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ABSTRACT

A voltage-gated potassium channel encoded by the human ether-a-go-go-related gene (hERG) regulates cardiac
action potential, and it is involved in cardiotoxicity with compounds that inhibit its activity. Therefore, the
screening of hERG channel blockers is a mandatory step in the drug discovery process. The screening of hERG
blockers by using conventional methods is inefficient in terms of cost and efforts. This has led to the development
of many in silico hERG blocker prediction models. However, constructing a high-performance predictive model
with interpretability on hERG blockage by certain compounds is a major obstacle. In this study, we developed
the first, attention-based, interpretable model that predicts hERG blockers and captures important hERG-related
compound substructures. To do that, we first collected various datasets, ranging from public databases to
publicly available private datasets, to train and test the model. Then, we developed a precise and interpretable
hERG blocker prediction model by using deep learning with a self-attention approach that has an appropriate
molecular descriptor, Morgan fingerprint. The proposed prediction model was validated, and the validation
result showed that the model was well-optimized and had high performance. The test set performance of the
proposed model was significantly higher than that of previous fingerprint-based conventional machine learning
models. In particular, the proposed model generally had high accuracy and F1 score thereby, representing the
model’s predictive reliability. Furthermore, we interpreted the calculated attention score vectors obtained from
the proposed prediction model and demonstrated the important structural patterns that are represented in hERG
blockers. In summary, we have proposed a powerful and interpretable hERG blocker prediction model that can
reduce the overall cost of drug discovery by accurately screening for hERG blockers and suggesting hERG-related
substructures.

1. Introduction

prescreening methods have become essential to both industry and
academia. Nowadays, because of the accumulation of data on hERG

A voltage-gated potassium channel encoded by the human ether-a-
go-go-related gene (hERG) plays a key role in cardiac polarization and
depolarization (Sanguinetti and Tristani-Firouzi, 2006). If the hERG ion
channel is blocked by a ligand, it may cause long QT syndrome (LQTS)
and cause Torsade de Pointes (TdP), which leads to sudden cardiac
death (De Ponti et al., 2001; Redfern et al., 2003). Therefore, many
marketed drugs such as astemizole (Zhou et al., 1999), terfenadine (Roy
et al., 1996), and cisapride (Rampe et al., 1997) have been withdrawn
owing to the unintended hERG channel blocking property. Therefore,
chemical screening of the hERG channel is an essential step in the drug
discovery and development process. Conventionally, the patch-clamp
electrophysiological assay is widely used for screening hERG blockers
(Polonchuk, 2012). However, this type of in vitro method is cost-in-
efficient, labor-intensive, and time-consuming; thus, in silico
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inhibition or binding affinity assay, data-driven hERG blocker predic-
tion has attracted considerable attention. Because structurally diverse
molecules bind or inhibit the hERG channel (Witchel, 2007), various
molecular features and machine learning methods are used to construct
the prediction models. In several studies, pharmacophore-based pre-
diction models with support vector machine (SVM) and Naive Bayes
classifier were developed (Leong, 2007; Wang et al., 2016). These
studies attempted to find the pharmacophore pattern of hERG blocking
compounds. In addition, fingerprint-based prediction models have been
developed (Doddareddy et al., 2010; Chavan et al., 2016; Siramshetty
et al., 2018). They used conventional machine learning methods such as
k-nearest neighbor (KNN), SVM, and random forest. In addition, phy-
sicochemical molecular descriptor-based models with various machine
learning algorithms have been developed (Didziapetris and Lanevskij,
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2016; Konda et al., 2019). The aforementioned studies focused on the
prediction performance of the models. Meanwhile, with the develop-
ment of the deep learning technique, Cai et al. proposed the first deep
learning-based hERG blocker prediction model (Cai et al., 2019). They
employed a Mol2Vec (Jaeger et al., 2018) featurizer, inspired by word
embedding, and they used molecular operating environment (MOE)
descriptors. Additionally, they attempted to solve the ambiguity of ICsq
thresholds by multi-task learning. Their model focused on performance,
and not interpretability, because the deep learning model they used was
a black-box model.

Thus, we note that constructing a precise prediction model as well
as finding meaningful hERG blocker patterns simultaneously is a major
issue. To overcome this limitation, in this study, we propose a precise
model and potential hERG blocking substructures. This is achieved by
preprocessing a large-scale public dataset into qualitative data and
employing an interpretable deep learning technique called “self-atten-
tion” that was proposed by Vaswani et al. (2017).

