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Abstract: Nano-structural optical filters embedded in 
elastomers having high mechanical tunability provide the 
geometric degree of freedom for selective light manipu-
lation. The active control of spectral information in typi-
cal structural optical filters is highly limited due to the 
substrate rigidity. Herein, we present mechanochromic 
transmissive optical filters by employing flexible and 
stretchable polymer-embedded silicon nanostructures. Si-
based nanowire arrays (Si-NWAs) have been introduced to 
exhibit parametric resonance characteristics by control-
ling the period and/or diameter. Furthermore, the spec-
tral shift phenomenon by increased diffraction efficiency 
was observed after the application of a uniaxial tensile 
force, which depends on the period of Si-NWAs with a 
large index contrast between the silicon nanowire and 
elastomer. The strain-sensitive properties of tunable Si-
NWAs filters induced by light diffraction were calculated 
by simulation based on wave optics. The spectral tunabil-
ity and light filtering features were simply demonstrated 

by stretching the Si-NWAs’ optical filters. Our proposed 
structure provides potential opportunities for a wide vari-
ety of applications, including dynamic color display, vis-
ual strain sensor and anti-counterfeiting.

Keywords: photonic crystal; stretchable optics; structural 
coloration; silicon nanowire arrays.

1   Introduction
Optical filters that are used to handle light are simple but 
highly versatile materials that have recently been applied 
in many light-based fields, including displays, sensors and 
photovoltaics in today’s rapidly developing technology-
centric world [1–6]. Especially, the color filters are actively 
used as representative optical filters in the visible light 
region recognized by the human eye [7, 8]. The structural 
color filters are emerging as a core technology in diverse 
optic components due to several advantages, such as high 
spatial resolution, long-term stability (including resist-
ance to heat/photolysis) and wide color gamut via light 
resonance design compared to conventional dyes and 
pigment color filters [9–11]. These structure-based color 
filters have been implemented in various forms, including 
Fabry-Pérot interferometers, grating structures, plasmon 
resonators and nanowires (NWAs) [12–16]. In particular, 
Si-based nanowire arrays (Si-NWAs) have been introduced 
as optical color filters that have leaky/guided resonance 
modes in a specific wavelength range. Their quantitative 
parameters, such as period and diameter, can be elabo-
rately designed by nanofabrication techniques [17].

However, the aforementioned structural color filters 
are highly static in terms of spectral tunability due to the 
rigid substrates used during their production; hence, their 
applications are strictly limited. In addition, the high-cost 
and complex production process of delicate nanofabri-
cation using e-beam lithography and laser lithography 
hinders the advantages of resonant design selectivity by 
the nanostructures [18, 19]. As a smarter approach, flex-
ible color filters, including photonic crystals, have been 
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recently reported by exploiting polymeric substrates, such 
as polyethylene terephthalate (PET) or polydimethylsi-
loxane (PDMS), which provide flexibility [20–28]. These 
flexible filters have a wide range of potential applications 
in combination with flexible/wearable devices requiring 
conformal adhesion to complex surfaces and/or unique 
form factors with reduced thickness [29–34]. Meanwhile, 
even with NWAs, flexible color filters embedded in PDMS 
have also been reported [35]. Along with Si-based NWAs, 
the previous results showed an extended color gamut with 
transferable Si-NWAs filters attached to resonant struc-
tures, such as ultra-thin films and metal-insulator-metal 
(MIM) resonators, and successfully demonstrated anti-
counterfeiting structures using unique diffraction charac-
teristics [36].

Despite the fluent development of Si-NWAs as flexible 
color filters, only a few studies have investigated the cri-
teria of mechanically adjustable optical information. For 
more practical utilization, herein, with PDMS-embedded 
Si-NWAs, we present the static/dynamic spectral tunabil-
ity of Si-NWAs as a function of the structural periodic-
ity. Their color tuning property was observed according 
to spectral change when a uniaxial tensile force was 
applied. The distributions of nanowire arrays critically 
affect their spectral/colorimetric response due to light dif-
fraction properties within a specific period range [37]. The 
diffraction efficiency of the proposed structure is varied 
depending on the strain ratio. The tunable optical filtering 

feature is proven with diverse LEDs, which have differ-
ent peak wavelengths. The diffraction characteristics are 
calculated by rigorous coupled-wave analysis (RCWA) 
while considering the mechanical properties of the PDMS 
medium. Moreover, dual notch filters are easily designed 
and accomplished by stacking two Si-NWAs filters with 
different resonant features.

