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Abstract: The authors propose fully distributed strategies for multi-agent formation control of the two-dimensional special
Euclidean group. To control the rotated local reference frames, they firstly estimate the orientation angle of each agent with
regard to a global reference frame. By using only local measurements, the orientation angle is estimated in a distributed way.
The estimated orientation is, then, exploited to control each agent's orientation. Each agent's orientation converges to the
prescribed desired orientation. Finally, a distributed formation control strategy based on displacement measurement is proposed
to achieve the desired formation shape of the two-dimensional special Euclidean group. Under the proposed strategy, the
authors ensure that the formation shape including position and orientation exponentially converges to the desired formation
shape. Moreover, the formation shape is invariant to a translation and a rotation compared with the desired formation shape.

1 Introduction
Formation control of multi-agent systems has been extensively
studied from various perspectives: time-varying formation control
[1–3], control schemes [4–7] and control or sensing variables [8–
15]. Several formation control strategies have been proposed by
using global or local information associated with a global reference
frame [1–8]. The formation control becomes more challenging in
fully distributed environment using local information associated
with a local reference frame. To solve this problem, the fully
distributed strategies have been widely studied in the literature [9–
14].

Displacement-based formation control is a typical distributed
approach for a multi-agent system [8–11]. In the literature, a
displacement is referred to as the relative position of two agents.
Since the relative position is often considered as a vector having
the direction with regard to each agent's local reference frame, the
displacement-based formation problem is usually solved by
assuming that all agents share a common reference frame [8].
However, it does not ensure convergence of the desired formation
shape when the agents' orientations are misaligned. The orientation
misalignment appears in various practical situations. For example,
let us consider magnetometers that can be used for establishing
local reference frames in multi-drone system [16, 17]. Since each
drone senses or moves on its local reference frame measured by
magnetometers, it is unrealistic to ignore the effect of misaligned
local frames between drones. For the orientation misalignment
problem, several solutions have been proposed [9–11]. In the work
of [9], orientation alignment method is proposed to make a desired
formation shape. The proposed method ensures the asymptotic
convergence in the formation control problem with the uniformly
connected interaction topology. Lee and Ahn proposed an
orientation estimation method to solve the distributed formation
control problem of a multi-agent system in the case of misaligned
frames [10, 11]. However, since formation control methods via
orientation estimation cannot ensure the freedom of orientations in
the special orthogonal group, the works of [10, 11, 14] do not
describe the formation control of the special Euclidean group.

Formation control of the special Euclidean group is controlling
both orientation and formation of agents characterised in

SE(d)=SO(d)× ℝd. The formation control of the special Euclidean
group has been studied in [18–21]. In the case of the rotated local
reference frames, several methods have been proposed, such as a
common Cartesian coordinate coupling [18, 19], a rotation matrix
coupling [20] and a Euclidean transformation coupling [21]. The
formation control of the special Euclidean is employed in various
applications of multi-agent coordination, such as earth observation
using synthetic aperture radars [22, 23] and pose estimation using
multi-camera networks [24]. Since the main objective of these
applications is to observe a common object in multi-sensor
networks, sensors fixed to each agent's body frame should aim at a
common object while all agents achieve a desired formation shape.
In the perspective of formation control, it implies that agents are
necessary to achieve not only their own desired positions but also
their own desired orientations.

Several existing works for distributed formation control [8–11]
did not propose the orientation control methods. Since agents
always maintain their initial orientations or are aligned to a
common reference frame, these works does not ensure formation
control of the special Euclidean group. Moreover, the existing
formation control of special Euclidean group [18–21] did not
provide a solution to achieve the desired formation shape in
distributed manners when agents' orientations are rotated to point
towards their target orientations. In this paper, we propose a fully
distributed formation control strategy considering both the relative
orientation angle and position of agents in two-dimensional space.
Also, by verifying that the formation shape is invariant to a
translation and the rotation compared to the desired formation, we
show that the proposed strategy guarantees the distributed
formation control of the special Euclidean group
SE(2) = SO(2) × ℝ2. The main contributions of this paper can be
summarised as follows. First, we control agents' orientations by
using dispersively estimated orientations with regard to a global
reference frame. The proposed orientation control method does not
use any information about the global reference frame and ensures
exponential convergence to the desired orientation containing the
common offset. Second, a distributed formation control strategy is
proposed to achieve the desired formation shape of the two-
dimensional special Euclidean group. This formation control

IET Control Theory Appl., 2020, Vol. 14 Iss. 10, pp. 1393-1399
© The Institution of Engineering and Technology 2020

1393



strategy also does not use any global position information and
ensures exponential convergence of the desired formation shape.