First, in the data preparing step, we collected hERG-blockers and
non-blockers datasets from various sources to train and test the gen-
eralization power of the model. After preprocessing the data, we gen-
erated the Morgan fingerprint descriptor of the compounds that can
capture the substructures for all compounds. Next, by employing deep
learning with a self-attention approach, we constructed an interpretable
model to predict the blockers.

2. Methods
2.1. Data collection and preprocessing

2.1.1. Training dataset

To train the classification model, we collected training data from
ChEMBL (version 25) and PubChem, which are two major publicly
available databases (Mendez et al., 2018; Kim et al., 2018). For con-
sistency, data including ICsy, measurements were collected from both
databases. To remove duplicates, we first standardized a simplified
molecular-input line-entry system (SMILES) descriptor for compounds
using MolVS (Swain, 2019), which is an open-source toolkit based on
the RDKit chemistry framework (version 2019.03.1) (Landrum, 2019).
For the duplicates, we filtered out the molecules that have high stan-
dard deviation (= 10uM) and took a mean value of ICs, for the du-
plicated compounds. Because there is no fixed activity threshold, we
followed the threshold criteria from a previous study (Siramshetty
et al., 2018). In particular, a compound was assigned as a blocker
(hERG-positive) if its ICso value was less and equal to 10 pM and as-
signed as a non-blocker (hERG-negative) if its ICs, value was greater
than 10 pM. The final training dataset contained 10,453 compounds.
Approximately, 63% (6558) of the compounds were blockers, and 37%
(3895) were non-blockers. The training set is summarized in Table 1.

2.1.2. External datasets

We used various external datasets for validation and testing of the
model. First, the validation set for hyper-parameter tuning was col-
lected from the literature (Didziapetris and Lanevskij, 2016). The same
standardization and duplicate handling process used for training data
preprocessing were followed. Then, we collected compounds that were
not used in the training phase. We manually assigned the class labels
using the ICs, value criteria used in the training set preprocess. For the

Table 1

Detailed summary of dataset used for training after preprocessing.
Source Blocker (<10 uM) Non-Blocker(> 10 uM) Both
CHEMBL 3655 1688 5343
PubChem 2903 2207 5110
Total 6558 3895 10,453
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test set used for the evaluation of the model performance, we collected
external datasets used to evaluate three well-trained comparative
models (Chavan et al., 2016; Siramshetty et al., 2018; Konda et al.,
2019) developed in previous studies. The compounds collected in the
external dataset were unknown compounds for both the proposed and
other three models. Additionally, we collected two sets of independent
test data from the literature for a comprehensive evaluation (Wang
et al., 2016; Doddareddy et al., 2010). In this case, we manually as-
signed the class label with three different ICsq thresholds; 1 pM, 10 uM,
30 pM, to evaluate the model’s generalizability. After applying the
abovementioned standardization process, we selected the unknown
compounds from the training set, validation set, and three training
datasets used to train the comparative models (Chavan et al., 2016;
Siramshetty et al., 2018; Konda et al., 2019). The detailed summary of
the external datasets is described in Table 2.

2.2. Molecular fingerprint generation

Because we aimed to identify the specific substructures of hERG
blockers, we employed the Morgan fingerprint that is a type of a cir-
cular fingerprint, also known as extended connectivity fingerprints
(ECFP) (Rogers and Hahn, 2010). This was because of two reasons: (i) it
can capture the local structural features, (ii) the set bits are inter-
pretable. To calculate the Morgan fingerprint, the radius size and
number of bits are required as input parameters. In detail, the sub-
structures of a molecule with a radius size below the predefined value
are extracted and transformed into a numerical identifier by the slightly
changed Morgan algorithm (Rogers and Hahn, 2010; Morgan, 1965).
Then, all extracted substructure identifiers were hashed into a pre-
defined bit-sized binary vector. Therefore, the set bits in a binary vector
are considered as substructures of a molecule. We chose a radius of 3
and 2048 bits to be able to capture meaningful and distinguishable
substructures and reduce collisions of the hashing algorithm. We cal-
culated the Morgan fingerprints of all the compounds from standar-
dized SMILES with the RDKit chemistry toolkit.

