,p = k j,i

p,p > 0 is a constant.
2) Cross coupling in off-diagonal terms

ai, j
p,q = ki, j

p,q × sign(x j,p − xi,p)× sign(x j,q − xi,q ) (3)

where ki, j
p,q = k j,i

p,q = ki, j
q,p > 0 and sign(x j,p − xi,p) = 1

when x j,p − xi,p ≥ 0 and sign(x j,p − xi,p) = −1 when
x j,p − xi,p < 0.

2) Proportional Structures: In proportional structures, there
will be less coupling effects when the values of opinions are
quite different, which is the representative of relationships that
weaken due to greater opinion disagreement.1

1) Direct coupling in diagonal terms

ai, j
p,p = ki, j

p,p

c2‖x j,p − xi,p‖2 + c1‖x j,p − xi,p‖ + c0
(4)

where ki, j
p,p = k j,i

p,p > 0, and c0, c1, and c2 are positive
constants.

2) Cross coupling in off-diagonal terms

ai, j
p,q = ki, j

p,q × sign(x j,p − xi,p)×sign(x j,q −xi,q )

(c1‖x j,p − xi,p‖ + c0)(c1‖x j,q − xi,q‖ + c0)
(5)

where ki, j
p,q = ki, j

q,p > 0 and ki, j
p,q = k j,i

p,q > 0, and c1 and
c0 are positive constants. Then, we can have (Ai, j )T =
Ai, j and Ai, j = A j,i .

Note that in the above-mentioned coupling models,
if (p, q) ∈ Ei, j , then ai, j

p,q �= 0; otherwise, ai, j
p,q = 0. Thus,

the matrix Ai, j = [ai, j
p,q] is the weighting matrix for the topics

between two agents i and j . However, the matrix Ai, j is state-
and sign-dependent, while the matrix K i, j = [ki, j

p,q] is a matrix

1There are several opinion dynamics models in sociology that include this
mechanism; for example, see [23]

that defines the topological characteristics between the topics
of the neighboring agents. The matrix K i, j is called coupling
matrix, and it is a constant matrix. Here, we limit the signs
of ki, j

p,q as positive for a cooperative coupling, but it can be
modified to noncooperative coupling by adding the minus sign
to the edge. For this, refer to the discussions given in the
following and Remark 1.

It is worth noting that the matrix Ai, j is not an adjacency
matrix and neither is the matrix K i, j . However, they are
similar to an adjacency matrix. For example, if there is no
direct coupling between the same topics, then K i, j is the
adjacency matrix for characterizing the couplings between the
topics of two neighboring agents. On the other hand, if all
the topics are coupled (i.e., a topic of agent i is coupled to
all the topics of neighboring agent j ), then K i, j − Id is the
adjacency matrix ignoring the self-loops. The direct coupling
in the pth topic implies that there is a self-loop in the pth
topic node.

Example 3: Let us consider the following coupling
matrices:

K i, j
1 =

⎡
⎢⎢⎢⎢⎣

2 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 3 1
1 1 1 1 1

⎤
⎥⎥⎥⎥⎦ , K i, j

2 =

⎡
⎢⎢⎢⎢⎣

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

⎤
⎥⎥⎥⎥⎦ .

The matrix K i, j
1 means that any topic in agent i is coupled

to all the topics in j , while the matrix K i, j
2 means that any

topic in agent i is coupled to all the topics in j , but xi,p is
not coupled to x j,p (i.e., no direct coupling).

The anticonsensus can be simply modeled by adding the
minus sign to the elements of the coupling matrix, i.e., −ki, j

p,q .
Thus, there are four types of couplings: proportional coupling,
proportional anticoupling, inverse-proportional coupling, and
inverse-proportional anticoupling. The dynamics with anticon-
sensus terms is called noncooperative opinion dynamics, while
the dynamics without anticonsensus terms is called cooperative
opinion dynamics. Note that in existing traditional consensus
works, the inverse-proportional diagonal terms, i.e., (2), are
only used for the consensus couplings.

The dynamics (1) can be concisely rewritten as

ẋ = −L(x1, . . . , xn)x (6)

where the Laplacian is computed as

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
j∈Ni

A1, j −A1,2 . . . −A1,n

−A2,1
∑
j∈Ni

A2, j . . . −A2,n

...
...

. . .
...

−An,1 −An,2 . . .
∑
j∈Ni

An,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

Note that with the model (5), the Laplacian matrix is symmet-
ric. Also remark that in the dynamics (6), the Laplacian L is
dependent upon the sign of x j,p − xi,p ; thus, the entries of L
are functions that may be discontinuous when the sign changes
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TABLE II

COMPARISONS OF CONSENSUS LAWS AND OPINION DYNAMICS

abruptly.2 To be a continuous function, the sign function may
be modified as a sigmoid function as

sign(x j,p − xi,p) � 2

1 + e−ke(x j,p − xi,p )
− 1 (8)

where ke is a sufficiently large positive constant. With the
sigmoid function (8), the dynamics (6) is globally Lipschitz
continuous, so ẋ = −L(x1, . . . , xn)x has a globally unique
solution.

In the case of the inverse-proportional structure laws,
we can see that ai, j

p,q = ai, j
q,p and ai, j

p,q = a j,i
p,q . Then,

the Laplacian matrix L is symmetric. Consequently, for the
inverse-proportional consensus couplings, we can rewrite (1)
as⎛
⎜⎜⎜⎝

ẋi,1
ẋi,2
...

ẋi,d

⎞
⎟⎟⎟⎠ =

n∑
j∈Ni

⎡
⎢⎢⎢⎢⎣

sgni, j
1,1ki, j

1,1 . . . sgni, j
1,dki, j

1,d

sgni, j
2,1ki, j

2,1 . . . sgni, j
2,dki, j

2,d
...

. . .
...

sgni, j
d,1ki, j

d,1 . . . sgni, j
d,dki, j

d,d

⎤
⎥⎥⎥⎥⎦

×

⎛
⎜⎜⎜⎝

x j,1 − xi,1
x j,2 − xi,2

...
x j,d − xi,d

⎞
⎟⎟⎟⎠ (9)

where sgni, j
p,q � sign(x j,p − xi,p) × sign(x j,q − xi,q ) and

sgni, j
p,q = sgni, j

q,p .
Remark 1: If there are some inverse-proportional anticon-

sensus couplings between some topics, then some elements
in (9) will have negative signs. For example, if the first topic
and the second topic are anticonsensus coupled, then the terms
sgni, j

1,2ki, j
1,2 and sgni, j

2,1ki, j
2,1 need to be modified as −sgni, j

1,2ki, j
1,2

and −sgni, j
2,1ki, j

2,1. Nonetheless, in such a case, the Laplacian
matrix L still could be positive semidefinite.

Remark 2: The dynamics given in (9) should be distin-
guished from the traditional scalar-based consensus dynam-
ics [24], [25], state-dependent weights [26], [27], and
matrix-weighted consensus laws [21], [28]. Table II compares
the features of the consensus laws and opinion dynamics (9).3

The basic dynamics in Table II is ẋi = ∑
j∈Ni

wi j (x j − xi),
where wi j is the weights for the coupling between agents
i and j . According to the weights wi j , there are various

2Although L is state-dependent, every entry of L is bounded as a conse-
quence of how the Ai, j are defined in (2)–(5). Thus, the eigenvalues of L are
always bounded.