The rest of this paper is organised as follows. In Section 2, we
briefly explain the mathematical background and state the main
problems. The orientation control strategy using the estimated
global orientations and the distributed formation control strategy
are proposed and analysed in Section 3. Simulation results are
provided in Section 4 and the conclusion is presented in Section 5.

2 Preliminaries and problem statement
The matrices Im denotes the m by m identity matrix, and
1m = [1, …, 1]T ∈ ℝm and 0m = [0, …, 0]T ∈ ℝm, where ℝm denotes
the m-dimensional Euclidean space. The operator ⊗ denotes the
Kronecker product of the matrices. For a rotation matrix
R ∈ SO(2), the determinant of R is always 1, i.e. det(R) = 1.
Moreover RTR = I2.

2.1 Interaction topology

The interaction topology for a group of agents can be expressed by
a directed weighted graph Gd = (V, ℰ, A) or an undirected
weighted graph Gu = (V, ℰ, A), where the sets of vertices and
edges are denoted as V = {1, …, n} and ℰ = {(i, j) i,
j ∈ V, i ≠ j} ⊂ V × V, respectively, and a weight set is denoted
as A = {αi j > 0 (i, j) ∈ ℰ}. Further, the set of vertex i's
neighbours is denoted as Ni = { j ∈ V (i, j) ∈ ℰ}. In the directed
graph Gd, an edge (i,j) denotes that i's information is only
communicated to j. However, in the undirected graph Gu, the edge
(i,j) means that j's information is also communicated to i. A
spanning tree of Gu is an undirected graph which is a connected
graph including all vertices of Gu. An arborescence is a directed
graph which is an acyclic connected graph that has a root node
having one directed path to every other nodes. A rooted acyclic
digraph is a specific arborescence which is constructed by the
following process. A vertex 1 has no neighbour. Add a vertex 2
which has the directed edge (2, 1). Add a vertex 3 which has one
directed edge or two directed edges (3, j), for some j's ∈ {1, 2}.
Sequentially, we can add a new vertex i(3 ≤ i ≤ n) and one or
multiple directed edges (i,j), for some j's ∈ {1, 2, …, i − 1}. The
Laplacian matrix of a graph is denoted as L = [li j] ∈ ℝn × n where
li j = − αi j and li j = ∑ j ∈ Ni αi j if i = j.

Consider an n-agent system whose interaction is modelled as
a(an) directed(undirected) weighted graph Gd(u) = (V, ℰ, A). A
consensus protocol is proposed in the work of [25] as follows:

ẋi(t) = ∑
j ∈ Ni

αi j(xj(t) − xi(t)), ∀i ∈ V (1)

where xi ∈ ℝm. The protocol can be written as follows:

ẋ(t) = − (L ⊗ Im)x(t) (2)

where x = [x1
T, x2

T, …, xn
T]T ∈ ℝmn. From the work of [26], the

equilibrium set of (2) is globally exponentially stable under the
interaction topology having an arborescence [26].

2.2 Consensus of the special Euclidean group

Consider the rotation matrix in d-dimensional space. The special
orthogonal group is written as follows:

SO(d) = {Ri ∈ ℝd × d Ri
TRi = Id, det(Ri) = 1} (3)

where Ri is a rotation matrix in ℝd. From the work of [18], the
consensus protocol of (1) can be rewritten as follows:

ṗi(t) = ∑
j ∈ Ni

αi jR(pj(t) − pi(t)), ∀i ∈ V (4)

where pi is agent i's position and R is a common rotation matrix.
The position of agents is controlled by coupling the rotation matrix.
In the work of [18], the consensus algorithm of (4) ensures the
collective motion of agents such as rendezvous, circular patterns
and logarithmic spiral patterns. Let us consider the group of
Euclidean transformations in d-dimensional space. The special
Euclidean group is written as follows:

SE(d) = Gi =
Ri pi

0d
T 1

Ri ∈ SO(d), pi ∈ ℝd (5)

where pi is a position vector in ℝd. In the work of [21], the
dynamics of agents is written as follows:

Ġi = Gi ∑
j ∈ Ni

σi(t)
αi j(Gi j − Gi j

−1), ∀i ∈ V (6)

where Gi is agent i's Euclidean transformation in SE(3) and Ni
σi(t) is

the agent i's time-varying neighbourhood. The control law (6) leads
to consensus of agents. From [18–21], agents are characterised in
the special Euclidean group SE(d) = SO(d) × ℝd. By coupling or
controlling both orientations and positions of agent, they solve the
consensus problem of the special Euclidean group.