2.3. Model construction

2.3.1. Deep neural network with self-attention

In this study, we constructed an interpretable deep-learning model
with a self-attention mechanism. The self-attention mechanism is a
simple technique that makes the model interpretable by capturing data-
specific feature importance and improves model training by employing
self-captured features. Through backpropagation from the final loss, the
model is learned to capture data-specific and task-related important
features required for precise prediction. Fig. 1 shows the interpretable
self-attention-based deep neural network constructed in this study.
First, the calculated fingerprint was fed into the fully connected layer
and softmax layer to train the self-attention score:

a = softmax (g (fp)),

where fp is the fingerprint binary vector, a is the attention score vector,
and g () is the fully connected layer without activation. In detail, g(s) is
a linear operator and softmax(s) is a non-linear activation operator
which can be described as below:

gx)=Wx+b,

softmax (x); = L (fori=1,.., k),
%

where x is the k-dimensional input vector, W is the learnable weight
matrix, and b is the learnable bias vector. In this study, the same-sized
linearly transformed fingerprint is generated by the g(+) operator that
means We [R¥48%2048 gand be IR, Then the output of the g(+) is fed
into the softmax (+) function to calculate the self-attention score vector
which is the same-sized normalized vector;i.e., their sum is always 1.
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Table 2
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Detailed summary of dataset used for validation and test after preprocessing. All observations from the validation and test sets that are duplicate in the training data

have been removed.

Source Use Threshold Blocker Non-Blocker Both
Didziapetris et al. (2016) Validation 10 uM 785 622 1407
Doddareddy et al. (2010) Independent test 1uM, 10 uM, 30 uM* 46, 158, 190 191, 79, 47 237
Wang et al. (2016) Independent test 1uM, 10 uM, 30 uM* 44,108, 137 131, 67, 38 175
Chavan et al. (2016) External test 20 %" 220 1573 1793
Siramshetty et al. (2018) External test 10 pM, 30 uM* 254 235 489
Konda et al. (2019) External test 30 uM 339 920 429

2 Applied three different thresholds; 1 uM, 10 pM, 30 uM.
> 9% hERG blockage.
¢ Multiple dataset with different thresholds; 10 uM 30 uM.

After obtaining the attention score that can be interpreted as an input
feature importance, the original fingerprint and attention score are
element-wise multiplied:

v=aQ fp,

where © is the element-wise multiplication operator. Then, the
weighted feature vector v is fed into the three-layer fully-connected
network with rectified linear unit (ReLu) activation for feature reduc-
tion and abstraction. Finally, by sigmoid activation, the model de-
termines whether the compound is an hERG blocker or not:

¥ = oc(MLP(v)),

where ¥ is the predicted score in the range 0-1, o is the sigmoid ac-
tivation, and MLP(e) is the three-layer multi-layer perceptron (MLP)
with ReLu non-linear activation. Because it is a binary classification
model, the binary cross-entropy loss was employed and the Adam op-
timizer was used for gradient descent.

2.4. Evaluation metrics

For the performance evaluation, we used conventional metrics, such
as sensitivity (Sen), specificity (Spe), precision (Pre), accuracy (Acc)
and F1 score (F1), that are used in typical classification problems. The
detailed formulas are shown below:

TP
Sen= ——,
TP+ FN
Spe= — N _
TN+ FP
Pre= — &
TP+ FP
TP+ TN
Acc= —MMMm,
TP+ TN+ FP+FN
Fl =2 x PrexSen ’
Pre+ Sen

where TP is true positive, TN is true negative, FP is false positive, and
FN is false negative. In this study, we focused more on accuracy and F1
score, because both metrics represent the predictive reliability of the
model.

3. Result
3.1. Model optimization

With the collected validation dataset which is composed of com-
pounds that are not seen during the training step, we optimized hyper-
parameters such as the number of layers, number of nodes per layer,
learning rate, and epochs by checking the area under the precision-
recall curve (AUPR) value at each search grid. The model optimization
process could affect the model’s negative prediction power. However,

this is not significant because, as mentioned above, precise hERG po-
sitive prediction is more important in the screening phase. After tuning
the hyper-parameters, we observed the training loss curve and valida-
tion loss curve to check whether the model is under-fitted or over-fitted.
We confirmed that the optimized model shows consistently well-de-
caying loss curves and validation loss curves (Fig. 2 (a)) during re-
plication. In addition, we evaluated the AUPR and the area under the
receiver operating characteristics (AUROC) of the trained model. Fig. 2
(b) and (¢) show the curves and area under the curve values. Our model
achieved an AUPR of 0.91 ( = 0.006) and an AUROC score of 0.89
( £ 0.006) in the validation step. Furthermore, we also compared the
validation performances between the models with and without self-at-
tention to prove the advantages of using the self-attention. As a result,
the model with the self-attention showed better performance. Therefore
we proved that the self-attention mechanism does not only makes the
model interpretable but also makes the model well-trained. The detail
information is in Supplementary Table 2.