3In [27], the discrete dynamics was studied, but for a comparison purpose,
it is transformed into continuous-time case.

convergence properties, and different analysis techniques need
to be developed.

III. ANALYSIS

It will be shown in this section that the positive definite-
ness of the Laplacian matrix in (7) is closely related with
the positive definiteness of the coupling matrix K i, j . When
the coupling matrices are positive semidefinite, we provide
exact conditions for complete opinion consensus and cluster
consensus. However, even when L(x) is indefinite, since L(x)
is time-varying, the system (6) still can be stable, and a
consensus might be reached. Let us first focus on the case of
positive semidefinite Laplacian, and then, we consider general
cases that include indefinite Laplacian matrices. Because L(x)
is state-dependent, it may be necessary to use the following
concept.

Definition 7: The state-dependent symmetric Laplacian
L(x) is called uniformly positive semidefinite if L(x) is
positive semidefinite for all x . Specifically, we can define L(x)
to be uniformly positive semidefinite if 0 ≤ λi (L(x)) < ∞
for all x, where λi is an eigenvalue of the Laplacian.

As per Definition 7, the eigenvalues of L(x) should be
bounded; but this is clear from (7) and (8) since all the
absolute values of every entry of L(x) are bounded. Without
notational confusion, in what follows, when we mention pos-
itive semidefiniteness (or positive definiteness) of Laplacian,
it means uniform positive semidefiniteness (or uniform positive
definiteness).

A. Case of Uniform Positive Semidefinite Laplacian

It is not straightforward to verify whether the Laplacian
L(x) in (7) is positive semidefinite or not since it is a
block matrix. In L(x), the block element matrices could
be positive definite, positive semidefinite, negative definite,
negative semidefinite, or indefinite. Thus, an analysis for the
dynamics (6) would be more difficult than the traditional
scalar-based consensus. For the analysis, let us define the
incidence matrix H = [hi j ] ∈ Rm×n for the interaction graph
G = (V, E) as

hki =

⎧⎪⎨
⎪⎩

−1, if vertex i is the tail of the kth edge

1, if vertex i is the head of the kth edge

0, otherwise

(10)

where the direction of the edge k is arbitrary. Let us also define
the incidence matrix in d-dimensional space as H̄ = H ⊗ Id

and write the weighting matrix for the kth edge (i.e., kth Ai, j )
as Akth ∈ Rd×d . Let us also write the coupling matrix K i, j
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corresponding to Akth as K kth. As mentioned earlier, if there is
no direct coupling between the same topics of two neighboring
agents, the coupling matrix K i, j can be considered as a
constant adjacency matrix for the coupling graph Gi, j . The
block diagonal matrix composed of Akth, k = 1, . . . ,m
is denoted as blkdg(Akth), and the block diagonal matrix
composed of K kth, k = 1, . . . ,m is denoted as blkdg(K kth).

Let us first study the case of inverse-proportional coupling.
For this result, the following lemma is necessary.

Lemma 1: For the inverse-proportional coupling, the Lapla-
cian L(x) is positive semidefinite if and only if blkdg(K kth)
is positive semidefinite.

Proof: Due to the same reason as in [28, Lemma 1],
we can write L = H̄T blkdg(Akth)H̄. It is shown that the
weighting matrix Akth can be written as

Akth = diag(Si, j )K kthdiag(Si, j ) (11)

where the edge (i, j) is the kth edge and diag(Si, j ) is given
as

diag(Si, j ) = diag(sign(x j,k − xi,k))

=
⎡
⎢⎣

sign(x j,1 − xi,1) · · · 0
...

. . .
...

0 · · · sign(x j,d − xi,d )

⎤
⎥⎦ .

. (12)

Hence, the Laplacian matrix can be written as

L = H̄T blkdg(diag(Si, j ))blkdg(K kth)blkdg(diag(Si, j ))H̄.

(13)

Therefore, it is obvious that the Laplacian matrix L is positive
semidefinite if and only if the matrix blkdg(K kth) can be
decomposed as blkdg(K kth) = K̄T K̄ with a certain matrix K̄.
It means that the Laplacian matrix L is positive semidefinite
if and only if blkdg(K kth) is positive semidefinite. �

Theorem 1: The Laplacian L(x) is positive semidefinite
if and only if the coupling matrices K i, j are positive
semidefinite.

Proof: The proof is immediate from Lemma 1. �
It is well-known that the adjacency matrix of a complete

graph with d nodes has eigenvalues d − 1 with multiplicity 1
and −1 with multiplicity d − 1. Then, with this fact, we can
obtain the following result.

Theorem 2: Let us suppose that there is no direct coupling
between the same topics of two neighboring agents, but a
topic is coupled to all other topics with coupling strengths
ki, j

p,q = 1 for all the couplings. Then, under the condition that
all diag(Si, j ) are not equal to zero (i.e., there exists at least
one topic p such that x j,p �= xi,p), the Laplacian L(x) has
negative eigenvalues.

Proof: It is clear that the matrix K kth can be considered
as an adjacency matrix characterizing the topic couplings
of the kth edge. Let us denote this matrix as K kth− . Then,
the matrix K kth− has an eigenvalue d−1 with multiplicity 1 and
the eigenvalue −1 with multiplicity d − 1. Thus, the matrix
L = H̄T blkdg(diag(Si, j ))blkdg(K kth− )blkdg(diag(Si, j ))H̄ has
eigenvalues located in the open left half-plane because
blkdg(K kth− ) has eigenvalue −1 with multiplicity of m(d − 1),
where m = |E |. �

The opposite circumstance occurs when all the topics are
coupled, including the same topics, which is summarized in
the next result.

Corollary 1: Suppose that all the topics are coupled for all
edges (i, j) of graph G with coupling strengths ki, j

p,q = 1.
Then, the Laplacian L(x) is positive semidefinite.

Proof: In this case, the matrix K kth can be considered as
a rank 1 matrix defined as K kth � K kth+ = K kth− + Id because
the matrix K kth+ is a matrix with all elements being equal to 1.
Thus, the eigenvalues of K kth+ are d with multiplicity 1 and all
others being equal to zero. Therefore, the matrix L is positive
semidefinite. �

Now, let us suppose that the matrix blkdg(K kth) is positive
semidefinite; then, it can be written as blkdg(K kth) = U T U for
some matrix U . Then, by denoting U = Ublkdg(diag(Si, j ))H̄,
we can write L(x) = UT U. It is clear that nullspace(H̄) ⊆
nullspace(L) = nullspace(U) because blkdg(K kth) is positive
semidefinite. Noticing that the nullspace of incidence matrix is
N (H̄) = R(1n ⊗Id) � R, we can see that the set R is always
a subspace of N (L). To find the nullspace of L, the following
lemma will be employed.

Lemma 2: [29] When a matrix A is positive semidefinite,
for any vector x , it holds that Ax = 0 if and only if x T Ax = 0.