2   Results and discussion
Figure 1A illustrates a schematic of the mechanically 
stretchable silicon nanowire arrays (MSNWAs) in an elas-
tomeric polydimethylsiloxane for tunable optical filters. 
The optical response transition of the MSNWAs through 
the geometric transformation is caused by applying a uni-
axial stretching force. The Si nanowires exhibit intrinsic 
colors in the bare state due to leaky/guided modes, which 
feature different wavelength selectivity depending on 
their size of geometry (Figure S1). Figure 1B shows that 
the transmittance dip shifts toward longer wavelengths 
depending on the strain ratio. The optical spectrum can 
be modulated by the distance between nanowire arrays. 
The corresponding transmitted color representations are 
calculated by (Figure S2) in Figure 1B, right. To visually 
confirm the light filtering characteristics, the proposed 
light filter was investigated on the white light of a xenon 
lamp, and certain wavelengths were blocked by MSNWAs 

Figure 1: The mechanically tunable Si nanowire optical filter with spectral tunability.
(A) Schematic illustration of the tunable nanowire color filter. (B) Transmittance curves of the Si-NWAs and color representation of the 
stretched Si-NWAs. (C) Tunable transmissive color filter properties comparing the bare and full stretching samples. (D) Photographs of 
the Si-NWAs with different periods and diameters (left), microscope images before and after stretching Si-NWAs (right). (E) The color 
representations of the bare and stretching samples.
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(Figure 1C). As a result, the transmitted light shifts from 
yellow to magenta when the MSNWAs filter is stretched 
(Figure 1C). Figure 1D presents photographs of the Si 
nanowires embedded in the PDMS polymer (left), bright-
field optical microscope images of bare MSNWAs (right, 
top) and the images when stretched (right, bottom). Due 
to these two-dimensional grating characteristics, the dif-
fraction patterns are observed on the surface. By apply-
ing a mechanical force, this photonic film is “stretched” 
because of the pliability of the PDMS medium. We used 
optical microscopy to observe the arrangement of the 
nanostructure during the stretching. Before stretching the 
structure, the same horizontal and vertical spacing was 
observed. The proposed structure has a periodic nanowire 
array in the form of a square. After stretching, the trans-
verse axis increased and the longitudinal axis decreased. 
This is determined by the Poisson’s ratio of the PDMS mate-
rial with a value of 0.5 [38]. The chromatic information 
was calculated from the measured transmittance spectra 
by using MATLAB (Mathworks, Inc.) software (Figure 1E). 
The color coordinates were shifted in the clockwise direc-
tion as a result of the increased strain ratio.

Figure 2A shows the fabrication processes used to 
prepare the MSNWAs. The oxide layer with ~200 nm thick-
ness was formed on a silicon wafer by a thermal anneal-
ing process. Then, the KrF excimer laser lithography 

was performed to fabricate the nanodisc arrays (Nikon 
Inc., KrF scanner S203-B). The exposed silicon area was 
anisotropically etched for 2 μm height by a reactive ion 
etching (RIE) process (Oxford Plasmalab 133). The oxide 
residues on a silicon wafer were removed by the appli-
cation of hydrofluoric acid (HF). The thermal oxidation 
process and HF wet etching treatments were repeated to 
precisely tailor the silicon nanowire diameters to 60 nm. 
The PDMS polymers, utilized as substrates, are capable 
of repeated mechanical bending and are characterized 
by hundreds of micrometers in thickness and millimeter 
to centimeter scale bend radii [39]. The PDMS was mixed 
with a base elastomer and a cross-linking agent ratio of 5:1 
(Sylgard 184, Dow Corning, USA) to provide curing condi-
tions. In order to eliminate air bubbles in the mixed PDMS, 
the polymer blend was placed in a vacuum chamber for 
30  min. Then, the PDMS was spin-coated on the silicon 
nanowire substrate (500  rpm for 30  s). Afterward, the 
spin-coated PDMS on the silicon nanowire substrate was 
thermally annealed at 230°C for 2  h by a hot plate. The 
PDMS-embedded Si-NWAs were obtained by peeling off 
the nanowire substrate using a blade (NT-Cutter, BSC-21P). 
Figure 2B shows the SEM images that provide geometric 
information of the cross-section (top, left) and top-views 
(top, right). The diameters in the 60–110 nm range produce 
resonances in the visible spectral range. As a result, 