2.3 Problem statement

Consider a n-agent system modelled by a single integrator as
follows:

ṗi(t) = ui(t), i ∈ V ≜ {1, …, n} (7)

where pi(t) ∈ ℝ2 is the position of agent i and ui(t) ∈ ℝ2 is the
control input of agent i with regard to a global reference frame,
denoted by gΣ. We let iΣ be a ith local reference frame. An
orientation of iΣ with respect to gΣ is identified by the rotation
matrix Ri ∈ SO(2). The rotation matrix Ri can be expressed in the
orientation angle θi as follows:

Ri =
cos(θi) −sin(θi)
sin(θi) cos(θi)

.

Let pi
i(t) ∈ ℝ2 denote agent i's position with regard to the local

reference frame iΣ. Then, the position dynamics of (7) can be
rewritten as follows:

ṗi
i(t) = ui

i(t), i ∈ V ≜ {1, …, n} (8)

where the velocity of agent i is rotated by the local reference frame
such that ṗi

i = Ri ṗi.
The interaction topology of the multi-agent system includes

both a sensing graph and a communication graph. The sensing
graph Gu

s = (V, ℰs) is assumed to have bidirectional edges while
the communication graph Gd

c = (V, ℰc) is not necessary to be an
undirected graph. Each agent can obtain the sensor data under a
sensing graph and transfer the sensor data under a communication
graph. In this work, the interaction topology satisfies the following
Assumption 1.

 
Assumption 1: The sensing graph Gu

s  has a spanning tree, and
the communication graph Gd

c is a rooted acyclic digraph. Further,
Gd

c is a subgraph of Gu
s .

Under the sensing graph, each agent measures both relative
position and relative orientation of its neighbours. The relative
position of neighbours is expressed in the ith local reference frame
as follows:

pji
i (t) ≜ pj

i(t) − pi
i(t), i ∈ V, j ∈ Ni (9)
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where a superscript i implies the local reference frame of ith agent.
Note that pj

i − pi
i = Ri(pj − pi). The relative orientation angle is

defined as

θi j(t) ≜ PV(θi(t) − θ j(t)), i ∈ V, j ∈ Ni (10)

where the prime value operation is defined as PV
(θi − θ j) ≜ [(θi − θ j + π) mod 2π] − π. The following equation is
proved in the work of [9]:

θi j ≜ PV(θi − θ j) = PV(δi j − δji + π) (11)

where δi j and δji are angle values of pi j
i ∈ ℝ2 and pji

j ∈ ℝ2,
respectively [we can express pi j

i = ∥ pi j
i ∥ [cos(δi j), sin(δi j)]T].

Under the communication graph, the agents should communicate
pi j

i  and pji
j  to calculate the relative orientation angle according to

(11). It shows that agent i can calculate the relative orientation
angle by using relative position measurements.

In this paper, by controlling agents characterised by
(Ri, pi) ∈ SO(2) × ℝ2, we solve the formation control problem of
the special Euclidean group. That is, we attempt to make a desired
formation shape for both position and orientation of agents by
using the relative position measurement. The relative orientation of
neighbours can be obtained from the relative position measurement
(see (11)). Based on the relative orientation, we estimate the
orientation of each agent. The estimated orientation is exploited to
control the orientation to the desired orientation. Let the desired
orientation Ri* ∈ SO(2), i ∈ V be given. The orientation control
problem is then stated as follows.

 
Problem 1: Consider n agents in two-dimensional space.

Suppose that the interaction topology includes Gu
s = (V, ℰs) and

Gd
c = (V, ℰc) under Assumption 1. Based on the relative

orientation Ri j, design an orientation control law such that
Ri j(t) = Ri(t)(Rj(t))T → Ri*(Rj*)T ∀i, j ∈ V as t → ∞.

Let us consider the desired formation p* = {p1*, …, pn*}. Since
each agent has its own desired orientation, it is necessary to
compensate the desired relative position in the view of the local
reference frame. The desired relative position for ith agent can be
denoted as Ri*(pj* − pi*), j ∈ Ni, i ∈ V. The formation control
problem is, then, stated as follows:

 
Problem 2: Consider n agents in two-dimensional space.