We remark that if a matrix A is indefinite, Lemma 2 does
not hold. For example, let us consider the following matrix:

A =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 −4 0
0 0 0 −4

⎤
⎥⎥⎦ (14)

which is nonsingular and has 1, 1,−4,−4 as its eigenvalues.
Then, the vector x = (1, 1, 1/2, 1/2)T makes that x T Ax = 0,
while Ax �= 0. It may be also important to note that since the
elements of the coupling matrix K i, j are all nonnegative, and
sign(x j,p − xi,p)(x j,p − xi,p) ≥ 0, Lemma 2 may be further
generalized. However, a further generalization is not obvious.
From Lemma 2, we can see that a vector x in the nullspace of
A is equivalent to a vector x that makes xT Ax = 0 when the
matrix A is positive semidefinite. With this fact and with (8),
since ai, j

p,q = ki, j
p,qsgni, j

p,q = ki, j
p,qsign(x j,p − xi,p)× sign(x j,q −

xi,q ) = ki, j
p,q[2/(1 + e−ke(x j,p−xi,p ))− 1][2/(1 + e−ke(x j,p−xi,p ))

−1], we can write xT Lx as follows:
x T Lx =

∑
(i, j )∈E

(x j − xi )
T Ai j (x j − xi )

=
∑
(i, j )∈E

d∑
p=1

d∑
q=1

ai, j
p,q(x j,p − xi,p)(x j,q − xi,q )

=
∑
(i, j )∈E

d∑
p=1

d∑
q=1

ki, j
p,q

×
(

2

1 + e−ke(x j,p−xi,p )
− 1

)
(x j,p − xi,p)

×
(

2

1 + e−ke(x j,q−xi,q )
− 1

)
(x j,q − xi,q )

=
∑
(i, j )∈E

σ (x j − xi )
T K i, j σ (x j − xi ) (15)
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where σ (x j − xi ) is defined as

σ (x j − xi ) � (σ (x j,1 − xi,1), . . . , σ (x j,d − xi,d ))
T (16)

with σ(x j,p − xi,p) � sign(x j,p − xi,p)(x j,p − xi,p) = |2/(1 +
e−ke(x j,p−xi,p ))−1||x j,p −xi,p |. Thus, to have

∑
(i, j )∈E σ (x j −

xi )
T K i, j σ (x j − xi ) = 0, based on Lemma 2, it is required to

satisfy σ (x j − xi ) ∈ N (K i, j ) for all (i, j) ∈ E . Therefore,
summarizing this discussion, we can obtain the following
lemma.

Lemma 3: Suppose that the blkdg(K kth) is positive semi-
definite, which is equivalent to the uniform positive semidefi-
niteness of L. Then, the nullspace of L is given as

N (L) = span{R, {x = (xT
1 , x T

2 , . . . , x T
n )

T ∈ Rdn

|σ (x j − xi ) ∈ N (K i, j ) ∀(i, j) ∈ E}}. (17)

Let the Laplacian be uniform positive semidefinite, but
as discussed already, the Laplacian L(x) is state-dependent.
Thus, we may need to pay attention on the convergence of
the Laplacian dynamics (6). For example, as x → 1n ⊗ Id,
the Laplacian converges to L → 0 according to (13). In such
circumstance, to examine the convergence, we can use the
Lyapunov function V = 1/2xT x . Then, the derivative of V
is given as x T Lx , which is given in (15). Then, by LaSalle’s
invariance principle, the states would converge to the nullspace
of L(x), which is given in (17).

Remark 3: Lemma 3 implies that if blkdg(K kth) is positive
definite, then N (L) = R. Thus, a complete opinion consensus
is achieved.

Remark 4: In (15), if K i, j is nonsingular, then it has only
the trivial nullspace. Thus, it appears that a complete opinion
consensus might be achieved. However, as discussed with the
A matrix in (14), the set of vectors x making xT Lx = 0 is
not equivalent to the set of vectors x making Lx = 0.

In Lemma 3, there are possibly two subspaces for the
nullspace. The subspace R is the standard consensus space,
but the subspace spanned by x satisfying σ (x j −xi ) ∈ N (K i, j )
needs to be elaborated since the elements of the coupling
matrix K i, j are zero or positive constants, and the elements
of the vector σ (x j − xi) are also positive except the zero. The
following example provides some intuitions for the coupling
matrix.

Example 4: Let us consider that there are five topics, and
the coupling matrix between agents i and j is given as

K i, j =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ (18)

which means that only topics 1 and 2 are coupled. However,
the above-mentioned matrix is not positive semidefinite. Thus,
the basic condition of Lemma 3 is not satisfied. Let us consider
another coupling matrix as

K i, j =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 1 1

⎤
⎥⎥⎥⎥⎦ (19)

which is positive semidefinite. It follows that:

K i, j σ (x j − xi ) =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 1 1
0 0 0 1 1

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝
σ(x j,1 − xi,1)
σ (x j,2 − xi,2)
σ (x j,3 − xi,3)
σ (x j,4 − xi,4)
σ (x j,5 − xi,5)

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝
σ(x j,1 − xi,1)+ σ(x j,2 − xi,2)
σ (x j,1 − xi,1)+ σ(x j,2 − xi,2)

0
σ(x j,4 − xi,4)+ σ(x j,5 − xi,5)
σ (x j,4 − xi,4)+ σ(x j,5 − xi,5)

⎞
⎟⎟⎟⎟⎠ .

Consequently, to satisfy K i, j σ (x j − xi ) = 0, we need to have
x j,1 = xi,1, x j,2 = xi,2, x j,4 = xi,4, and x j,5 = xi,5, but x j,3
and xi,3 can be chosen arbitrarily.

From Example 4, we can observe that the coupling matri-
ces K i, j , (i, j) ∈ E would provide all possible consensus
solutions in the topics among agents. Let us add another
coupling between topics 1 and 3 into K i, j in (19) as

K i, j =

⎡
⎢⎢⎢⎢⎣

1 1 1 0 0
1 1 0 0 0
1 0 0 0 0
0 0 0 1 1
0 0 0 1 1

⎤
⎥⎥⎥⎥⎦ . (20)

Then, against from an intuition, the matrix K i, j is no more
positive semidefinite (actually, it is indefinite since it has
negative, zero, and positive eigenvalues). As there are more
couplings between topics, the Laplacian matrix L has lost the
positive semidefinite property. Thus, as far as the coupling
matrix K i, j is positive semidefinite, the nullspace of K i, j

enforces x j and xi to be synchronized. That is, in the multipli-
cation K i, j σ (x j − xi ), if the term σ(x j,p − xi,p) appears, then
they will be synchronized; otherwise, if it does not appear,
the synchronization x j,p → xi,p is not enforced. Now, we can
summarize the discussions as follows.

Lemma 4: Let us assume that the Laplacian L(x) is positive
semidefinite, and for two neighboring agents i and j , topics
p and q are coupled, i.e., K i, j

p,q �= 0. Then, the opinion values
xi,p and x j,p will reach a consensus, and the opinion values
xi,q and x j,q will also reach a consensus. If the same topic
p is coupled between the neighboring agents, i.e., K i, j

p,p �= 0,
then xi,p and x j,p will reach a consensus.