3.2. Performance comparison with each comparative model

We compared the performance of our model with that of three
previously published machine learning-based models. First, the model
of Chavan et al. (2016) is an ensemble of KNN models trained with
three types of molecular fingerprints: Extended fingerprint, Pubchem,
and Substructure count. In total, 171 compounds were selected for
training, of which 94 compounds are hERG positive and 77 compounds
are hERG negative. Their ICsq cutoff was 5 uM. Moreover, the authors
tested their model on the external test set with a threshold of 20% hERG
blockage ratio. This test set contains 220 hERG positive and 1573 hERG
negative compounds. Second, the model of Siramshetty et al. (2018) is a
random forest model trained with ECFP4. Their model was trained with
the manually processed ChEMBL dataset (version 23) containing 1406
hERG positive compounds and 1817 hERG negative compounds with
specific ICsq cutoff (< 1M, > 10uM). They evaluated their model on
their manually collected external test sets with various ICsq thresholds
(10 uM, 30uM). This test set contains 254 hERG positive and 235 hERG
negative compounds. Finally, the model of Konda et al. (2019) is a
random forest model trained with selected molecular descriptors cal-
culated using the PaDEL-descriptor software. This model was also
trained with the manually processed ChEMBL dataset (version 22)
containing 7254 hERG positive and 1451 hERG negative compounds
with 30 uM ICsq cutoff. They also validated their model with an ex-
ternal test set from various sources with an ICsq threshold of 30 uM. This
test set contains 339 hERG positive and 90 hERG negative compounds.
To perform a fair comparison, we trained our model and evaluated the
performances with the identical set of compounds and cutoffs used in
each study for training and test, then we compared the performance
results with each model. Furthermore, we repeated the experiment 30
times to confirm that the result was not obtained due to random chance.
According to the results of the performance comparisons shown in
Fig. 3, our model outperforms the fingerprint-based models in terms of
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Fig. 1. Model Overview.

Overview of the present study. The proposed model was constructed and optimized with the training and validation dataset. SMILES was used as input to calculate
the fingerprint. The attention score vector was trained by feeding the fingerprint vector into the linear layer and Softmax layer. Using weighted fingerprint by
attention score, the blocker score is predicted by a three-layer MLP with ReLu non-linear activation. After construction, the model was evaluated with the test set. The

potential substructures were found by the attention score.

accuracy and F1 score (Fig. 3 (a) and (b)), but not in the descriptor-
based model (Fig. 3 (c)). Even though our proposed model does not
achieve higher prediction performance than the descriptor-based
model, this can be compensated with the interpretability power of our
model which can demonstrate the essential structural patterns that are
represented in hERG blockers.

3.3. Comprehensive performance comparison with an independent test set

Next, we tested the performance of our model by comparison with
the three abovementioned models using the aforementioned in-
dependent test set. All compounds in this test set were unknown to all
models. In this comparison, all models were trained with their own
training set, therefore, we tested the performances on this test set with
three different thresholds for a fair comparison; 1 yuM, 10 uM, 30 uM.
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Fig. 3. Performance comparison with other
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models.

Performance comparison of our model with
other models. Each comparison was conducted
with the test set that each study used. (a) The
performance comparison on the test dataset
with a threshold of 20% hERG blockage ratio.
(b) The performance comparison on the test
datasets with a threshold of 10 and 30 uM. (c)
The performance comparison on the test da-
taset with a threshold of 30 uM.

Fig. 4. Comprehensive performance
comparison with an independent test
set.

Comprehensive performance compar-
ison of the models. The independent
test set was manually collected and
preprocessed and contained drugs un-
known to all models. (a) Performance
evaluation on the test set with 1M
threshold. (b) Performance evaluation
on the same test set with 10uM
threshold. (¢) Performance evaluation
on the same test set with 30uM
threshold.

Fig. 5. True positive hERG blockers
and their highlighted substructures by
interpreting the attention score.

Some predicted blockers among posi-
tive samples (true positive) and atoms
that contribute to two highlighted set
bits among the top fifthteen (red and
blue dots). The blue dot indicates the
center atom. The green box denotes
already reported substructure that af-
fects hERG binding affinity. The red
box denotes unreported and novel
substructures that the model focused to
predict it as a blocker. (a), (d) models
focused on both known and unknown
structures. (b) model focused on un-
known substructures. (c¢) model fo-
cused on known substructures.