Suppose that the interaction topology includes Gu
s = (V, ℰs) and

Gd
c = (V, ℰc) under Assumption 1. Design a position control law

such that (pj
i − pi

i) → Ri*(pi* − pj*) ∀i, j ∈ V as t → ∞.
The block diagram of the proposed formation control strategy is

illustrated in Fig. 1. The real orientation of agent i is controlled by
agent i's estimated orientation. The estimated orientation is updated
by the local measurement (11). Since the real orientation affects the
position of agents, if the real orientation converges to the
prescribed desired orientation, the group of agents is going to
achieve the desired formation rotated by the desired orientation. It
shows that the formation shape converges to the desired formation
of SE(2) via global orientation control.

3 Distributed formation control of SE(2) via global
orientation control

3.1 Global orientation estimation

The dynamics of orientation for each agent can be written as
follows:

Ṙi = ΛiRi (12)

where Λi(t) ∈ ℝ2 × 2 is a skew-symmetric matrix for angular
velocity of ith agent.

Let R^
i(t) ∈ ℝ2 × 2 be agent i's estimated orientation. We design

the dynamics of estimated orientation as follows:

R^̇
i(t) = ∑

j ∈ Ni

(Ri j(t)R
^

j(t) − R^
i(t))

∥ (Ri j(t)R
^

j(t) − R^
i(t)) ∥F

α + Λi(t)R
^
i(t) (13)

where α is a positive value in (0, 1). Note that the R^
j is available to

the agent i under the communication graph Gd
c. For the analysis of

the stability, we consider a coordinate transformation as Q^
i = Ri

TR^
i.

The derivative of Q^
i is written as follows :

Q^̇
i(t) = Ṙi

TRi
^ + Ri

TR^̇
i

= − Ri
TΛiRi

^ + Ri
TR^̇

i

= ∑
j ∈ Ni

Rj
TR^

j(t) − Ri
TR^

i(t)
∥ Ri jR

^
j(t) − R^

i(t)) ∥F
α .

(14)

Since ∥ Ri jR
^

j(t) − R^
i(t)) ∥F

α = ∥ Ri
TR^

i(t) − Rj
TR^

j(t)) ∥F
α, (14) can be

rewritten as follows:

Q^̇
i(t) = ∑

j ∈ Ni

Q^
j(t) − Q^

i(t)
∥ Q^

i(t) − Q^
j(t)) ∥F

α . (15)

Let Q^  be a stacked matrix form defined by Q^ := (Q^
1, …, Q^

n).
Equation (15) can be written in terms of Q^  as follows: the matrix
form can be written as follows:

Q^̇ = − (Lc ⊗ I2)Q
^ (16)

where the matrix Lc = [li j
c ] ∈ ℝn × n can be defined as

li j
c =

0,  if (i, j) ∈ ℰc, i ≠ j, Q^
i = Q^

j or (i, j) ∉ ℰc, i ≠ j
−1/ ∥ Q^

i − Q^
j ∥F

α ,  if (i, j) ∈ ℰc, i ≠ j, Q^
i ≠ Q^

j

∑k ∈ Ni
likc ,  if i = j .

From (16), we obtain the following theorem under Assumption 1.
 
Theorem 1: Under Assumption 1, Q^ (t) globally converges to

1n ⊗ Q^
1(0) in finite time.

 
Proof: See Section 8.1 of Appendix. □
From Theorem 1, we note that a finite value of Q^  is determined

by an initial value of Q^
1. To ensure the convergence of estimated

orientation in SO(2), the initial value of R^
i should be chosen in the

subspace of SO(2). Then, we can obtain the following corollary
from the fact.

 
Corollary 1: Under orientation estimation law (13) and

Assumption 1, there exists Re ∈ SO(2) such that R^
i, ∀i ∈ V

converges to RiRe in finite time if and only if R^
1(0) ∈ SO(2) is non-

singular.
 