Given a coupling matrix K i, j , let us define a consensus
matrix, Ci, j = [ci, j

p,q ], between agents i and j as

ci, j
p,p = ci, j

q,q =
{

1, if K i, j
p,q = 1

0, if K i, j
p,q = 0.

(21)

Now, we define the topic consensus graph Gp,con =
(Tp,con, Ep,con) for topic p as follows:

Tp,con � {x1,p, x2,p, . . . , xn,p} (22)

Ep,con � {(i, j) | ∃(i, j) if ci, j
p,p = 1; �(i, j)

otherwise if ci, j
p,p = 0}. (23)

Thus, x j,p is a neighbor of xi,p if and only if (i, j) ∈ Ep,con.
That is, x j,p ∈ Nxi,p if and only if ci, j

p,p = 1. With the
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Fig. 3. Interaction topology of a network and coupling between the
neighboring topics.

above-mentioned definition, we can make the following main
theorem.

Theorem 3: Let us assume that the Laplacian L(x) is pos-
itive semidefinite. Then, for topic p, the agents in Tp,con will
reach a consensus if and only if the topic consensus graph
Gp,con is connected.

Proof: If the consensus graph Gp,con is connected, it can
be considered that there is at least one path between xi,p

and x j,p for any pair of i and j . Thus, the set of p-topic
agents, i.e., Tp,con � {x1,p, x2,p, . . . , xn,p}, is connected, and
the p-topic will reach a consensus by Lemma 4. The only if
is also direct from Lemma 4. That is, if the topic opinions in
Tp,con are not connected, it means that there are clusters that
are not connected. Thus, the consensus of the agents in Tp,con
is not possible. �

Example 5: Let us consider Fig. 3 that illustrates the inter-
action topology of a network. In this case, the elements of
coupling matrix are given as K 1,2

1,1 = K 3,4
1,1 = K 2,3

1,2 =
K 2,3

2,1 = K 1,2
2,2 = K 1,2

3,3 = K 3,4
2,3 = K 3,4

3,2 = 1. Thus, we have

c1,2
1,1 = c3,4

1,1 = c2,3
1,1 = c2,3

2,2 = c1,2
2,2 = c1,2

3,3 = c3,4
2,2 = c3,4

3,3 = 1.
Then, from this consensus matrix, we can obtain the topic
consensus graphs Gp,con = (Tp,con, Ep,con) for p = 1, 2, 3
with the following edge sets:

E1,con � {(1, 2), (3, 4), (2, 3)}
E2,con � {(2, 3), (1, 2), (3, 4)}
E3,con � {(1, 2), (3, 4)}.

Therefore, the consensus graphs G1,con and G2,con are con-
nected, while the consensus graph G3,con is not connected.

Now, by the virtue of Theorem 3, we can conclude that if
the Laplacian L(x) is positive semidefinite and all the topics
are connected in the sense of Theorem 3 (i.e., from the topic
consensus graph Gp,con = (Tp,con, Ep,con), then a complete
consensus will be ensured. Otherwise, given Gp,con, although
the Laplacian L(x) is positive semidefinite, if topic p is not
connected, then a partial opinion consensus will be achieved.
The number of partial opinion clusters will be dependent on
the number of clusters on topic p. For example, in Fig. 2,
topic p = 1 has two clusters, topic p = 2 has two clusters,
and topic p = 3 has one cluster. Let us define disconnection
as follows.

Definition 8: For a topic p, we call there is no discon-
nection if and only if the opinion values x1,p, x2,p, . . . , xn,p

are connected. If the opinion values are divided into cp

components (there is no connection between components),
then there are cp − 1 disconnections.

Then, for Fig. 2, we can say that topic p = 1 has one discon-
nection (i.e., between agents 3 and 4), topic p = 1 also has one
disconnection (i.e., between agents 1 and 2), and topic p = 3
does not have a disconnection. With Definition 8, although it
looks trivial, we can obtain the following observation.

Observation 1: Let there be d topics, and each topic has
ci , i = 1, . . . , d, clusters. Then, there are Tc = ∑d

k=1(ci −
1)+ 1 partial opinion clusters at maximum.

Proof: Suppose that for topic d = 1, we have c1 clusters.
It means that there are c1 − 1 disconnections in the set
T1,con � {x1,1, x2,1, . . . , xn,1}. Similarly, for topic d = 2 with
c2 clusters, there are c2 − 1 disconnections in the set T2,con .
Thus, by combining topics d = 1 and d = 2, there could be
at maximum (c1 − 1)+ (c2 − 1) disconnections in T1,con and
T2,con . Thus, if we consider all the topics, there are at most
(c1 − 1) + (c2 − 1) disconnections in

∑d
k=1(ci − 1), which

implies that there could be Tc = ∑d
k=1(ci − 1) + 1 partial

opinion clusters at maximum. �
The results, thus far, are developed for the inverse-

proportional structures. Next, let us consider the case of the
proportional structures. For this, we use (5). Then, the weight-
ing matrix can be decomposed as (11), with the diagonal
matrix diag(Si, j ) given as

diag(Si, j ) = diag

(
sign(x j,k − xi,k)

c1‖x j,k − xi,k‖ + c0

)
. (24)

Also, xT Lx can be expressed as follows:
x T Lx =

∑
(i, j )∈E

η(x j − xi )
T K i, j η(x j − xi ) (25)

where

η(x j −xi) �
(

σ(x j,1 − xi,1)

c1‖x j,1 − xi,1‖ + c0
,

σ (x j,2 − xi,2)

c1‖x j,2 − xi,2‖ + c0
, . . . ,

σ (x j,d − xi,d )

c1‖x j,d − xi,d‖ + c0

)T

.

Thus, the nullspace of the Laplacian L in (25) is the same as
that of the nullspace of L in (15). Consequently, all the results
in the inverse-proportional structure couplings are exactly
applied to the cases of the proportional structure couplings.
For the noncooperative opinion dynamics, the elements of cou-
pling matrices could be negative, i.e., there exist −ki, j

p,q < 0.
It is obvious that K i, j will be no more positive semidefinite
if there exists a negative diagonal term. Thus, as far as the
coupling matrices K i, j are positive semidefinite, with some
negative off-diagonal elements, the results for cooperative
networks will be still applied. It means that there could
be anticoupling (i.e., anticross coupling) between different
topics, but if there is an anticoupling (i.e., antidirect coupling)
between the same topics, then a consensus is not achieved.4

B. General Cases

The results in the previous section are quite clear and
provide precise conditions for the characterization of opinion

4Since the Laplacian matrix has negative eigenvalues, the opinion vector
may diverge.
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dynamics. However, the results are developed when the matrix
blkdg(K kth) is positive semidefinite. As shown in (20), when
the matrix blkdg(K kth) is not positive semidefinite, although
it is against from intuition, there can be no theoretical guaran-
tee for opinion consensus. For general case, we would like
to directly analyze the stability of the inverse-proportional
structures modeled by (2) and (3). Let us take the Lyapunov
candidate V = 1/2‖x‖2, which is radially unbounded and con-
tinuously differentiable, for the inverse-proportional structures.
The derivative of V is computed as

V̇ = −x T Lx

= −
∑
(i, j )∈E

σ (x j − xi )
T K i, j σ (x j − xi )

= −
∑
(i, j )∈E

d∑
p=1

ki, j
p,p(σ (x j,p − xi,p))

2

︸ ︷︷ ︸
�φ

−
∑
(i, j )∈E

d∑
p=1

d∑
q=1, q �=p

ki, j
p,qσ(x j,p − xi,p)σ (x j,q − xi,q )

︸ ︷︷ ︸
�ψ

≤ 0. (26)

From the above-mentioned inequality, it is clear that V̇ = 0 if
and only if x j,p = xi,p for all topics, i.e., ∀p ∈ T , the opinion
consensus is achieved, which is summarized as follows.