Furthermore, we repeated the experiment 30 times for statistical sig-
nificance. The results are shown in Figs. 4 (a)-(c), respectively. Our
model generally showed good performance; namely, it showed the

highest accuracy and F1 score in the independent test set with the 10
uM threshold and showed the second-best precision and F1 score in the
test set with two different thresholds, 1 uM and 30 uM. We can
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conclude that our constructed model is well-generalized because it
showed the robust performance in the test sets with thresholds(1 pM,
30 puM) which are different from the training set threshold (10 uM).

3.4. Result interpretation and potential hERG blocker specific substructures

Several substructures that affect the hERG binding affinity have
been reported thus far (Kalyaanamoorthy and Barakat, 2018). By sub-
stituting those substructures, the hERG binding affinity can be de-
creased significantly. In this section, we analyzed the hERG blocker
patterns by interpreting the attention scores obtained from our model.
Among the compounds assigned to the blocker in the independent test
set, 211 compounds were predicted as blockers by our prediction model
among 266 positive compounds (ICso < 10uM). Our model is a self-
attention based model; therefore, we can interpret the attention score as
feature importance. Thus, we can easily find bits that are important for
the prediction of the hERG blocking property and atoms that contribute
to those bits. We observed the top fifteen highlighted set bits con-
sidering the attention score vector for each well-predicted blocker and
analyzed the atoms that contribute to setting those bits. Fig. 5 shows
some true positive blockers and their two highlighted substructures. We
found that our model can capture the well-known hERG blocking sub-
structures (green boxes in Fig. 5) as well as unreported substructures
(red boxes in Fig. 5 (a), (b), and (d)). Because of this ability of our
model, the captured unreported substructures are potential hERG
blocking substructures that could directly or indirectly affect the hERG
binding affinity property.

4. Discussion

By employing a precise in silico method in drug discovery and de-
velopment process, the cost and time required for the process can be
reduced considerably. Therefore, many quantitative structure-activity
relationship (QSAR) models have been developed for various purposes
in the drug discovery process. However, no standard model has been
proposed thus far because of limitations such as low quality or quantity
of data, biased feature engineering method, and inappropriate machine
learning algorithms. Although our model has many advantages such as
interpretability and high performance, it can be improved further. First,
the internal problem of the Morgan fingerprint algorithm can influence
the prediction performance of the model. The Morgan fingerprint al-
gorithm considers the radius size as a parameter; therefore, we can only
capture a maximum of three radius-sized substructures, even if there
are larger substructures (Kalyaanamoorthy and Barakat, 2018). More-
over, it is a simple hashing-based algorithm; thus, the intrinsic collision
problem and feature sparsity issue have a tradeoff relationship. If the
number of bits decreases, a larger number of substructures will collide
directly increasing feature ambiguity. In the present study, we used
2048 bits to avoid collisions. However, feature sparsity that can affect
the complexity of the models could be increased. Second, the quality
and quantity of data used to train the model are critical issues for deep
learning studies. Thus far, the datasets related to hERG blockers and
non-blockers do not fully satisfy these aspects. Although it seems that
there is sufficient data in public databases and publicly available pri-
vate datasets, there are many duplicates with different assay measure-
ments and missing values. In this study, we attempted to collect data by
choosing ICso-measured compounds and removed ambiguous com-
pounds according to the ICsy standard deviation. However, we only
satisfied the data quality and not quantity for deep learning. Therefore,
although the deep learning technique is a state-of-the-art machine
learning model, a less-biased reversible molecular featurizer and both
qualitative and quantitative data could considerably improve hERG
blocking property prediction.

Computational Biology and Chemistry 87 (2020) 107286

5. Conclusion

In this study, we developed the first deep learning-based inter-
pretable model for hERG blocker prediction. First, we collected datasets
from both public databases and the literature. To construct a highly
accurate model, we chose only ICso-measured data, handled duplicates
by standardizing SMILES, and removing ambiguous compounds ac-
cording to the ICs, standard deviation. By deep learning with the self-
attention mechanism, we designed and constructed a prediction model
that shows significantly increased prediction performance compared to
other related studies. For a fair comparison, we compared our model
with the comparative models with various external datasets and various
ICsp cutoff in terms of performance. Moreover, we analyzed the results
by interpreting the attention score vectors and confirmed that the
prediction model focuses on previously known hERG-related sub-
structures and also unreported potential structural patterns. We can
conclude that the proposed model may contribute to the drug discovery
process with regard to identifying hERG blockers cost-efficiently and
capturing hERG-related substructures.
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