Proof: In Theorem 1, Q^

i(t) ∈ ℝ2 × 2 converges to the initial value
of Q^

1 ∈ ℝ2 × 2 regardless of Λi, or i.e. Q^
i(t) → Q^

1(0) ∀i ∈ V as

Fig. 1  Block diagram for formation control via orientation control
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t → To. Since Q^
1(0) = R1

T(0)R^
1(0), if there is R^

1(0) ∈ SO(2) then
R^

i(t) → Ri(t)Q
^

1(0) ∈ SO(2) ∀i ∈ V as t → To. □

3.2 Distributed orientation control

The orientation control law of (12) for each agent is proposed as
follows:

Λi = 1
2((R̄i)T − R̄i), (17)

where R̄i = R^
i(Ri*)T ∈ ℝ2 × 2. Let us consider the equilibrium of the

orientation system (12) with the control law (17). From the result
of Corollary 1, we see that there exists a common rotation matrix
Re for all agents such that R^

i converges to RiRe in finite time. The
steady-state behaviour of the system (13) is, then, considered by
substituting R^

i with RiRe. It follows that the equilibrium of the
system (12) satisfies

(Ri(t)Re(Ri*)T − Ri*(Re)T(Ri(t))T)Ri(t) = 0. (18)

There are two solutions of Ri for the equilibrium of the system (12)
such as Ri = (Re)TRi* and Ri = − (Re)TRi*. We show the stability
analysis of equilibrium in the following result.
 

Lemma 1: For the system (12) with the orientation control law
(17), the equilibrium point Ri = − (Re)TRi* is unstable.
 

Proof: See Section 8.2 of Appendix. □
 

Remark 1: Although the estimated orientation R^
i is not in SO(2)

for all times under the estimation law (13), the orientation control
law (17) is still in the tangent space of SO(2).

The following theorem states that the equilibrium point
Ri = (Re)TRi* for the dynamics (12) is exponentially stable.

 
Theorem 2: Under the dynamics (12) with the proposed

estimation law (13) and control law (17), there is a common
rotation matrix Re such that Ri converges to (Re)TRi*, ∀i ∈ V,
exponentially.

 
Proof: Define the error Ei = Re(Ri*)TRi, then, the convergence

Ri → (Re)TRi* is equivalent to the convergence of Ei → I2. The
derivative of Ei is Ėi = Re(Ri*)TṘi = Re(Ri*)TΛiRi, for all i ∈ V.
Since Re, Ri* ∈ SO(2), the derivative of Ei can be rewritten as
Ėi = ΛiEi. Thus, the angle dynamics of Ei is written as follows:

θ̇i
e = dψRi{ΛiEi} = − sin(θ̄i) (19)

where θi
e and θ̄i are angles corresponding to Ei and R̄i, respectively.

Since the angle dynamics of Ei is equivalent to the angle dynamics
of Ri, we obtain that the error dynamics has an unstable equilibrium
point in θ̄i = π, which is proved in Lemma 1.

Consider the Lyapunov function Vi = 1
2 ∥ Ei − I2 ∥F

2 =
1
2 tr((Ei − I2)T(Ei − I2)) which is positive definite and continuously

differentiable. Moreover, Vi = 0 if and only if Ei = I2. The
derivative of Vi is given by

V̇ i = tr (Ei − I2)T(Ėi)
= tr Ri

TΛiRi − Re(Ri*)TΛiRi

= − 1
2tr Re(Ri*)T(R̄i

T − R̄i)Ri

= − 1
2tr Re(Ri*)TR̄i

TRi − Re(Ri*)TR̄iRi .

(20)

From Corollary 1, we obtain that the estimated orientation globally
converges to its orientation in finite time To, i.e. R̄i =
R^

i(Ri
∗)T → RiRe(Ri

∗)T. Then, the derivative of Vi can be rewritten as
follows:

V̇ i = − 1
2tr I2 − Ei

2

= − 2(1 − cos(θi
e))(1 + cos(θi

e)) ≤ 0, ∀t > To .
(21)

Since Vi = 2(1 − cos θi
e), (21) is rewritten as follows:

V̇ i = − 2 − 1
2Vi

:= V̄ i

Vi .
(22)

Since V̄ i ≥ 0 and there is an unstable equilibrium point when
V̄ i = 0, we can obtain a positive constant ε as follows:

inf
t ∈ [To, ∞) V̄ i := ε > 0. (23)

Consequently, the derivative of Vi is rewritten as

V̇ i ≤ − εVi, ∀t > To . (24)

Equation (24) shows that the convergence of the error Ei to zero is
exponentially fast. □

From the result of Theorem 2, we see that Ri(Rj)T converges to
Ri*(Rj*)T in exponential rate.