Theorem 4: Let us suppose that the underlying interaction
graph G is all-topic coupled, i.e., Gp is p-coupled for all p ∈
{1, . . . , d}. Then, a complete opinion consensus is achieved.

Proof: To make V̇ = 0, it is required to have φ = 0 and
ψ = 0. Since G is all-topic coupled, φ = 0 implies ψ = 0.
However, ψ = 0 does not imply φ = 0. Thus, it is true that
V̇ = 0 if x j,p = xi,p for all topics and for all (i, j) ∈ E .
Suppose that there exists an edge such that x j,p �= xi,p for
a specific topic p. Then, V̇ �= 0. Thus, V̇ = 0 only if
x j,p = xi,p for all topics and for all (i, j) ∈ E . Consequently,
the set D = {x : x j,p = xi,p, ∀i, j ∈ V, ∀p ∈ T }, is the
largest invariant set. Finally, by LaSalle’s invariance principle,
the proof is completed. �

Remark 5: It is remarkable that the above-mentioned
results are true for both the homogeneous-coupling and
heterogeneous-coupling networks, as far as the interaction
graph G is all-topic coupled.

Remark 6: It is noticeable that the condition of Theorem 4
is only a sufficient condition for a complete consensus. Thus,
we may be able to achieve a complete opinion consensus
even if the network is not all-topic coupled. Let us suppose
that two topics p̄ and q̄ are not p-coupled. For example,
the two topics are not directly coupled at the edge (ī, j̄).
Since the overall network is connected, there must be terms
such as kī, j̄

p̄,q̄σ(x j̄ , p̄ − xī, p̄)σ (x j̄ ,q̄ − xī,q̄) in ψ . Thus, to make
V̇ = 0, it is required to have either σ(x j̄, p̄ − xī, p̄) = 0 or
σ(x j̄ ,q̄ − xī,q̄) = 0. Therefore, even if the two topics p̄ and q̄
are not p-coupled, the neighboring agents ī and j̄ may reach
a consensus. We will illustrate this case by an example in
Section IV.

From (26), we can see that if there is no cross couplings,
i.e., ψ = 0, then it is a usual consensus protocol in different
layers. On the other hand, if there is no direct coupling,
i.e., φ = 0, then there is no coupling in the same topics among
agents. In the case of ψ = 0 with ki, j

p,q = 0 whenever p �= q ,
it is still true that V̇ = 0 if and only if x j,p = xi,p ; thus,
the typical consensus is achieved. Let φ = 0, with ki, j

p,p = 0
for all p. There are some undesired equilibrium cases. For
example, given a coupling graph Gi, j , let there exist paths
from topic node 1 to all other topic nodes. That is, the graph
Gi, j is a star graph with root node 1. Then, V̇ with φ = 0 can
be changed as

V̇ = −
∑
(i, j )∈E

σ(x j,1 − xi,1)

⎡
⎣ d∑

q=2

ki, j
1,qσ(x j,q − xi,q )

⎤
⎦ . (27)

Thus, if sgmd(x j,1 − xi,1) = 0 for all (i, j) ∈ E , then we have
V̇ = 0. Thus, for a star graph, if the root topic has reached
a consensus, all other topics may not reach a consensus.
Actually, when φ = 0, a complete consensus is not achieved
due to the following reason.

Claim 1: Let us suppose that ∀(i, j) ∈ E , ki, j
p,p = 0,

∀p ∈ T . Then, V̇ will be almost zero (for the meaning
of “almost,” see the footnote 1) with at least one topic
having x j,p �= xi,p if and only if the coupling graphs Gi, j ,
∀(i, j) ∈ E , are complete graphs.

Proof: If: When it is a complete graph, without loss of
generality, let the first topic, p = 1, be reached a consen-
sus. Then, we need to have

∑d
p=2

∑d
q=2, q �=p ki, j

p,qσ(x j,p −
xi,p)σ (x j,q −xi,q ) = 0 to make V̇ = 0. Similarly, suppose that
the second topic has been reached a consensus, i.e., p = 2.
Then, we need to have

∑d
p=3

∑d
q=3, q �=p ki, j

p,qσ(x j,p −
xi,p)σ (x j,q − xi,q ) = 0. By induction, when p = d − 1,
we need to have ki, j

d,d−1σ(x j,d − xi,d )σ (x j,d−1 − xi,d−1) = 0.

Thus, to make ki, j
d,d−1σ(x j,d − xi,d )σ (x j,d−1 − xi,d−1) = 0,

either σ(x j,d − xi,d ) or σ(x j,d−1 − xi,d−1) needs to be zero.5

Thus, at least one topic does not need to reach a consensus.
Only If: Without loss of generality, let us suppose that there

is no couple between topics p = d − 1 and p = d , but there
are couplings between all other remaining topics. Then, by fol-
lowing the above-mentioned procedure (“if” procedure), when
p = d − 2, we have ki, j

d−1,d−2σ(x j,d−1 − xi,d−1)σ (x j,d−2 −
xi,d−2)+ki, j

d,d−2σ(x j,d −xi,d )σ (x j,d−2−xi,d−2) = 0. Thus, if it
is assumed that σ(x j,d−2 − xi,d−2) = 0, then the two topics,
p = d − 1 and p = d , do not need to reach a consensus. �

Remark 7: In Claim 1, since ki, j
p,p = 0 for all p and for all

edges, and the coupling graphs are complete graphs, it can be
classified as a homogeneous-coupling network.

The above-mentioned claim implies that a complete opinion
consensus for all topics is not ensured for general graphs when

5Actually, this does not imply that only one equality holds; the two equalities
may hold. Indeed, suppose that at time t , all other conditions have been
satisfied, and i and j are still updating their opinions on topics d and d − 1
using the couplings σ(x j,d (t)−xi,d (t)) and σ(x j,d−1(t)−xi,−1d (t)). If these
two coupling gains are equal, then the consensus speeds of i and j on topics
d and d − 1 are equal. Thus, topics d and d − 1 might achieve a consensus
simultaneously. Although this case might rarely happen, it may occur; that is
why we call it “almost zero with at least one topic having x j,p �= xi,p .”
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φ = 0. Also, under the condition of φ = 0, when the coupling
graphs are not complete graphs, it is likely that more than one
topic would not reach consensus. Thus, for a complete opinion
consensus, it is required to have φ �= 0.