Figure 2: The fabrication method for the mechanically tunable Si-NWA optical filter.
(A) Schematic illustration of the fabrication process for Si-NWAs. (B) SEM images of Si-NWAs (top) and photographs of Si-NWAs with 
different periods and diameters (bottom). (C) Stacking two different Si-NWAs filters. (D) Photographs of Si-NWAs filters with applying strain.
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multi-colored optical filters can be achieved by adjusting 
the shape of the nanostructure (Figure 2B, bottom). Figure 
2C illustrates the stacking process of two different silicon 
nanowire arrays for multi-band optical filters. As can be 
seen, the transmittance dip of each layer was maintained. 
Meanwhile, the MSNWAs were stretched using a home-
made stretching device (Figure S3), as shown in Figure 2D.

Figure 3A shows the schematic diagram of the optical 
simulation to interpret the transmittance dip shifts of 
stretched silicon nanowire optical filters. The three-
dimensional rigorous coupled-wave analysis (3D RCWA) 
was performed by considering a Poisson’s ratio. A com-
mercial software tool (DiffractMOD, RSoft Design Group, 
USA) was used to understand the light propagation proper-
ties for the various geometric parameters of the proposed 
structure. Depending on the vertically arranged nanowire 
array, the periodic boundaries for optical simulation were 
taken into account with 10th order diffraction orders. To 
consider the spectral information, an un- polarized light 
diffracted pattern and electric field profiles were simu-
lated and the transverse electric and magnetic modes were 
averaged. The refractive index and extinction coefficients 

as a function of wavelength were considered from the pre-
vious literature [40, 41]. The Poisson’s ratio for PDMS is 
0.5, which is a negative transverse to lateral strain ratio. 
The stretching in the x-direction reduces the length in the 
y-direction, which means a uniaxial strain onto PDMS 
converts the square geometry into a rectangle (Figure 3A).

Next, bare and stretched filters were simulated 
to determine the electric field propagation at 450  nm 
and 635  nm wavelengths (Figure 3B). In the bare (un-
stretched) state, the diffraction patterns were observed 
at the 450 nm wavelength. Meanwhile, it was observed 
that the light of 635 nm wavelength proceeded without 
changing the light path. As the period of the Si-NWAs 
changed (stretched state), the diffracted light of 635 nm 
wavelength is observed, indicating that the diffraction 
could be adjusted according to the degree of stretch-
ing. As shown in Figure 3C, as broadband diffraction 
becomes possible according to increased strain ratio, 
the averaged diffraction efficiency increases. In certain 
periodicities of Si-NWAs, the lights are concentrated 
by leaky modes [42]. The reduced absorption was cal-
culated by the deformed arrangement of the MSNWAs 

Figure 3: The simulation and experimental results for light diffraction properties.
(A) Schematic illustration of the Si-NWAs embedded in PDMS. (B) The real part of electric-field distributions from three-dimensional finite-
difference time-domain simulations. (C) Diffraction efficiency and averaged absorption depending on the applied strain with the wavelength 
range of 400–800. (D, E) Experimental setups and photographs for diffraction patterns. (F) Simulated diffraction patterns with the period 
600 nm of Si-NWAs.
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(Figure S4). The experimental setup schematic is illus-
trated to confirm the diffraction pattern depending 
on the three wavelengths (Figure 3D). The stretchable 
nanowire filter mounted on the stretching device is 
located between the blue, green and red lasers (wave-
lengths of 450, 532 and 635  nm, respectively) and a 
screen. The diffraction patterns were also respectively 
obtained for bare (un-stretched), 20%, 40% and 60% 
stretched samples (Figure 3E). In the case of the blue 
laser, narrower-angle diffraction occurred compared 
with the red and green lasers. After stretching, the angle 
of the first order decreased in the pulling direction. The 
red laser at 635 nm passed straight through without dif-
fraction. Above 40% of the stretching, the first-order 
diffraction was observed. Figure 3F shows the calcu-
lated diffraction patterns at wavelengths of 450 nm and 
635  nm. The diffraction pattern is determined by the 
arrays of nanostructure [43]. The patterns obtained from 
the 3D RCWA simulation are similar to the experimental 
results. The improvement of the diffraction efficiency of 
the first-order spectrum is observed to be in good agree-
ment with the experimental results.