The block diagram for orientation estimation and control is
illustrated in Fig. 2. Orientation controller is designed based on the
estimated orientation. 

3.3 Distributed formation control via orientation control

Consider the position dynamics of ith agent under the assumption
of Problem 2. The following formation control law for ith agent is
proposed:

ṗi
i = ∑

j ∈ Ni

((pj
i − pi

i) − Ri*(pj* − pi*)), i ∈ V ≜ {1, …, n} (25)

where pi
i is the position of ith agent with respect to iΣ. Since

ṗi
i = Ri ṗi and Ri = Ei(Re)TRi*, we can rewrite the position dynamics

in the view of global reference frame as follows:

ṗi = ∑
j ∈ Ni

((pj − pi) − (Ri)TRi*(pj* − pi*))

= ∑
j ∈ Ni

((pj − pi) − (Ei)TRe(pj* − pi*))

= ∑
j ∈ Ni

((pj − pi) − Re(pj* − pi*))

+ ∑
j ∈ Ni

(Re(I2 − (Ei)T)(pj* − pi*))

(26)

where Ei exponentially converges to I2 by orientation control.
Let us define wi as

Fig. 2  Block diagram for orientation estimation and control
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wi ≜ ∑
j ∈ Ni

(Re(I2 − (Ei)T)(pj* − pi*)) . (27)

Using wi and the fact that Re ∈ SO(2), the norm of wi can be
written as

∥ wi ∥ ≤ ∑
j ∈ Ni

∥ Re ∥∥ I2 − (Ei)T ∥∥ pj* − pi* ∥

≤ ∑
j ∈ Ni

∥ I2 − (Ei)T ∥∥ pj* − pi* ∥ .
(28)

Since ∥ I2 − (Ei)T ∥ converges to zero exponentially, we can obtain
that

∥ wi ∥ ≤ kce
−λc(t − t0)∥ pj* − pi* ∥ (29)

where kc, λc > 0. Then, (26) can be rewritten as follows:

ṗi = ∑
j ∈ Ni

((pj − Repj*) − (pi − Repi*)) . (30)

Let Ci ≜ pi − Repi* and C = [(C1)T, (C2)T, …, (Cn)T]T. Equation
(30) can be written as

Ċ = − (Lk ⊗ I2)C (31)

where Lk is the Laplacian matrix under the assumption of Problem
2. Equation (31) implies that agent i's position converges to a finite
point as t → ∞

lim
t → ∞

pi(t) = Repi* + C*, i ∈ V ≜ {1, …, n} (32)

where C* is a common value by the consensus algorithm. The
solution of C(t) is written as

C = Φ(t, t0)C + ∫
t0

t
Φ(t, τ)W(τ)dτ (33)

where W(τ) = [w1
T, w2

T, …, wn
T]T and Φ is the state transition matrix.

Let us define a equilibrium set Ξ ≜ {ξ ∈ ℝ2n ξ1 = ξ2 = ⋯ = ξn}.
Then, we can see that C converges to the equilibrium set in an
exponential rate if W = 0. Consequently, we obtain the following
theorem which is proved in [9].

 
Theorem 3: Under the formation control law (25) via

orientation control, the formation pi(t) = (p1
i(t), …, pn

i (t))
exponentially converges to the desired formation rotated by the
desired orientation such that pi converges to Ri*p* exponentially.

Using (32) and Theorem 3, Problem 2 results in

pi j
i = pi

i − pj
i

= Ri*(Re)T(Repi* + C*) − Ri*(Re)T(Repj* + C*)
= Ri*(pi* − pj*)

(34)

which means that the formation shape is allowed to a rotation and a
translation comparing with the desired formation. It shows agents
characterised in SO(2) × ℝ2( = SE(2))) are controlled by proposed
control laws (17) and (25). Moreover, the agents only use local
measurement pi j

i  to control both the orientation and the formation.

4 Simulation
To verify the proposed strategies, we provide the simulation
results. For the simulation, five agents modelled by the single-
integrator system have the interaction topology illustrated in Fig. 3. 
The initial orientation angles and positions of agents are assigned
randomly. The desired orientation and formation are, respectively,
given as θ* = {θ1*, θ2*, θ3*, θ4*, θ5*} = {1.18, 0.57, − 2.51, − 1.34, 2}
and p* = {(1.5, 2.86)T, (1, 2)T, (2, 2)T, (2, 1)T, (1, 1)T}. The shape of
desired formation is illustrated in Fig. 3.