Observation 2: Consider a homogeneous-coupling net-
work. Let φ �= 0, but ki, j

p,p = 0 for some p ∈ T , ∀(i, j) ∈ E .
Then, a complete opinion consensus is not ensured.

Proof: Let us divide the set T as T = T ◦ ∪ T × and
T ◦ ∩ T × = ∅, where ki, j

p,p �= 0 when p ∈ T ◦ and ki, j
p,p = 0

when p ∈ T ×. Then, for all topics p ∈ T ◦, we need to have
σ(x j,p − xi,p) = 0 to make V̇ = 0. Then, to make ψ = 0, it is
required to ki, j

p,qσ(x j,p − xi,p)σ (x j,q − xi,q ) = 0 when p ∈ T ◦
and q ∈ T × or ki, j

p,qσ(x j,p − xi,p)σ (x j,q − xi,q ) = 0 when
p, q ∈ T ×. For the former case, since σ(x j,p − xi,p) = 0,
it does not need to have σ(x j,q − xi,q ) = 0. Thus, for topics
q ∈ T ×, a consensus may not be achieved. For the latter case,
due to the same reason as the proof of Claim 1, there will be
some topics that do not reach a consensus. �

Theorem 4 and Observation 2 lead a conclusion that each
topic needs to be p-coupled to have a complete consensus.
However, as remarked in Remark 6, it is not argued that the p-
coupling for all topics, i.e., all-topic coupled, is the necessary
and sufficient condition for a complete opinion consensus.
From (26), we can infer that the interdependent couplings
between topics are required to speed up the opinion consensus.
Thus, to have an opinion consensus on a topic, the agents
of the society need to discuss directly on the same topic.
However, if they have some opinion couplings with other
topics, the consensus of the topic may be achieved more
quickly.

Next, let us consider the proportional structures modeled
by (4) and (5). For the proportional structures, using the
same Lyapunov candidate V = 1/2‖x‖2, we can obtain the
derivative of V as

V̇ = −
∑
(i, j )∈E

d∑
p=1

d∑
q=1

ki, j
p,q

× σ(x j,p − xi,p)σ (x j,q − xi,q )

(c1‖x j,p − xi,p‖ + c0)(c1‖x j,q − xi,q‖ + c0)
≤ 0.

(28)

Since the denominator of the right-hand side of (28) is always
positive, the equilibrium set for V̇ = 0 is determined by
σ(x j,p − xi,p)σ (x j,q − xi,q ) = 0 for all p, q ∈ T . Conse-
quently, we have the same results as the inverse-proportional
structure couplings.

Observation 3: Let us consider general
heterogeneous-coupling network, i.e., Gi1, j1 �= Gi2, j2 for
some edges (i1, j1) �= (i2, j2). If some topics are not
p-coupled, then a complete opinion consensus is not ensured.

Proof: Let us suppose that there is no direct coupling
between agents j̄ and ī on a specific topic p̄. Then, in φ
of (26), the term (x j̄, p̄ − xī, p̄)

2 is missed. However, the term
σ(x j̄ , p̄ − xī, p̄) may be included in ψ in the form of σ(x j̄, p̄ −
xī, p̄)σ (x j̄,p − xī,p) if there are cross couplings between topic
p̄ and any other topics p. If there is a direct coupling on topic
p between agents j̄ and ī , then the term σ(x j̄,p − xī,p) will

Fig. 4. Network composed of four agents with three topics.

be zero; thus, σ(x j̄ , p̄ − xī, p̄) does not need to be zero to make
V̇ zero, or if there is no direct coupling on topic p between
agents j̄ and ī , still either σ(x j̄ , p̄ −xī, p̄) or σ(x j̄,p −xī,p) does
not need to be zero also. Thus, a complete opinion consensus
is not ensured. �

The results of Observation 2 and Observation 3 leave a ques-
tion about the clustered opinions. Let us consider a network
depicted in Fig. 4. From the term φ in (26), all the topics
between agents 1 and 2 and all the topics between agents 3
and 4 reach an opinion consensus. Due to the interdependent
couplings between agents 2 and 3, we have the interdepen-
dency terms as ψ = k2,3

1,2σ(x2,1 − x3,1)σ (x2,2 − x3,2) +
k3,2

2,1σ(x2,2 − x3,2)σ (x2,1 − x3,1)+ k2,3
2,3σ(x2,2 − x3,2)σ (x2,3 −

x3,3) + k3,2
3,2σ(x2,3 − x3,3)σ (x2,2 − x3,2). Thus, by Barbalat’s

lemma, to make V̇ zero, we need to have ψ = 0. From the
above-mentioned equation, for example, if σ(x2,2 − x3,2) = 0,
then ψ becomes zero. The largest invariant set for having
V̇ = 0 is obtained as D = Dd ∪ Du , where the desired set is
given

Dd = {x : x1 = x2 = x3 = x4}
and the undesired set is given as

Du = {x : x1 = x2, x3 = x4, x2 �= x3}.
In the undesired set, the opinions of agents 2 and 3 may be
related to as: 1) x2,2 = x3,2, but x2,1 �= x3,1 and x2,3 �= x3,3; 2)
x2,2 �= x3,2, but x2,1 = x3,1 and x2,3 = x3,3; 3) x2,3 �= x3,3, but
x2,1 = x3,1 and x2,2 = x3,2; or 4) x2,1 �= x3,1, but x2,2 = x3,2
and x2,3 = x3,3. Thus, a part of opinions reaches a consensus,
while a part of opinions may reach clustered consensus.

It is clear that if there are some topics that are p-coupled,
then a complete clustered consensus cannot take place. Also,
even though the network is not p-coupled for all p, if the
network is connected, then a complete clustered consensus
is not ensured since the connected neighboring topics would
reach a consensus. Thus, a complete opinion consensus rarely
occurs as far as the network is connected. However, a partial
opinion consensus would occur easily if it is not all-topic
coupled. In fact, if the network is not all-topic coupled,
the network would have opinion-based clustered consensus.
It means that if agents of the network are connected, some
opinions would be agreed among agents, but some opinions
would be divided into clusters, or most of the opinions would
be clustered, depending on interaction network topology G and
the topic topologies Gp .
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Fig. 5. Network with inner couplings. There are couplings between topics
p and q in agent i and between topics q and r in agent j .

Fig. 6. Underlying topology for numerical simulations.

Observation 4: Suppose that a network is connected. Even
though φ = 0, a complete clustered consensus is not ensured.

Proof: Due to the term ψ including σ(x j,p−xi,p)σ (x j,q −
xi,q ), at least one of topics p and q needs to be agreed. Thus,
a complete clustered opinion consensus does not occur. �

Now, with the statements of Observations 2–4, we can
see that if agents of a society are not all-topic coupled but
just connected in the sense of interaction graph G, and then
both the complete opinion consensus and complete clustered
consensus are not ensured. Finally, it is remarkable that for
the general cases with the general Laplacian matrix, only the
analysis for cooperative opinion dynamics is feasible, different
from the cases in Section III-A. That is, if there exists at least
one negative ki, j

p,q , V̇ could be positive in (26). This is the
weak point of the results of Section III-B over the results of
Section III-A.