Meanwhile, the light-emitting diodes (LEDs) with 
different wavelengths were prepared to demonstrate the 
band-stop properties of the stretchable nanowire array 
filter. Figure 4A exhibits the schematics for band-stop 
filtering experiments with the diverse LED arrays. The 

center wavelength peaks for the letters “GIST” are 460, 
505, 555 and 605 nm, respectively. The clear GIST image 
was achieved without a nanowire filter as shown in Figure 
4B. With a bare Si nanowire filter, the blue light for “G” is 
rejected due to the 460 nm wavelength band-stop proper-
ties. In the stretched nanowire arrays with the period of 
600  nm, the transmittance dip shifts toward the longer 
region. The blocked blue light is observed in the stretched 
optical filter. To block the red light (605 nm), the nanow-
ires having a diameter of 90 nm and a period of 1250 nm 
were developed by stacking the existing nanowires.

The nanowires have a linear combination prop-
erty and maintain a resonance dip when two different 
filters are overlapped. Therefore, a band-stop filter with 
two or more dips can be implemented through very 
simple stacking. These fabricated Si nanowires have 
been experimentally demonstrated to have wavelength 
selectivity as the diameter increases due to HE11 mode 
of the leaky and guided modes. We experimentally fab-
ricated Si nanowire embedded in the PDMS for different 
diameters and periods and then measured their trans-
mission spectra. To determine the period dependency, 
the 1200  nm period of the Si-NWAs with three differ-
ent diameters of 60, 80 and 100 nm were used in these 
experiments (Figure 4C). The strain at the period 600 nm 
of silicon nanowire was set from 0%–100%. The optical 
spectrum can be adjusted according to the applied 

Figure 4: The optical filtering features and strain-induced spectral tunability. 
(A) Schematic illustration of the experimental setups for optical filters. (B) Photographs of “GIST” lettered LED arrays and optical filter 
experimental results. (C, D) The transmittance of the Si-NWAs and color representation depending on the strain ratio. (E) Transmittance dip 
after the strain cycle of the Si-NWAs with periods of 600 nm (top) and 1200 nm (bottom). (F) Color coordinates for the double-layered MSNWAs.
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strain force. The creation of the transmittance dips in 
the double-layered structures is thus observed (Figure 
4D). Unlike Si nanowires with a period of 600 nm, those 
with a period of 1200 nm exhibit no significant change 
in the diffraction efficiency and the transmittance dip 
before and after stretching (Figure S5). Therefore, the 
spectral shift critically affects the periodicity of the 
nanostructure. Furthermore, as a diffraction-based res-
onator, the MSNWAs exhibit angular selective response 
in consideration of angle dependency with zeroth order 
diffraction (Figure S6). The transmittance dip for two 
different periodic samples was measured according 
to the number of strain cycles as shown in Figure 4E. 
Results show that the optical performances are main-
tained despite the air gaps between filters or the swap-
ping of two filters (Figure S7). We thus confirmed that 
the changed dips occur in only 600  nm periodicity of 
Si nanowire according to the strain ratio, whereas the 
1200 nm periodicity of Si nanowire is maintained when 
the strain force is applied. The fine-tuned colors were 
estimated from these measured transmittance spectra as 
shown in Figure 4F. Results show that the initial colors 
change when the strain ratio of the MSNWAs increases 
in the clockwise direction.

3   Conclusions
In conclusion, a strategy to develop mechanically tunable 
band-stop optical filters is demonstrated by uniaxially 
stretching the MSNWAs. The pliable PDMS polymer was 
used as the stretchable medium. The periodic deforma-
tion of nanostructures improved the diffraction efficiency. 
The optical spectrum shifted depending on the strain ratio 
in the MSNWAs, which can be attributed to the increased 
spacing between the Si-NWAs. The diffraction characteris-
tics demonstrated that the diffraction order was observed 
in the 635 nm red laser both in the simulation and experi-
mental results. The tunability and light filtering features 
at the specific wavelengths were confirmed by stretching 
the MSNWAs for various LED arrays.

The proposed conceptual demonstration by manually 
induced mechanical deformation provides a key solution 
for the extended future application of Si-NWAs. For real-
istic applications, through a multi-axial approach with 
automated mechanical deformation, our scheme can be 
developed as a dynamic visual application, including 
a display, filter and sensor. With the independent wave-
length selectivity for Si-NWAs, the different MSNWA 
combinations can be utilized as multiband transmissive 

filters. Using these features, we believe that mechanically 
tunable applications, such as strain sensitive color filter, 
light diffuser and colorimetric sensor applications, can be 
achieved.
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