Fig. 4 illustrates that errors of estimated orientation converge to
a common value 0.52[rad]. It implies that the estimated orientation
converges to actual orientation with a common offset Re. Fig. 5
illustrates the result of orientation control. The simulation shows
that the proposed orientation control method achieves convergence
of orientation to a desired orientation with the common offset, i.e.
{θ1, …, θ5} → {0.66, 0.05, − 3.03, − 1.86, 1.48} = θ* − 0.52[rad].
It implies that the relative orientation of real orientations converges
to its desired relative orientation in exponential rate.

Fig. 6 illustrates a simulation of the proposed formation control
strategy. In this figure, we set the initial formation as
p(0) = {(3, 3)T, (1, 2)T, (2, 1)T, (5, 2)T, (1, 1)T}. The formation of
agents converges to {(3, 3)T, (2.74, 3.97)T,
(2.03, 3.26)T, (1.33, 3.97)T, (2.03, 4.67)T}. The simulation shows
that agents form the desired formation shape illustrated in Fig. 3,

Fig. 3  Interaction topology and the desired formation shape
 

Fig. 4  Error of global orientations in orientation estimation. The angle θi

and θ^i correspond to Ri and R^ i, respectively
 

Fig. 5  Error of global orientations in orientation control. The angle θi*
corresponds to Ri*
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although agents are rotated to the desired relative orientation. Since
the formation shape is achieved up to a translation and the rotation
compared with the desired formation p*, it accounts for the
formation control of the two-dimensional special Euclidean group
SE(2) via orientation control. The formation error ∥ Epi ∥ and the
orientation error ∥ Eθi ∥ are illustrated in Fig. 7. Since both the
formation and the orientation of agents converge to the prescribed
desired value, ∥ Epi ∥ and ∥ Eθi ∥ converge to a common state.

5 Conclusion
In this paper, we propose a distributed formation control strategy to
achieve the formation shape with freedom of the two-dimensional
special Euclidean group SE(2)(=SO(2)× ℝ2). The main feature of
the proposed strategy is to consider the rotation of local reference
frames by controlling agents' orientations. The real orientation of
agents is controlled by estimated orientations with regard to gΣ,
where we use the distributed estimation strategy using only local
measurement. The proposed strategy ensures the exponential
convergence to the desired formation shape of SE(2). It implies
that the fully distributed formation control of the special Euclidean
group SE(2) is successfully achieved by orientation control. For
future work, we are interested in applying the proposed strategy for
multi-sensor network applications having surveillance and
observation missions. Also, it is of interest to extend the proposed
strategy to three-dimensional space.
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8 Appendix
 
8.1 Proof of Theorem 1

Theorem 1 can be proved from estimation results of [14]. Under
Assumption 1, a root node (Agent 1) has no neighbour. Thus, the

Fig. 6  Displacement-based formation control of SE(2)
 

Fig. 7  Error of the formation and the orientation of agents
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root node's estimated state maintains its initial state, i.e.
Q^

1(t) = Q^
1(0) = R1

T(0)R^
1(0). The convergence of the other

estimated states is proved as follows.
First, since Agent 2 has only one neighbour, Agent 1, the

estimated state can be written as follows:

Q^̇
2(t) = Q^

1(t) − Q^
2(t)

∥ Q^
2(t) − Q^

1(t)) ∥F
α . (35)

Let us consider a Lyapunov function as
V2(t) = (1/2) ∥ Q^

2(t) − Q^
1(t)) ∥F

2 . The derivative is written as
follows:

V̇2(t) = tr((Q^
2(t) − Q^

1(t))T(Q^̇
2(t) − Q^̇

1(t)))
= − γ2V2(t)(2 − α)/2

(36)

where γ2 = (2/2α/2). It shows that Q^
2(t) → Q^

1(0) as t → T2 where
T2 ≤ 2V2(0)α/2/(γ2α).