Remark 8: There may exist inner agent couplings among
the topics of an agent. That is, for example, Fig. 1 may be
changed as shown in Fig. 5 with inner couplings. In such a
case, the opinion model (1) should be changed as

ẋi =
n∑

j∈Ni

Ai, j (x j − xi )+ Fi xi (29)

where the matrix Fi ∈ Rd×d defines the inner couplings.
The elements of Fi may be modeled in a cooperative or
anticooperative manner as done in Section II. However, with
addition of inner coupling terms, overall analysis becomes
more difficult. Thus, this topic remains as another work.

IV. SIMULATIONS

A. Case of Positive Semidefinite Laplacian

Let us consider five agents with the underlying interaction
network topology, as shown in Fig. 6. The initial opinions
of agents are given as x1 = (1, 2, 3)T , x2 = (2, 4, 4)T ,
x3 = (3, 1, 5)T , x4 = (4, 3, 2)T , and x5 = (5, 6, 1)T . The
initial opinions of agents for the three topics are different
each other. To verify the results of Section III-A, the following

coupling matrices are considered:

K 1,2 =
⎡
⎣ 1 1 0

1 1 0
0 0 0

⎤
⎦ ; K 1,3 =

⎡
⎣ 1 0 0

0 1 1
0 1 1

⎤
⎦

K 2,3 =
⎡
⎣ 2 0 1

0 2 1
1 1 2

⎤
⎦ ; K 3,4 =

⎡
⎣ 1 1 1

1 1 1
1 1 1

⎤
⎦

K 4,5 =
⎡
⎣ 1 0 1

0 1 0
1 0 1

⎤
⎦ (30)

which are all positive semidefinite. From the above-mentioned
coupling matrices, it is shown that the topic consensus graph
Gp,con for all p = 1, 2, 3 is connected. Thus, as expected from
Theorem 3, a consensus for all topics is achieved. Fig. 7 shows
that all the values of the topics of agents reach a consensus
as time passes. Next, let us change K 1,3 and K 3,4 as

K 1,3 =
⎡
⎣ 0 0 0

0 1 1
0 1 1

⎤
⎦ ; K 3,4 =

⎡
⎣ 0 0 0

0 1 1
0 1 1

⎤
⎦

which are still positive semidefinite. However, due to the
new K 3,4, there is a disconnection in topic 1 between agents 3
and 4. Thus, topic 1 is not connected in the topic consensus
graph G1,con. As expected from Theorem 1, there will be two
clusters. Fig. 8 shows that topic 1 does not reach a consensus;
there are two clusters (one cluster with agents 1–3 and another
cluster with agents 4 and 5).

Next, let us consider the following coupling matrices that
have anticouplings in off-diagonal terms. Clearly, it is a
noncooperative opinion network. However, even with negative
cross couplings, all the topics are p-coupled, and the Laplacian
of this dynamics is still positive semidefinite. Fig. 9 shows that
all the topics reach a consensus, as expected

K 1,2 =
⎡
⎣ 2 −1 0

−1 2 1
0 1 1

⎤
⎦ ; K 1,3 =

⎡
⎣ 1 0 0

0 1 1
0 1 1

⎤
⎦

K 2,3 =
⎡
⎣ 2 0 −1

0 2 1
−1 1 2

⎤
⎦ ; K 3,4 =

⎡
⎣ 5 1 0.1

1 1 −1
0.1 −1 5

⎤
⎦

K 4,5 =
⎡
⎣ 1 0 1

0 1 0
1 0 1

⎤
⎦ .

B. General Cases

Let the coupling topologies for each edge be given as

K 1,2 =
⎡
⎣ 1 1 0

1 1 1
0 1 1

⎤
⎦ ; K 1,3 =

⎡
⎣ 1 1 0

1 1 1
0 1 1

⎤
⎦

K 2,3 =
⎡
⎣ 1 1 0

1 1 1
0 1 1

⎤
⎦ ; K 3,4 =

⎡
⎣ 1 1 0

1 1 1
0 1 1

⎤
⎦

K 4,5 =
⎡
⎣ 1 1 0

1 1 1
0 1 1

⎤
⎦
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Fig. 7. Consensus under positive semidefinite Laplacian. Left: topic 1 (i.e., xi,1, i = 1, . . . , 5). Center: topic 2 (i.e., xi,2, i = 1, . . . , 5). Right: topic 3 (i.e.,
xi,3, i = 1, . . . , 5).

Fig. 8. Partial opinion consensus with a disconnected topic consensus graph.

Fig. 9. Noncooperative network: a complete opinion consensus is achieved with anticross couplings.

which are indefinite matrices. Since all the topics are
p-coupled, it is an all-topic coupled network. Also, since
the coupling matrices for all edges are equivalent, it is a
homogeneous network. With the above-mentioned coupling
matrices, as expected from Theorem 4, the topics of agents
reach a complete opinion consensus. Next, let us change the
matrix K 3,4 as

K 3,4 =
⎡
⎣ 0 1 0

1 0 1
0 1 1

⎤
⎦ . (31)

In this case, topics 1 and 2 are not p-coupled although the
underlying interaction network is connected. As observed in
Observation 3, Fig. 10 shows that topic 1 does not reach a
consensus, while topic 2 still reaches a consensus. In topic 1,
agents 3–5 reach a consensus, while agents 4 and 5 reach a
consensus. However, when the matrix A3,4 is changed again

as

K 3,4 =
⎡
⎣ 1 1 0

1 0 1
0 1 1

⎤
⎦ (32)

all the topics have reached a consensus although it is not
all-topic coupled. Let us change the weight matrices K 2,3 and
K 1,3 as

K 1,3 =
⎡
⎣ 0 1 0

1 1 1
0 1 0

⎤
⎦ ; K 2,3 =

⎡
⎣ 0 1 0

1 1 1
0 1 0

⎤
⎦ . (33)

In this case, the network is not all-topic coupled. As shown
in Fig. 11, topics 1 and 3 do not reach a consensus,
while topic 2 reaches a consensus. Next, let us consider φ = 0
and Gi, j ∀(i, j) ∈ E are complete graphs. Fig. 12 shows the
simulation result. All the topics do not reach a consensus.
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Fig. 10. Topics 1 and 2 are not p-connected due to zero diagonal terms in K 3,4. Left: topic 1 (i.e., xi,1, i = 1, . . . , 5). Agents 4 and 5 reach a consensus,
and agents 1–3 reach a consensus for topic 1. Center: topic 2 (i.e., xi,2, i = 1, . . . , 5). Right: topic 3 (i.e., xi,3, i = 1, . . . , 5).

Fig. 11. Not all-topic connected with zero diagonal terms in K 1,3 and K 2,3; only topic 2 is p-connected. Topics 1 and 3 do not reach a consensus (clustered),
while topic 2 reaches a consensus. For both topics 1 and 3, agents 1 and 2 reach a consensus, and agents 3–5 reach a consensus.

Fig. 12. φ = 0 with complete interdependency graphs. The agents do not reach a consensus for any of the topics.

V. CONCLUSION

The opinion dynamics with direct- and cross-coupling topics
may be considered as a consensus problem of multilayer
networks. Each topic can be considered as a basic layer, and
the term ai, j

p,q may describe a cross-layer coupling between
the layer p and layer q , and a connection between agent i and
agent j . The basic layer is the direct connection that is essen-
tial for achieving a consensus on this layer. This article shows
that the opinion dynamics with multiple cross-coupling topics,
which is the consensus dynamics in multilayer networks, pos-
sess some new properties different from the usual consensus in
one layer. The clustering phenomenon occurs quite often even
though the number of connections between agents is large.
In general, adding a direct connection ai, j

p,p forces a consensus
between agents i and j on topic p. On the other hand, adding
a set of cross-layer couplings {ai, j

p,q}q �=p,q=1,...,d may not be

so significantly helpful for agents i and j to reach a consensus
on topic p. However, from simulations, it is shown that the
cross-layer connections are still beneficial for a consensus
on the topics. Of course, as analyzed in the case of the
positive semidefinite Laplacian matrices, the cross couplings
are also very helpful for a consensus. It was also revealed
that a complete opinion consensus still could be achieved for
noncooperative networks when there are some negative cross
couplings in off-diagonal terms.

In our future efforts, we would like to evaluate the polar-
ization phenomenon of bipartite graphs under the setup of
cross couplings, which may be a general one of [11] and [12]
in multidimensional spaces. It is also interesting to change
the overall formulation in discrete-time cases; then, the dis-
continuity arising in the sign functions can be handled more
easily. We are also interested in the problem of switches
in the coupling matrices (for example, a coupling matrix
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Fig. 13. Small size opinion network (a family): the number of topics of
interest in a family could be small. For example, the common topics of
interests between mother and father could be topics 2–6 (topic 2: brushing
teeth; topic 4: healthy food; topic 5: travel; and topic 6: new house), and
the common topics of interests between father and child could be topics 1–3
(topic 1: online games; topic 2: brushing teeth; and topic 3: eating chocolate).

could switch from a positive semidefinite property to indefinite
property). Then, the topology will be time-variant. In our
future efforts, we would like to solve this problem in more
general setup. For computational feasibility, the following final
remark is provided.

Remark 9: As shown in Fig. 13 and (34), the number of
topics of interest in a small society is usually limited. Thus,
the size of the opinion vector in (1) is not so large; this means
that from a mathematical viewpoint, the number of topics
may be limited so that the computation is tractable. Moreover,
although there are a huge number of possible topics, a person
often focuses on only a few topics of interest to discuss. Thus,
the dimension of opinion vector might be small, and the edge
weighting matrix Ai, j might be a low-rank matrix. In terms of
the network size, and for the convergence analysis, we only
need to check the positive semidefiniteness of blkdg(K kth),
which can be done by checking the individual blocks. Thus,
the analysis could be done in a distributed way, which reduces
the computational cost significantly.

APPENDIX

MOTIVATION OF OPINION DYNAMICS WITH

CROSS-COUPLING TOPICS

This appendix provides a motivating example that may
rationalize the opinion dynamics model developed in this
article. Let us observe an opinion evolution in a small society,
for example, in a family, as shown in Fig. 13. For simplic-
ity, let us specifically consider an intercoupled evolution in
the opinions between a father and his child. Suppose that
they are mainly interested in discussing three topics: online
games (topic 1), brushing teeth (topic 2), and eating chocolate
(topic 3). Initially, the father has opinion values on the
online game, brushing teeth, and eating chocolate of 0.3, 1.0,
and 0.01, while the child has opinion values of 0.7, 0.1,
and 0.9, respectively. These values may represent the degree
of preference or dislike. To reach a consensus on these topics,
the father and the child may bring their opinions on the online
games closer together, taking values between 0.3 and 0.7;

for example, father may change his opinion from 0.3 to 0.49,
and child may change from 0.7 to 0.51. Then, the modification
of their opinions on the game may lead a positive effect on
the relationship between the father and child; consequently,
it may enable them to change their opinions on the brushing
teeth closer together [for example, from 1.0 to 0.6 (father) and
from 0.1 to 0.4 (child)]. Then, the close opinions on the game
and brushing teeth would lead a stronger positive effect to their
opinions on the chocolate. For this example (i.e., the opinion
coupling between father and child), (1) can be written as

⎛
⎝ ẋi,1

ẋi,2
ẋi,3

⎞
⎠ =

⎡
⎢⎣ ai, j

1,1 ai, j
1,2 ai, j

1,3

ai, j
2,1 ai, j

2,2 ai, j
2,3

ai, j
3,1 ai, j

3,2 ai, j
3,3

⎤
⎥⎦

⎛
⎝ x j,1 − xi,1

x j,2 − xi,2
x j,3 − xi,3

⎞
⎠ (34)

where i = father and j = child. Then, from (34), we can
see that the father’s opinion on the brushing teeth, i.e., xi,2,
is influenced by x j,1 − xi,1 with the coupling element ai, j

2,1 and

also influenced by x j,3 − xi,3 with the coupling element ai, j
2,3.

Thus, in (34), initially, x j,1 − xi,1 = 0.7 − 0.3 = 0.4; to
model a positive effect from the coupling x j,1 − xi,1 on xi,2,
the element ai, j

2,1 should be of the same sign as sign(x j,2−xi,2).
In more detail, if sign(x j,2 − xi,2) > 0, then it means that xi,2

will increase because (x j,1 − xi,1)×ai, j
2,1 > 0, and so, xi,2 will

approach x j,2. On the other hand, if sign(x j,2 −xi,2) < 0, then
it means that xi,2 will decrease because (x j,1−xi,1)×ai, j

2,1 < 0;
in this case, xi,2 will still be approaching to x j,2. All other
matrix elements in (34) also could be chosen in the same
way if the network is cooperative. However, if the network
is noncooperative, the element ai, j

2,1 should have the opposite
sign of sign(x j,2 − xi,2).

The magnitude of ai, j
2,1 can be chosen in two differ-

ent ways. The element ai, j
2,1 is multiplied with the term

x j,1 − xi,1. From an observation of personal relationships,
if the magnitude of x j,1 − xi,1 is small, it means that the
father and child have reached a close consensus on the
topic of online game. Then, one might argue that this will
enhance the tendency of consensus on the topic of brush-
ing teeth. Thus, if x j,1 − xi,1 is small, then the magnitude
of ai, j

2,1 might increase to enhance the consensus tendency.

In other words, the magnitude of ai, j
2,1 should be chosen to

be inversely proportional to the magnitude of x j,1 − xi,1.
The inverse-proportional relation to the absolute value is
termed “proportional structure” in the above-mentioned model
since the closer opinion acts to increase the consensus ten-
dency. However, if the magnitude of ai, j

2,1 is chosen as the
proportional of the absolute value of x j,1 − xi,1, a large
difference in opinions acts to increase the consensus tendency.
Thus, the proportional choice of the absolute value is termed
“inverse-proportional structure” since the quite different opin-
ion acts as for increasing the consensus tendency. For more
detailed motivations and comprehensive modeling process,
it is recommended to refer to the pdf slides named “Opinion
Dynamics with Cross-Coupling Topics-Modeling and Analy-
sis.pdf” at https://sites.google.com/view/hyosungahn.
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