Next, we suppose that Q^
i = Q^

1(0) for t ≥ Ti, ∀i ∈ {1, …, n − 1}.
Let us consider Agent k having one or some neighbours in
{1, …, k − 1} where ∀k ∈ {3, …, n}. Then, Q^

k = Q^
1(0) for t ≥ Tk

where Tk ≥ Ti′ ≜ maxi ∈ Nk (Ti). The estimation dynamics (15) can
be rewritten as follows:

Q^̇
k(t) = − ∑

i ∈ Nk

Q^
k(t) − Q^

i(t)
∥ Q^

k(t) − Q^
i(t)) ∥F

α . (37)

Consider a Lyapunov function as
Vk(t) = (1/2)∑i ∈ Nk ∥ Q^

k(t) − Q^
i(t)) ∥F

2 . The derivative of Vk is
written as follows:

V̇k(t) = ∑
i ∈ Nk

tr((Q^
k(t) − Q^

i(t))T(Q^̇
k(t) − Q^̇

i(t))) . (38)

Since Vk(t) is bounded in finite time, the states of Vk are bounded

for t ≤ Ti′. For t > Ti′, Q^̇
i = 0 and Q^

i = Q^
1, ∀i ∈ Nk. Then, the

derivative of Vk can be rewritten as follows:

V̇k(t) = Nk ∑
i ∈ Nk

tr((Q^
k(t) − Q^

i(t))TQ^̇
k(t))

= − γkVk(t)(2 − α)/2
(39)

where γk = 2 Nk /2α/2. It shows that Q^
k(Tk) = Q^

1(0) for t ≥ Tk

where Tk ≤ Ti′ + 2Vk(Ti′)α/2/(γkα).
Finally, we implement the process until k = n. It shows that

Q^ (t) globally converges to 1n ⊗ Q^
1(0) in finite time.

8.2 Proof of Lemma 1

From the work of [27], we can prove Lemma 1 as follows. Let us
define the tangent mapping dψx{g(x)} ≜ g(x)T

∥ x ∥ Rπ
2

x
∥ x ∥ , where

Rπ
2

=
cos(π

2 ) −sin(π
2 )

sin(π
2 ) cos(π

2 )
.

By using the tangent mapping, the system dynamics of Ri and R^
i

are rewritten as follows:

θ̇i = dψRi{ΛiRi}

θ
^̇
i = dψR̂i{ΛiR

^
i} + dψR̂i ∑

j ∈ Ni

(Ri j(t)R
^

j(t) − R^
i(t))

∥ (Ri j(t)R
^

j(t) − R^
i(t)) ∥F

α

= − sin(θ̄i) + ∑
j ∈ Ni

(Ri jR
^

j − R^
i)T

∥ (Ri j(t)R
^

j(t) − R^
i(t)) ∥F

α ∥ R^
i ∥

Rπ
2

R^
i

∥ R^
i ∥

= − sin(θ̄i) + ∑
j ∈ Ni

(Ri jR
^

j − R^
i)

T

∥ (Ri j(t)R
^

j(t) − R^
i(t)) ∥F

α Rπ
2

R^
i

∥ R^
i ∥2

where ∥ (Ri j(t)R
^

j(t) − R^
i(t)) ∥F

α is a positive scalar. Since R^
i
TRπ

2
R^

i is

identically zero and aTb = ∥ a ∥∥ b ∥cos(∠a − ∠b), where the
operator ∠ is an angle of a vector, this system dynamics can be
simplified as

θ̇i = − sin(θ̄i)

θ
^̇
i = − sin(θ̄i) + ∑

j ∈ Ni

ci jcos θi j + θ
^

j − θ
^
i − π

2
(40)

= − sin(θ̄i) + ∑
j ∈ Ni

ci jsin(θi j + θ
^

j − θ
^
i) (41)

where ci j is a positive value.
To examine the stability behaviour of the equilibrium point

corresponding to Lemma 1, suppose that θ̄i = π, θ
^
i = π + θi* + θe,

and θi = π + θi* − θe, where θi* and θe are the angle of Ri* and Re,
respectively. The Jacobian matrix of the system dynamics is
derived as follows:

J =
−cos(θ̄i) − ai j ai j

−cos(θ̄i) 0

=
−cos(θ̄i) − ai j ai j

−cos(θ̄i) 0 θ̄i = π, θ^i = π + θi* + θe, θi = π + θi* − θe

=
1 − ∑

j ∈ Ni

ci j ∑
j ∈ Ni

ci j

1 0

(42)

where ai j = ∑ j ∈ Ni ci jcos(θi j + θ
^

j − θ
^
i). The eigenvalues of the

Jacobian matrix (42) are easy to check as 1 and −∑ j ∈ Ni ci j. It
follows that the equilibrium point corresponding to Lemma 1 is
unstable.
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